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Abstract: Particle swarm optimization (PSO) is a search algorithm inspired by the collective behavior
of flocking birds and fishes. This algorithm is widely adopted for solving optimization problems
involving one objective. The evaluation of the PSO progress is usually measured by the fitness of
the best particle and the average fitness of the particles. When several objectives are considered,
the PSO may incorporate distinct strategies to preserve nondominated solutions along the iterations.
The performance of the multiobjective PSO (MOPSO) is usually evaluated by considering the
resulting swarm at the end of the algorithm. In this paper, two indices based on the Shannon entropy
are presented, to study the swarm dynamic evolution during the MOPSO execution. The results show
that both indices are useful for analyzing the diversity and convergence of multiobjective algorithms.

Keywords: multiobjective particle swarm optimization; Shannon entropy; solution diversity;
front level heterogeneity

1. Introduction

Multiobjective optimization (MOO) consists either in minimizing or in maximizing a set of
objective functions subject to some constraints. In these problems, the objective functions are conflicting,
leading to several vectors of decision variables. Each vector represents a possible solution that solves
the problem with different trade-offs among the design objectives. Evolutionary and social-based
algorithms have attracted the attention of many researchers, because they are frequently superior to
conventional mathematical techniques due to their stochastic proprieties [1].

The MOO is inspired by biological phenomena and adopts a population that evolves during
several generations. The PSO nature metaphor mimics the behavior of birds flocking or fish
schooling [2]. Each bird or fish is represented by a particle with two components, namely by its
position and velocity. A set of particles forms the swarm that evolves during several iterations giving
rise to a powerful optimization method.

The particle swarm optimization’s (PSO) simplicity and success led to its application in problems
where more than one optimization criterion is considered. Many techniques, such as those borrowed
from genetic algorithms (GA) [3,4], have been developed to find a set of solutions belonging to the
Pareto front. Since the multiobjective PSO (MOPSO) proposal [5], the algorithm was used in a wide
range of applications [6,7], and a considerable number of variants of refined MOPSO were developed
in order to improve its performance [8,9].

The performance of multiobjective algorithms is usually analyzed at the end of their execution,
and its success is measured by means of several metrics proposed in the literature [10]. Additionally,
in ambiguous situations, the use of nonparametric tests can be adopted [11,12]. Some of the proposed
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indices are based on Shannon entropy. Wang et al. [13] presented a method revealing interesting results:
(i) the computational effort increases linearly with the number of solutions, (ii) the metric qualifies the
combination of uniformity and coverage of the Pareto set, and (iii) it determines when the evolution
has reached its maturity. LinLin and Yunfang [14] proposed a technique to measure the performance
of multiobjective problems that not only indicates when the algorithm should be stopped, but can also
compare the performance of multiobjective algorithms. The technique adopts entropy that is evaluated
regarding the solution density in a gridded space.

Other studies tried to unravel the population dynamics during time evolution [15–20].
Farhang-Mehr and Azarm [15] developed an entropy-based metric to assess the diversity in a MOEA
during the run time. To measure the entropy, a grid of cells was used, where solutions belonging to
the same cell are considered identical. They orthogonalize and project them into a plane to count
3D nondominated solutions. Deb and Jain [16] proposed two multiobjective running metrics, one for
measuring the convergence and the other for assessing the diversity among solutions. Myers and
Hancock [17] suggested the use of the Shannon entropy to evaluate the run-time performance of
a GA to solve labeling problems. The entropy measured in the parameter space is used to provide
useful information about the algorithm state. Myers and Hancock concluded that populations
with entropy smaller than a given threshold become saturated and their diversity disappears.
Pires et al. [18] studied the signal propagation during the evolution of a GA. The mutation operator
signal suffers a perturbation during some generations, and the corresponding fitness variation is
analyzed. Pires et al. adopted the Shannon entropy to study the dynamics of MOPSO [19] and
nonsorting GA II [20] during their execution. Wu et al. proposed a MOEA considering individual
density (cell density) where the Shannon entropy was used to estimate the evolution state [21].

Taking these ideas in consideration, this paper studies the dynamics and self-organization of
solutions during the MOPSO execution. The study analyzed two entropy indices considering three
optimization functions with different swarm and archive sizes.

The main contributions of the paper are:

• New diversity indices inspired by physics and biologic systems.
• A good agreement of measures between the indices.
• Identification of stagnating states during the evolution.

Section 2 describes the method adopted in the work and includes a brief description of the main
entropy concepts. Section 3 presents the indices for measuring the population diversity. Section 4
formulates the functions to be optimized and analyzes the simulations results. Finally, Section 5
outlines the main conclusions and the perspectives toward future work.

2. Methodology and Entropy Concepts

A careful look into MOPSO reveals a need to understand the dynamics during successive
iterations with a particular focus on the particles’ convergence to the nondominated front and
particle diversity. For this purpose, the Shannon entropy is used in the follow-up, and a set of tests is
performed considering different optimization functions and archive sizes. Since the MOPSO algorithm
is stochastic, a battery of tests is required to generate a representative statistical sample [22].

The entropy is associated with several concepts and interpretations [23]. Boltzmann used entropy
to describe systems that evolve from ordered to disordered states. Spreading was used by Guggenheim
to indicate the diffusion of an energy system from a small to a large volume. Lewis stated that in
a spontaneous expansion gas in an isolated system, information regarding the particles’ locations
decreases, while the missing information or uncertainty increases.

Shannon [24] developed a theory to quantify the information loss in the transmission of
a given message. The study was carried out in a communication channel and focused on the physical
and statistical constraints that limit the message transmission. Shannon defined entropy H as a measure
of information, given by:
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H(X) = −K ∑
x∈X

pi(x) log pi(x). (1)

This expression considers a discrete random variable x ∈ X characterized by the probability
distribution p(x). The parameter K is a positive constant, often set to 1, and is used to express H in
a given unit of measure.

The Shannon entropy can be easily extended to multidimensional random variables. For a pair of
random variables (x, y) ∈ (X, Y), entropy is defined as:

H(X, Y) = −K ∑
x∈X

∑
y∈Y

pi(x, y) log pi(x, y). (2)

3. Entropy Indices for Assessing the MOPSO

In this section, two indices for measuring the entropy in a MOPSO are presented. The first one
captures the particle diversity, while the second addresses the front diversity.

3.1. Particle Diversity

The index to measure the particle diversity was proposed previously [25]. The index follows
a particular interpretation of entropy. Indeed, entropy can express the spreading of a system energy
from a ‘better located’ state to a ‘more distributed’ one. Taking this idea in mind, the minimum
spanning tree that connects all the archive particles, A, where each connection belongs to the set of
edges that connects all the #A particles with the minimal edge distance, was considered. Let di be one
of these edges, where i ∈ {1, 2, . . . , #A− 1}, and pi is a probability given by the following Equation:

pi =
di

#A−1
∑

j=1
dj

. (3)

The particle diversity index is based on this point of view and can be represented as:

H(X) = −
#A−1

∑
i=1

pi log pi. (4)

3.2. Front Level Heterogeneity

In ecology, the diversity measure of different populations species is equated with the uncertainty
that occurs when selecting randomly one individual species from the populations [26]. The information
content, or population diversity, can be defined in several ways [27], and one of them is explained in
the follow-up.

Consider a population with s species in proportion to pi =
ni
#A , i.e., {p1, p2, . . . , ps}, where ni is the

number of elements of the ith species and s denotes the total number of species. Then the population
diversity is given by Shannon and Weaver’s formula [28]:

H′(X) = −
s

∑
i=1

pi log pi. (5)

Taking this idea in mind, Expression (5) is used to measure the Shannon front level diversity, where
ni and s are the number of particles in each front and the total number of fronts, respectively. This index
is called front level heterogeneity in order to avoid confusion with the particle diversity index.
In MOPSO, at later evolution stages, when only the nondominated front exists in the swarm,
the entropy heterogeneity H′(X) is zero.
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4. Simulations Results

This section presents the results obtained for 3 optimization problems Pi, i = 1, 2, 3, and different
archive sizes. The dynamic behavior of algorithms was studied using the two proposed indices.

The optimization problems P1 and P2 (known as DTLZ2 and DTLZ4 [29]) are defined by
Equations (6) and (7), and problem P3 (known as UF8 in CEC 2009 special session competition [30]) is
formulated in Equation (8) as follows:

min P1 = [ f11(X), f12(X), f13(X)]

f11(X) = [1 + g1(X)] cos(x1π/2) cos(x2π/2)
f12(X) = [1 + g1(X)] cos(x1π/2) sin(x2π/2)
f13(X) = [1 + g1(X)] sin(x1π/2)

g1(X) = 1 + 9
m
∑

i=3
(xi − 0.5)2

(6)



min P2 = [ f21(X), f22(X), f23(X)]

f21(X) = [1 + g2(X)] cos(xα
1 π/2) cos(xα

2 π/2)
f22(X) = [1 + g2(X)] cos(xα

1 π/2) sin(xα
2 π/2)

f23(X) = [1 + g2(X)] sin(xα
1 π/2)

g2(X) = 1 + 9
m
∑

i=3
(xα

i − 0.5)2

(7)



min P3 = [ f31(X), f32(X), f33(X)]

f31(X) = cos(0.5x1π) cos(0.5x2π) + 2
|J1| ∑

j∈J1

gj(X)

f32(X) = cos(0.5x1π) sin(0.5x2π) + 2
|J2| ∑

j∈J2

gj(X)

f33(X) = sin(0.5x1π) + 2
|J3| ∑

j∈J3

gj(X)

gj(X) =
(

xj − 2x2 sin(2πx1 +
jπ
m )
)2

J1 = {j|3 ≤ j ≤ m, and j + 2 is multiple of 3}
J2 = {j|3 ≤ j ≤ m, and j + 1 is multiple of 3}
J3 = {j|3 ≤ j ≤ m, and j is multiple of 3}

(8)

where m is the number of parameters, fij is the objective j ∈ {1, 2, 3} of problem i ∈ {1, 2, 3}, and g
represent some auxiliary functions in order to simplify the expressions. For {P1, P2}, the parameter
intervals are set to xi ∈ [0, 1]. In Equation (7), the parameter value α = 100 allows a meta-variable
mapping, xi → x2

i , between the two functions [29]. For {P3}, xi ∈ [0, 1] if i ≤ 2 and xi ∈ [−2, 2] if
2 < i ≤ m− 2. For {P1, P2, P3}, the number of parameters is set to m = {12, 12, 30}.

These problems are to be optimized using a MOPSO [5,6], where the search is driven by a
population of particles that move using the equations:

vt+1
i = w · vt

i + φ1 · rand(0, 1) · (bi − xt
i ) + φ2 · rand(0, 1) · (gi − xt

i ), (9)

xt+1
i = xt

i + vt+1
i , (10)

where t is the iteration number, w denotes the inertia coefficient, and the positions xi and velocities
vi are codified by means of real numbers. In order to start with an high exploration rate of the
search space, w is initialized with the value 0.7 and decreases linearly with t to 0.25. In the stages where
w is near the value 0.25, more importance is given to the local search rather then the global one. In the
particle motion, the same influence is given to the local best particle position bi and the position of the
‘best’ particle gi. Therefore, the cognitive and social coefficients are set to the values φ1 = φ2 = 0.8.
In a nondominated set, there is no best solution. Consequently, to choose a particle with similar
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characteristics while incorporating uncertainty, a particle determines its ‘global best’, or guide, by
randomly selecting three particles from the archive and picking up the nearest particle gi.

The archive is updated, at the end of each iteration, using a (µ + λ) strategy among the archive,
#µ, and swarm, #λ, solutions. Therefore, the best µ solutions are chosen among the archive and
population solutions. The solutions are selected according to the maximin sorting scheme [12].

Four swarm sizes with #N = {250, 300, 350, 400} particles and four archive sizes of
#A = {50, 100, 150, 200} particles are adopted, resulting in a total of 42 different experiments. For each
experiment, 21 distinct runs were performed, their entropies evaluated, and the medians of the particles
and the populations’ diversities and heterogeneities Hm = median(H) and H′m = median(H′) at each
iteration t taken as representing the entropy evolution at that instant.

This section presents the entropy evolution for those experiments addressing the problems
{P1, P2, P3}.

4.1. Results of DTLZ Problems Optimization

The first optimization functions to be considered belong to problem P1, with three objectives
described by Equation (6). Expressions (4) and (5) are adopted to monitoring the MOPSO evolution.
The results are depicted in Figures 1 and 2 for archive sizes of #A1 = 50 and #A4 = 200 particles,
respectively. The charts show the median entropies Hm and H′m versus the iteration t, for experiments
with #N = {250, 300, 350, 400} particles. The curves with the ‘solid’ and ‘dotted’ lines represent Hm

and H′m, respectively.
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Figure 1. Evolution of Hm (continuous lines) and H′m (dotted lines) versus the iterations t of the MSPSO
iterations for P1 and #A = 50.
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Figure 2. Evolution of Hm (continuous lines) and H′m (dotted lines) versus the iterations t of the MSPSO
iterations for P1 and #A = 200.

It can be observed that the two entropy signals are inversely correlated. In what concerns H′m,
it is verified that it starts with a low value and increases during the first iterations. Afterwards,
H′m remains almost stationary during some interactions and finally decreases to zero. This means
that at the early stages, the number of fronts increases, remains constant during a certain number
of iterations, and then decreases until only one front remains (i.e., the nondominated front), when
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H′m = 0. As the archive size increases, the initial transient takes more iterations, because as the number
of archive size increases, it gets more difficult to find a larger number of nondominated particles in the
same period. On the other hand, since the number of particles is larger, it is possible for more fronts to
emerge. Therefore, H′m takes more iterations to approach zero as the archive size increases.

Figures 3 and 4 present the entropy indices for the P2 problem. A behavior similar to the one
exhibited by P1 is visible.
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Figure 3. Evolution of Hm (continuous lines) and H′m (dotted lines) versus the iterations t of the MSPSO
iterations for P2 and #A = 50.
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Figure 4. Evolution of Hm (continuous lines) and H′m (dotted lines) versus the iterations t of the MSPSO
iterations for P2 and #A = 200.

4.2. Results of P3 Optimization

Figures 5 and 6 present the entropy indices for the P3 problem. Here, H′m starts by decreasing,
showing that the number of fronts begins to reduce until only one front remains. Since the initial value
of H′m is low, the number of initial fronts is also small. On the other hand, the diversity between the
particles begins with a high value and increases slightly during the iterations.

The number of fronts, i.e., the entropy front level diversity, can increase or decrease at early stages
depending on the optimization problem.
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iterations for P3 and #A = 50.
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Figure 6. Evolution of Hm (continuous lines) and H′m (dotted lines) versus the iterations t of the MSPSO
iterations for P3 and #A = 200.

4.3. Correlation Coefficient

The results reveal a correlation between Hm and H′m. The Pearson correlation coefficient r
measures the strength and direction of a relationship between two indices, during T = 103 iterations:

r =
#A

T
∑

t=1
Hm(t)H′m(t)−

T
∑

t=1
Hm(t)

T
∑

t=1
H′m(t)√√√√[#A

T
∑

t=1
H2

m(t)−
(

T
∑

t=1
Hm(t)

)2
] [

#A
T
∑

t=1
H′2m(t)−

(
T
∑

t=1
H′m(t)

)2
] . (11)

Table 1 presents the correlation between the particle diversity and front heterogeneity entropies.
Column 1 indicates the archive size, column 2 stands for the swarm size, and the symbols r1, r2, and r3

represent the correlation between Hm and H′m for the problems P1, P2, and P3, respectively. An almost
perfect negative relationship can be observed between them for each DTLZ problem. The relationship
for the P3 problem signals is moderate for the archive size of #A = 50 particles, but it is stronger for the
other archive sizes. These values of r demonstrate that the 2 indices are in good agreement, concluding
that the diversity solution is highly correlated in the number of fronts.

Table 1. Pearson correlation coefficient r between Hm and H′m.

Archive Size (Ap) Swarm Size (Np) r1 r2 r3

50

250 −0.97 −0.92 −0.51
300 −0.97 −0.92 −0.66
350 −0.88 −0.96 −0.50
400 −0.93 −0.89 −0.43

100

250 −0.99 −0.99 −0.81
300 −0.99 −0.92 −0.69
350 −0.97 −0.96 −0.73
400 −0.96 −0.95 −0.75

150

250 −0.98 −0.98 −0.82
300 −0.98 −0.99 −0.74
350 −0.97 −0.99 −0.80
400 −0.98 −0.97 −0.69

200

250 −0.99 −0.98 −0.81
300 −0.98 −0.98 −0.72
350 −0.97 −0.98 −0.75
400 −0.96 −0.98 −0.77



Entropy 2019, 21, 827 8 of 10

4.4. Archive Evolution

In order to show the particle distribution of the archive, the position of the particles archive
is plotted at t = {0, 3, 80, 110, 400, 1000} iterations, for problem P2, with #N = 250 and #A = 200.
The iterations are chosen at different stages of the evolution, namely, at the beginning (t = 1), when the
diversity index drops down (t = 4), at the end of this stagnation phase (t = 80), after an abrupt increase
of the index (t = 110), after some iterations (t = 400), and at the end of the run (t = 1000). The plots
represented in Figure 7 illustrate the result for one single run.
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Figure 7. MPSO evolution for an isolated run of the P2 problem with #N = 250 and #A = 200 for
iteration (a) t = 1, (b) t = 4, (c) t = 80, (d) t = 110, (e) t = 400 and (f) t = 1000.

It can be observed that the entropy achieves the maximum value when the archive solutions are
well dispersed.

5. Conclusions and Future Work

Two indices based on entropy were proposed to characterize the MOPSO dynamics. This work
measures the diversity of the archive during the evolution, adopting one possible interpretation
of entropy. The first index, the particle diversity, is used to measure the archive diversity
between particles. The second index, borrowed from ecology, measures the species heterogeneity,
in this case the front level heterogeneity. The indices were evaluated using different approaches,
but both entropy indices were in good agreement, revealing that solution diversity is correlated with
the number of fronts. The particle diversity indices when stagnated reveal that the algorithm has
converged. On the other hand, the front level heterogeneity, when reaching zero, indicates that there is
only one front in the archive.

For most MOPSO reported in the literature, the performance evaluation is analyzed at the end of
the algorithm, by comparing the final front extension, spreading, and diversity. The indices formulated
in this paper can be used to analyze the convergence rate during the time evolution. In future work,
the indices will be used to identify stained stages of MOPSO and introduce mechanisms to promote
the dispersion of particles during evolution optimization.
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