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Abstract: A key challenge in information theoretic feature selection is to estimate mutual information
expressions that capture three desirable terms—the relevancy of a feature with the output,
the redundancy and the complementarity between groups of features. The challenge becomes
more pronounced in multi-target problems, where the output space is multi-dimensional. Our work
presents an algorithm that captures these three desirable terms and is suitable for the well-known
multi-target prediction settings of multi-label/dimensional classification and multivariate regression.
We achieve this by combining two ideas—deriving low-order information theoretic approximations
for the input space and using quantization algorithms for deriving low-dimensional approximations
of the output space. Under the above framework we derive a novel criterion, Group-JMI-Rand,
which captures various high-order target interactions. In an extensive experimental study we showed
that our suggested criterion achieves competing performance against various other information
theoretic feature selection criteria suggested in the literature.

Keywords: feature selection; mutual information; multi-target; multi-label; clustering

1. Introduction

Many real world applications generate huge amounts of data that create various new challenges,
such as learning from high dimensional inputs (features). One way of dealing with big dimensionality
is to ignore the irrelevant and redundant features by using a feature selection (FS) algorithm [1]. In our
work we will focus on information theoretic FS criteria, which quantify the importance of each
feature by estimating mutual information terms to capture—the relevancy, the redundancy and the
complementarity [2]. Choosing a subset of features that has the highest relevancy with the output
space, the minimum redundancy between them and the highest complementarity, helps us to reduce
the input space and at the same time keep as much useful information as possible.

At the same time more and more applications need to predict multiple outputs (targets), instead of
a single one. Depending on the type of the output variables there are various categories of multi-target
problems, such as multi-label classification, multi-dimensional classification, and multivariate regression,
when the outputs are binary, categorical and continuous, respectively [3]. For example, in computer
vision [4], multi-label data are used in automated image annotation, since an image can be associated
with a number of semantic concepts. In bioinformatics [5], multi-dimensional learning is used in
functional genomics, where a gene or protein is associated with multiple functional labels, since an
individual gene or protein usually performs a number of functions. Finally, multivariate regression has
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been used in ecological modeling in order to predict various target variables that capture the quality of
the vegetation [6].

In this paper we focus on deriving novel information theoretic FS methods for multi-target
problems. To do so we need to estimate mutual information (MI) expressions from finite sample data
sets. As the number of selected features grows due to high dimensionality of the input space and as the
number of targets is high due to high dimensionality of the output space, the estimated MI expressions
become less reliable. To overcome this problem, low-order criteria have been suggested.

Sechidis et al. [7] introduced a framework for generating such low-order FS criteria for multi-target
problems by iteratively maximising different composite likelihood expressions, which make various
assumptions about the input and output space. By exploring how the different assumptions compare,
the authors have found that the best trade-off appears to assume partial independence in the feature
and full independence in the target space, a method known as Single-JMI (Joint Mutual Information),
details in Section 2. While the partial independence of the feature space has been proven to be useful
in deriving FS criteria for single-label data [8], the full independence in the label space ignores the
useful information that the possible dependencies between the targets can provide.

Our work, which is an extension of the conference paper in Reference [9], introduces an algorithm
that uses the principles of the Single-JMI criterion but at the same time takes into account target
dependencies. In the current work, we expanded the preliminary conference paper, by extending
the discussion of related work (Section 2), by providing a novel theoretical and sensitivity analysis
(Sections 3.2 and 3.3 respectively), by providing a larger empirical study for multi-label classification
(Section 4), including more datasets and competing methods and by providing a novel empirical
study on multivariate regression problems (Section 5). The software related to this paper, including
implementations of our novel FS criteria, is available at: https://github.com/sechidis.

2. Background on Information Theoretic Multi-Target FS

Let us assume that we have a multi-target problem where we observe N samples {xn, yn}N
n=1.

The feature vector x = [x1 . . . xd] is a realisation of the joint random variable X = X1 . . . Xd, while the
output vector is a realisation of Y = Y1 . . . Ym. When the variables of the output space are binary, that is,
the alphabet Y is {0, 1}m, the problem is known as multi-label classification, when they are categorical
as multi-dimensional classification Y is {0, . . . , c}m, while when they are continuous, that is, Y is Rm,
as multivariate regression [3].

The problem of FS can be phrased as selecting a subset of K features Xθ ⊂ X, where |Xθ | = K,
that contain as much useful information for our problem as possible. With a slight abuse of notation,
in the rest of our work, we interchange the symbol for a set of variables and for their joint random
variable. FS methods can be categorized in three groups [10]—filters, wrappers and embedded.
Filters are independent of the classifier and they define a scoring criterion (or relevance index) by
which they produce a ranking of the features. Wrappers are classifier dependent; they use an evaluation
measure to check the performance of the different subsets of features with a particular classifier and
they choose the subset with the best performance. Finally, embedded methods are again classifier
dependent, since they are part of the learning algorithm and the FS is applied in the training procedure.
From the above descriptions we can find the strengths and the weaknesses of each approach. Filters are
classifier independent, they are fast and they are less likely to overfit but on the other hand the
performance is worse than the classifier specific methods (some of the filters may underfit the data).
Embedded methods require some model, which introduces additional assumptions and may be slower
than filters but may result to better performance and tend to overfit less than wrappers. Wrappers,
because they are classifier dependent, may achieve better performance but on the other hand, they are
computationally intensive and tend to overfit more than the other techniques [1,8].

In our work we focus on filter methods for FS, which operate under the assumption that the
prediction and FS steps are independent [1] or in other words, the selection of features is independent of
the classifier or the regressor used. In filter FS, we firstly rank the features according to a score measure
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and then select the ones with the highest score. The score of each feature should be independent of any
classifier and any evaluation measure and it is desirable to increase if the relevancy of the feature with
the targets is high, the redundancy with the existing features is low and the complementarity with the
existing features is high [8].

2.1. Deriving Criteria via Maximum Likelihood Maximization Framework

For single-output problems, that is, the output space is a single variable Y, Brown et al. [8]
introduced a framework for generating information theoretic FS criteria by phrasing a clearly specified
optimisation problem; maximising the conditional likelihood. A greedy forward selection to optimise
this objective is: at each step k select the feature Xk ∈ X

θ̃
that maximises the following conditional

mutual information (CMI):

JCMI(Xk) = I(Xk; Y|Xθ),

where Xθ is the set of the (k − 1) features already selected, X
θ̃

the unselected ones and Y the
single-output target variable. CMI criterion can be written in the following way:

JCMI(Xk) = I(Xk; Y)− I(Xk|Xθ) + I(Xk; Xθ |Y).

The first term of the above expression corresponds to the relevancy of a feature with the target,
the second to the redundancy of a feature with the set of features already selected and the last term to
the complentarity (or conditional redundancy) of the feature with the set of selected features. While the
importance of the first two terms is pronounced in the FS literature, the last term has not been
traditionally accounted [8]. This term has opposite sign than redundancy, which means that dependent
features can be useful, as long the dependence within class is stronger than the overall dependence.

As the number of selected features grows, the dimensionality of Xθ also grows, making the
estimates less reliable. To overcome this issue a number of methods have been proposed for deriving
low-order criteria. A popular criterion that controls relevancy, redundancy and complementarity,
providing a good trade-off between accuracy, stability and flexibility is the joint mutual information
(JMI), with scoring function [8]:

JJMI(Xk) = ∑
Xj∈Xθ

I(XjXk; Y)

∝ I(Xk; Y)− 1
|Xθ | ∑

Xj∈Xθ

(
I(Xk; Xj)− I(Xk; Xj|Y)

)
,

where the symbol ∝ indicates a ranking equivalent expression for the criterion. The proof for this
ranking equivalence can be found in Appendix A.1 of Reference [8]. From the last expression we can
see that JMI takes into account all three desirable terms—the score increases when the relevance of
a feature is high, when the average redundancy with the features already selected is low and when the
average complementarity with the selected features is high.

Sechidis et al. [7] derived two versions of the JMI criterion suitable for multi-output problems,
that is, the output space is a joint variable Y = Y1 . . . Ym. Their approach was based on the idea of
expressing multi-label decomposition methods as composite likelihoods and then showing how FS
criteria can be derived by greedily maximising these likelihood expressions. Different decomposition
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methods lead naturally to different FS criteria. The scoring functions for the two multi-output criteria
suggested by Sechidis et al. [7] are the following:

JJoint
JMI (Xk) = ∑

Xj∈Xθ

I(XjXk; Y), (1)

JSingle
JMI (Xk) = ∑

Xj∈Xθ

∑
Yi∈Y

I(XjXk; Yi). (2)

The superscripts denote the assumptions over the output space:

Joint-JMI does not make any assumptions and deals with the joint random variable Y.
This corresponds to the Label Powerset (LP) transformation in the multi-label literature.
The main limitation of this method is that Y is high dimensional. For example, in multi-label
problems we have up to min(N, 2m) distinct labelsets [11], which makes it difficult to
estimate MI expressions reliably.

Single-JMI deals with each variable Yi, i = 1 . . . m, independently of the others. This corresponds to
the Binary Relevance (BR) transformation in the multi-label literature. The main limitation
of this method is that by making the full independence assumption it ignores possible
useful information on how the targets interact with each other.

These two versions of the JMI criterion can be seen as the two extreme cases; assuming no
independence at all (Joint-JMI) and assuming every outcome it is independent from the rest (Single-JMI).

In a small experimental study, using only two datasets, Sechidis et al. [7] showed that Single-JMI,
even though it assumes full independence between the targets, outperforms Joint-JMI, whicht makes
no assumptions about the targets. This is happening because the low-dimensional MI expressions in
Single-JMI are estimated more reliably from small datasets than the high dimensional MI expressions
in Joint-JMI. Next section introduces a novel algorithm that accounts for target dependencies and at
the same time keeps the dimensionality of the MI expressions low. Before that we will review other
information theoretic criteria suggested in the literature, while a systematic review on multi-label FS
methods can found in Reference [12].

2.2. Other Information Theoretic Criteria

Yang & Pedersen [13] introduced the first information theoretic multi-label FS method,
which ranks the features using the criterion: JBR

MIM(Xk) = ∑
Yi∈Y

I(Xk; Yi). MIM-BR ranks the features only

on their relevancy with each target independently and it does not take into account possible correlations
between features (i.e., redundancy/complementarity). AMI [14] is an extension that takes into account
redundancy terms but still treats each label independently. ELA+CHI [15] uses an Entropy-based
Label Assignment, which assigns the labels weights based on label entropy, to transform the label
space and then uses the χ2 statistic, a quantity that is asymptotically equivalent to the MI [16], to rank
the features. Lee & Kim [17] proposed PMU, a criterion that uses the multivariate MI and avoids
the computational cost by restricting the number of variables to three. The same authors suggested
FIMF [18], an algorithm for a computationally efficient information theoretic FS and more recently
SCLS [19] that introduces a novel way of measuring feature redundancy.

All the above methods were proposed for solving the classification problem (i.e., multi-label) and
to the best of our knowledge our work is the first that suggests an information theoretic algorithm
that can be used for any kind of multi-target tasks, even on multivariate regression using the default
plug-in MI estimator.

At this point we should clarify that in information theoretic FS the scoring criterion, for example,
Equations (1) and (2), is combined with a search method which describes how the candidate feature
sets are selected. All of the FS algorithms presented so far use greedy forward search, testing each
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feature in turn for inclusion and adding the one with the highest score. Using a greedy search to present
the capabilities of a criterion it is a widely used strategy in the information theoretic FS literature [8].
Apart from the greedy (forward or backward) methods to optimize a scoring criterion, more advanced
methods can be used, such as genetic algorithms ([1], Chapter 4). For the remainder of this paper,
we will use greedy forward search to test our suggested novel scoring criteria.

3. A Novel Framework to Take into Account Target Dependencies

3.1. Transforming Output Space via Quantization to Account for Target Dependencies

The main idea behind our approach is to derive a novel representation of the output space
Ỹ = Ỹ1 . . . Ỹm, where each variable Ỹi captures the joint information of some group of target variables.
After deriving this representation, we will use the following criterion, which we call Group-JMI:

JGroup
JMI (Xk) = ∑

Xj∈Xθ

∑
Ỹi∈Ỹ

I(XjXk; Ỹi). (3)

Group-JMI can be seen as the modification of Single-JMI criterion using Ỹi instead of the initial
targets Yi. By doing this we keep estimating low dimensional MI expressions but at the same time we
take into account target dependencies; each Ỹi captures the information that is shared in a group of
target variables. The main challenge is to derive the projected space Ỹ from the initial space Y. Here,
we solve this challenge using the following two-step, quantization-based strategy:

• 1st Step—Generate Groups of Target Variables, Using PoT Parameter

In this step we create m groups of variables Z1, ..., Zm, where each group is a random subset of the
targets, that is, Zi ⊂ Y ∀ i = 1, . . . , m. Each group is generated by sampling the set of target variables
without replacement and by allowing overlap between the groups. Randomly sampling groups of
targets has been extensively used for deriving learning algorithms but not for FS. A famous example is
RAKEL [20], a state of the art method for learning from multi-label data.

Similarly to RAKEL, the number of targets in each group is controlled by a parameter that specifies
the Proportion of Targets (PoT) randomly sampled to generate each group. Given, for example,
a multi-target problem with m = 20 targets and PoT= 0.30, 20 groups Z1, . . . , Z20 will be generated,
each one consisting of 6(= 20× 0.30) randomly selected target variables. Assuming binary targets the
joint variable in each group may take up to 26 = 64 distinct values, a dimensionality that prevents
reliable density estimation unless a very large amount of data is available. To overcome this issue,
we introduce a way to derive low-dimensional approximations in the following step.

• 2nd Step—Low-dimensional Approximations via Quantization, Using NoC Parameter

To derive low dimensional representations for each group, we will use the idea of clustering
together examples with “similar” output vectors. In the most common case, we assume the Number
of Cluster (NoC) is provided a priori. For each group Zi, we derive a novel categorical variable Ỹi,
with the alphabet {1, ..., NoC}, that describes the cluster indices of each observation:

ỹn
i = Clustering(zn

i , NoC), ∀ i = 1, . . . , m, n = 1, . . . , N,

where the inputs of the clustering algorithm are the target variables of the Zi group and the
NoC parameter.

In this work, we use the K-medoids clustering algorithm ([21], Section 14.3.10)—mainly due to
its robustness to outliers—but any clustering algorithm that is compatible with the target variables
could be used instead. Furthermore, the distance metric can be chosen according to the multi-target
problem at hand (e.g., Hamming distance for multi-label classification and Euclidean distance for
multivariate regression).
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At this point, the problem of estimating the joint (high-dimensional) density of the targets in each
group becomes a problem of estimating a discrete distribution of NoC categories. The trade-off is
between making no approximations and estimating high-dimensional densities, which leads to poor
and unreliable estimates of the MI or deriving lower dimensional approximations through clustering,
which leads to more reliable estimates of the MI.

Algorithm 1 provides a greedy forward FS algorithm using our Group-JMI criterion. In Line 9 we
need to estimate the JMI between two features, that is, Xj and Xk and the transformed target variable
Ỹj from our sample data. Any MI estimator can be used for this task [22]. In our work we use the
plug-in estimator for the MI:

Î(XjXk; Ỹi) = ∑
xj∈Xj

∑
xk∈Xk

∑
ỹi∈Ỹi

p̂(xj, xk, ỹi) ln
p̂(xj, xk, ỹi)

p̂(xj, xk) p̂(ỹi)
, (4)

where, for example, p̂(xj, xk, ỹi) is the maximum likelihood estimate of the joint probability that
the random variable Xj takes the value xj, the random variable Xk takes the values xk and the
random variable Ỹi takes the values ỹi. Estimating these probabilities with categorical features is
straightforward, while continuous features can be discretised, for example equal-width discretisation
is used often in the FS literature [8,17].

Algorithm 1 Forward FS with our Group-JMI criterion

Input: Dataset {xn, yn}N
n=1, parameters PoT and NoC and the number of features to be selected K.

Output: List of top-K features Xθ

1: X
θ̃
= X . Set of candidate features

2: Set Xθ to empty list . List of selected features

3: for i := 1 to m do . Output transformation (where m is the number of target variables)

4: Use PoT to generate a random subset of targets: Zi ⊂ Y

5: Derive Ỹi, from the cluster indices: Ỹi = Clustering(Zi, NoC)

6: end for

7: for k := 1 to K do

8: Let X∗k ∈ X
θ̃

maximise:

9: JGroup
JMI (Xk) = ∑

Xj∈Xθ

∑
Ỹi∈Ỹ

I(XjXk; Ỹi) . Our scoring criterion

10: Xθ(k) = X∗k . Add feature X∗k to the list

11: X
θ̃
= X

θ̃
\X∗k . Remove feature X∗k from the candidate set

12: end for

3.2. Theoretical Analysis

Now we will show that our suggested criterion, Group-JMI, captures all three desirable
characteristics of an information theoretic FS criterion—relevancy, redundancy and complementarity.
Let us start from Equation (3):

JGroup
JMI (Xk) = ∑

Xj∈Xθ

∑
Ỹi∈Ỹ

I(XjXk; Ỹi). (5)
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Using the chain rule for mutual information, I(AB; C) = I(A; C) + I(B; C|A), the criterion can be
written as follows:

JGroup
JMI (Xk) = ∑

Xj∈Xθ

∑
Ỹi∈Ỹ

(
I(Xj; Ỹi) + I(Xk; Ỹi|Xj)

)
. (6)

The term ∑
Xj∈Xθ

∑
Ỹi∈Ỹ

I(Xj; Ỹi) in the above is constant with respect to the Xk argument that we are

interested in, so can be omitted and the criterion gets the following ranking equivalent form:

JGroup
JMI (Xk) ∝ ∑

Xj∈Xθ

∑
Ỹi∈Ỹ

I(Xk; Ỹi|Xj). (7)

By using the information theoretic identity I(A; B|C) = I(A; B) − I(A; C) + I(A; C|B),
the criterion can be written as follows:

JGroup
JMI (Xk) ∝ ∑

Xj∈Xθ

∑
Ỹi∈Ỹ

(
I(Xk; Ỹi)− I(Xk; Xj) + I(Xk; Xj|Ỹi)

)
.

JGroup
JMI (Xk) ∝ |Xθ | ∑

Ỹi∈Ỹ

I(Xk; Ỹi)− ∑
Xj∈Xθ

∑
Ỹi∈Ỹ

(
I(Xk; Xj)− I(Xk; Xj|Ỹi)

)
JGroup
JMI (Xk) ∝ ∑

Ỹi∈Ỹ

I(Xk; Ỹi)−
1
|Xθ | ∑

Xj∈Xθ

∑
Ỹi∈Ỹ

(
I(Xk; Xj)− I(Xk; Xj|Ỹi)

)
(8)

Interestingly, by the decomposition of Equation (8), the first term of rhs captures the relevancy
of the feature Xk and each transformed target variable Ỹj, the second term the average redundancy
between the feature Xk and the already selected features Xj ∈ Xθ , while the final term captures
the average complementarity between the feature Xk and the already selected features, given each
transformed target variable Ỹj. The first and the third have positive contribution, while the
second negative.

3.3. Sensitivity Analysis

This section presents the sensitivity of the proposed algorithm, with respect to the PoT and NoC
parameters. We will focus on three multi-label datasets (image, medical, genbase), using three evaluation
measures (hamming loss, ranking loss, macro-average F-measure) and in various numbers of selected
features (K = 1, . . . , 50). More details on the experimental setting will be given in Section 4.

Figure 1 shows the performance for different numbers of clusters (NoC) when PoT is fixed to 0.50.
We notice that the optimal number is 4 for image (Figure 1a), 16 for medical (Figure 1b), while for genbase
there is no clear winner between 8 and 16 (Figure 1c). Figure 2 shows the performance for different
proportions of targets when NoC is fixed to 8. We notice that the best performance is achieved by
groups that contain 75% of the targets in image (Figure 2a), by groups that contain 25% of the targets in
medical (Figure 2b), while for genbase there is no clear winner between 50% and 75% (Figure 2c).

These results highlight the power of our novel parametrisation and the fact that the optimal
parameters depend on the intrinsic characteristics of each dataset. For example, the image dataset has
few labels and distinct label combinations, as a result NoC = 4 is a good approximation, which is not
the case for medical, a dataset with many labels. On the other hand, the larger the number of labels,
the smaller the best PoT. For example in the medical dataset, using a PoT = 0.25 means that in each
combination we have ∼11 labels, which is already much higher than the total labels of image (5 labels).
As a result, in image we achieve better performance with high values of PoT, while in medical with lower.
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(a) Results for image dataset
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Figure 1. Comparing Group-JMI for various values of NoC with PoT fixed to 0.50.

3.4. A Group-JMI Criterion That Captures Various High-Order Target Interactions

One approach to estimate the optimal parameters is by using grid-search on a hold-out
set to optimize a specific evaluation measure. However, this approach assumes that a specific
multi-target classification/regression algorithm will be used. Unfortunately, this conflicts with the
filter assumption—select features independently from the classification/regression algorithm (more
details in Section 2).

To overcome this issue, we suggest Group-JMI-Rand, which chooses the parameters for generating
each Ỹi, uniformly at random from the following pre-specified set:

Group-JMI-Rand: PoT chosen randomly from [0.25–0.75] and NoC from {4,...,16}.

By this parametrisation Group-JMI-Rand uses a large number of targets, since to generate each
group we sample at random 25–75% of the targets. At the same time clustering keeps the dimensionality
of the estimated densities low. To achieve this we are randomly choosing in each group the number
of clusters to be between 4–16. In the next section we will show that the above criterion achieves
state-of-the-art performance in various datasets and evaluation measures.
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(b) Results for medical dataset
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Figure 2. Comparing Group-JMI for various values of PoT with NoC fixed to 8.

4. Experiments with Multi-Label Data

We focus on various multi-label datasets with diverse characteristics, shown in Table 1 [23].

Table 1. Characteristics of the multi-label datasets.

Name Application Examples Features Labels Distinct Labelsets

CAL500 Music 502 68 174 502
emotions Music 593 72 6 27

enron Text 1702 1001 53 752
genbase Biology 662 1186 27 32
image Images 2000 294 5 20

languagelog Text 1460 1004 75 1241
medical Text 978 1449 45 94
scene Images 2407 294 6 15
yeast Bioinformatics 2417 103 14 198

To compare the performance of the different FS methods, we train a multi-label classifier using the
selected features and evaluate its performance on the testing data using four measures—hamming loss,
ranking loss, normalised coverage and macro-average F-measure [11]. Following the FS literature [8],
we used a nearest neighbour classifier, which makes as few assumptions as possible about the data
and we avoid the need for parameter tuning. For our work we used the multi-label nearest neighbour
classifier introduced by Zhang and Zhou [24] and, following their recommendation we set the number
of neighbours to 7. We conducted a holdout balanced cross-validation for each experiment—50%
of the examples in a given dataset were randomly chosen as the training set for multi-label FS
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and classifier training and the remaining 50% were used as the test set to obtain the multi-label
classification performance to be reported. Each experiment was repeated 30 times and the average
testing performance was reported.

To take into account the performance over various values of selected features, we select top-K
with K = 1, . . . , 50. For each K the method with the best performance (i.e., lowest loss) is assigned
ranking score 1, the second best 2 and so forth, and at the end we average the scores across all K.
This score provides an indication on how well each method performs across a range of K values.
Finally, for estimating MI the default plug-in estimator was used, while continuous features were
discretised into 5 bins, using an equal-width strategy [8].

4.1. Comparing Group-JMI-Rand with Other JMI Criteria

Firstly, we will compare our novel JMI criterion, Group-JMI-Rand, with the two multi-label JMI
criteria that have been suggested in Reference [7]—Single-JMI and Joint JMI (more details in Section 2).
Table 2 presents the ranking score of each FS method averaged across all possible FS sizes (top-K =

1, . . . , 50). Overall, we see that our method achieves the best performance in 20 out of 36 settings, while
Joint-JMI in 13 and Single-JMI in 3. Each setting is a combination of an evaluation loss measure and a
particular dataset.

From this set of experiments we can conclude that our initial idea, to derive a criterion that
is a trade-off between the two extremes, Single-JMI (assumes independent targets, thus needs to
estimate low-dimensional probability distributions) versus Joint-JMI (no assumption at all, thus needs
to estimate high-dimensional probability distributions) outperforms both of them. This is happening
because Group-JMI-Rand, by using the parameter PoT, randomly groups the labels and as a result
it does not assume full independence between the labels. At the same time, by using a quantization
algorithm the probability distribution is compressed in a low density specified by the NoC parameter.
Interestingly, even choosen PoT and NoC at random from a large pre-specified set of values
outperforms the competing methods.

Table 2. Comparing the three JMI based criteria in terms of the average ranking score using five evaluation
measures: (a) hamming loss, (b) ranking loss, (c) normalised coverage and (d) macro-average F-measure. The best
method for each combination of evaluation measure and dataset is highlighted in bold.

(a) Hamming Loss

Single-JMI Joint-JMI Group-JMI-Rand
[7] [7] (Our Method)

CAL500 2.05 2.10 1.85
emotions 2.33 1.85 1.82
enron 2.10 1.00 2.90
genbase 2.11 1.71 2.17
image 1.90 2.73 1.38
medical 2.01 2.86 1.12
scene 1.80 1.25 2.95
yeast 1.57 3.00 1.43
languagelog 1.60 1.40 3.00

Total wins 0 4 5

(b) Ranking Loss

Single-JMI Joint-JMI Group-JMI-Rand
[7] [7] (Our Method)

CAL500 2.20 1.93 1.88
emotions 1.57 2.40 2.02
enron 1.75 1.30 2.95
genbase 2.29 1.66 2.05
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Table 2. Cont.

image 1.90 2.77 1.32
medical 2.11 2.79 1.10
scene 1.90 1.15 2.95
yeast 1.52 3.00 1.48
languagelog 2.62 2.38 1.00

Total wins 1 3 5

(c) Normalised Coverage

Single-JMI Joint-JMI Group-JMI-Rand
[7] [7] (Our Method)

CAL500 1.75 2.35 1.90
emotions 1.95 2.80 1.25
enron 1.82 1.25 2.92
genbase 2.14 1.44 2.42
image 2.08 2.50 1.43
languagelog 2.40 2.60 1.00
medical 1.96 2.84 1.20
scene 1.57 1.48 2.95
yeast 1.62 3.00 1.38

Total wins 1 3 5

(d) Macro-average F-measure

Single-JMI Joint-JMI Group-JMI-Rand
[7] [7] (Our Method)

CAL500 1.92 2.25 1.82
emotions 2.10 2.08 1.82
enron 2.00 1.00 3.00
genbase 2.34 1.49 2.17
image 1.77 2.80 1.43
languagelog 1.43 1.65 2.92
medical 2.01 2.84 1.15
scene 1.77 1.30 2.92
yeast 1.75 3.00 1.25

Total wins 1 3 5

4.2. Comparing Group-JMI-Rand with State-of-the-Art Information Theoretic FS Criteria

To test the efficiency of the proposed criterion Group-JMI-Rand, we will compare its performance
against six information theoretic FS suggested in the literature—MIM-BR [13], ELA-CHI [15], AMI [14],
PMU [17], FIMF [18] and SCLS [19] (arranged in chronological order). More details on the competing
methods can be found in Section 2.

In the literature on data mining and machine learning there are various ways on performing
statistically sound comparisons between different methods [25–27]. In our work we will use the critical
difference diagrams (CD), introduced by Demšar [25] and Figure 3 presents our results. For all the CD
diagrams of this work, groups of methods that are not significantly different at level α = 0.05 (using
the Nemenyi post-hoc test) are connected. The method that achieves the best performance is given
a rank of 1, the second best a rank of 2 and so forth.

Our suggested criterion, Group-JMI-Rand, performs better than the competitors in three
evaluation measures—ranking loss (Figure 3b), normalized coverage (Figure 3c) and Macro-average
F-measure (Figure 3d), while for hamming loss (Figure 3a), a measure that does not take into account
label dependencies, the SCLS [19] method performs better. Another interesting conclusion is that
our method and SCLS are always in the top-2 positions and in all four evaluation measures there
is no statistically significant difference between them. Due to the quantization of the output space,



Entropy 2019, 21, 855 12 of 15

Group-JMI-Rand is more flexible and apart from multi-label data it can be also used to multi-variate
regression problems and the next section focuses on this type of data.

Hamming loss

CD

7 6 5 4 3 2 1

2.222 SCLS
2.889 Group-JMI-Rand
4.222 AMI
4.333 MIM-BR

4.444FIMF

4.778PMU

5.111ELA-CHI

(a) Hamming loss

Ranking loss

CD

7 6 5 4 3 2 1

2.444 Group-JMI-Rand
3 SCLS

3.444 ELA-CHI
4.278 AMI

4.5MIM-BR

4.889PMU

5.444FIMF

(b) Ranking loss

Normalised coverage loss

CD

7 6 5 4 3 2 1

2.5 Group-JMI-Rand
3.111 SCLS
4.056 AMI
4.278 ELA-CHI

4.278MIM-BR

4.778PMU

5FIMF

(c) Normalized coverage

Macro-average F-measure

CD

7 6 5 4 3 2 1

2.556 Group-JMI-Rand
2.889 SCLS
3.833 MIM-BR
3.944 AMI

4.444ELA-CHI

5.111PMU

5.222FIMF

(d) Macro-average F-measure
Figure 3. Comparing our suggested FS criterion, Group-JMI-Rand, with state-of-the-art approaches
across four evaluation measures: (a) Hamming loss, (b) Ranking loss, (c) Normalized coverage and
(d) Macro-average F-measure.

5. Experiments with Multivariate Regression Data

In this section we focus on various multi-variate regression datasets, shown in Table 3 [28].

Table 3. Characteristics of the multi-variate regression datasets.

Name Application Examples Features Targets

atp1d Airline Ticket Price 337 411 6
atp7d Airline Ticket Price 296 411 6
oes97 Occupational Employment Survey 334 263 16
oes10 Occupational Employment Survey 403 298 16
osales Online Product Sales 639 413 12

scm20d Supply Chain Management 8966 61 16

As we already mentioned in Section 2, there are no information theoretic FS criteria tailored to
multivariate regression data suggested in the literature. For that reason we compare the performance
of our proposed algorithm Group-JMI-Rand (using the Euclidean distance for clustering, since we
have continuous variables this time instead of binary), against a popular filter FS method, tailored to
regression problems—RReliefF (Regressional ReliefF) [29]. RReliefF is a nearest neighbor-based feature
weighting method for univariate regression problems. In a multivariate regression context, we apply
RReliefF separately for each target to get an importance weight per feature and target and then rank
the features based on their average importance weight across all targets. We compare the performance
of two different variations of RReliefF, RReliefF 10 and RReliefF 50 setting the number of neighbours to
10 and 50 respectively.

To compare the performance of the different FS methods, making as few assumptions as possible,
we used again a nearest neighbors regression model and predict each target independently. In this set
of experiments we set the number of neighbours to be 10, same number of neighbours as in RReliefF 10.
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Finally, the evalutation measure we used is the average Relative Root Mean Squared Error (RRMSE)
across all targets, a measure widely used in the multi-target regression literature [28].

Figure 4 shows that our proposed method JMI-Group-Rand achieves the best performance in four
out of six datasets (atp1d atp7d, oes10, osales). In oes97 it achieves the same performance as RReliefF 50,
while in scm20d the RReliefF methods outperform our information theoretic criterion.

10 20 30 40 50
# features

0.6

0.8

1

RRMSE - atp1d

RReliefF 10
RReliefF 50
JMI-Group-Rand

10 20 30 40 50
# features

0.8

0.9

1

1.1
RRMSE - atp7d

RReliefF 10
RReliefF 50
JMI-Group-Rand

10 20 30 40 50
# features

0.8

0.9

1
RRMSE - oes10

RReliefF 10
RReliefF 50
JMI-Group-Rand

10 20 30 40 50
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0.95

1

1.05
RRMSE - oes97

RReliefF 10
RReliefF 50
JMI-Group-Rand
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0.95
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1.1
RRMSE - osales

RReliefF 10
RReliefF 50
JMI-Group-Rand
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1.2

1.4
RRMSE - scm20d

RReliefF 10
RReliefF 50
JMI-Group-Rand

Figure 4. Multi-variate regression experiments. Comparing our suggested criterion with two different
versions of RReliefF.

6. Conclusions

In this work we presented a FS algorithm suitable for multi-target problems, such as multi-label
classification and multivariate regression. Our criterion, Group-JMI, uses the JMI principle to
derive low-order approximations of the input space and it clusters similar targets to derive
low-order approximations of the output space that capture target correlations. Group-JMI has
two parameters—the PoT that controls the number of targets that interact in each group and the
NoC that controls the dimensionality of the density that we try to estimate. Under our framework,
we suggest the Group-JMI-Rand criterion, which chooses these two parameters at random from a
prespecified set of values. On an extensive empirical study across 15 real-world datasets, 10 competing
methods and 5 evaluation measures, our proposed criterion Group-JMI-Rand achieves a competitive
performance against various other information theoretic FS criteria.

Our future work will focus on providing methods for optimising these parameters. One approach
is to use a validation set and minimise a loss of a particular classifier but this violates the filter
assumption—selecting the features independently of any classifier or evaluation measure. To overcome
this issue our current line of work splits in two directions. For PoT we explore ways of automatically
grouping the targets that share some minimum amount of information measured by multi-variate MI.
For optimising NoC we explore ways to determine the maximum number of clusters we can have to
estimate reliably MI from the available data. This can be done by performing sample size determination
for observing given MI quantities with a particular statistical power [30]. Finally, by connecting the
problem of multi-target FS with the problem of biomarker discovery in clinical trials with multiple
endpoints, we can potentially use Group-JMI-Rand for deriving prognostic and predictive biomarkers
in multiple endpoint trials [31].
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