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Abstract: Beimel et al. in CCC 12’ put forward a paradigm for constructing Private Information
Retrieval (PIR) schemes, capturing several previous constructions for k ≥ 3 servers. A key component
in the paradigm, applicable to three-server PIR, is a share conversion scheme from corresponding
linear three-party secret sharing schemes with respect to a certain type of “modified universal”
relation. In a useful particular instantiation of the paradigm, they used a share conversion from
(2, 3)-CNF over Zm to three-additive sharing over Zβ

p for primes p1, p2, p where p1 6= p2 and m = p1 ·
p2. The share conversion is with respect to the modified universal relation CSm . They reduced the
question of whether a suitable share conversion exists for a triple (p1, p2, p) to the (in)solvability
of a certain linear system over Zp. Assuming a solution exists, they also provided a efficient (in
m, log p) construction of such a sharing scheme. They proved a suitable conversion exists for several
triples of small numbers using a computer program; in particular, p = p1 = 2, p2 = 3 yielded the
three-server PIR with the best communication complexity at the time. This approach quickly becomes
infeasible as the resulting matrix is of size Θ(m4). In this work, we prove that the solvability condition
holds for an infinite family of (p1, p2, p)’s, answering an open question of Beimel et al. Concretely,
we prove that if p1, p2 > 2 and p = p1, then a conversion of the required form exists. We leave the
full characterization of such triples, with potential applications to PIR complexity, to future work.
Although larger (particularly with max(p1, p2) > 3) triples do not yield improved three-server PIR
communication complexity via BIKO’s construction, a richer family of PIR protocols we obtain by
plugging in our share conversions might have useful properties for other applications. Moreover,
we hope that the analytic techniques for understanding the relevant matrices we developed would
help to understand whether share conversion as above for CSm , where m is a product of more than
two (say three) distinct primes, exists. The general BIKO paradigm generalizes to work for such Zm’s.
Furthermore, the linear condition in Beimel et al. generalizes to m’s, which are products of more
than two primes, so our hope is somewhat justified. In case such a conversion does exist, plugging
it into BIKO’s construction would lead to major improvement to the state of the art of three-server
PIR communication complexity (reducing Communication Complexity (CC) in correspondence with
certain matching vector families).

Keywords: PIR; Share conversion; CNF secret sharing; communication complexity

1. Introduction

A Private Information Retrieval (PIR) protocol [1] is a protocol that allows a client to retrieve
the ith bit in a database, which is held by two or more servers, each holding a copy of the database,
without exposing information about i to any single server (assuming the servers do not collaborate).
In the protocol specification, the servers do not communication amongst each other. The main
complexity measure to optimize in this setting is the communication complexity between client
ans servers. In the single-server setting, the Communication Complexity (CC) is provably very
high - provably, the whole database needs to be communicated. In the computational setting [2],
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communication-efficient single-server PIR is essentially solved with essentially optimal CC [3]. In this
work, we focus on information theoretic (in fact perfect) PIR protocols. See [4] and the references
within for the additional motivation for the study of information theoretic PIR.

All known PIR protocols only use one round of communication (although it is not part of the
definition of PIR), so we will only consider this setting. In this setting, the client sends a query to
each server and receives an answer in return. PIR is a special case of secure Multi-Party Computation
(MPC), which is a very general and useful cryptographic primitive, allowing a number of parties to
compute a function f over their inputs while keeping that input private from an adversary that may
corrupt certain subsets of the parties (to the extent allowed by knowing the output of f ) [5,6]. The PIR
setting is useful on its own right, as a minimalistic useful client-server setting of MPC, where the
goal is to minimize communication complexity, potentially minimizing the overhead on the client,
which may be much weaker than the server.

In [4], the authors proposed the following approach to constructing PIR protocols, which captures
some of the previous protocols for three servers or more, and put forward a new three-server PIR
protocol, with the best known asymptotic communication complexity to date.

Let us describe their general framework, for a k-server PIR.

1.1. Biko’s Framework for K-Server PIR

The framework uses two key building blocks. One is a pair of k-party linear secret sharing
schemes Sh1, Sh2 over abelian rings G1, G2, respectively. The pair Sh1, Sh2 is also equipped with a
share conversion scheme from Sh1, Sh2 with respect to some “useful” relation R ⊆ G1 × G2. That is,
for a value s shared according to Sh1, the scheme allows locally (performing a computation on each
share separately) computing a sharing of a value o according to Sh2, such that R(s, o) holds (note that
this is generally non-trivial, as the conversion is performed locally on each share, without knowing
anything about the other shares or the randomness used to generate the sharing).

In [4], G1, G2 used small (constant) finite rings. The notion of share conversion employed in [4]
generalized [7]’s work on locally converting from the arbitrary linear secret-sharing schemes without
changing the secret, by allowing an arbitrary relation between the secrets and by allowing Sh1, Sh2 to
be linear over different rings. The second building block is an encoding of the inputs x ∈ {0, 1}n as a
longer element u ∈ Gl

1. The PIR protocol has the following structure:

1. The client “encodes” the input x ∈ {0, 1}n via u ∈ Gl
1 for a quite large, but not very large l(n)

from a certain code C ⊆ Gl
1.

2. Every bit uj is shared via Sh1. The client sends each share si,j to server Sj.
3. The servers are able to evaluate locally any shallow circuit from a certain set F roughly as follows.

At the bottom level, we use the linearity of Sh1 to evaluate a sequence of gates taking linear
combinations of the ui’s over G1. Let y denote the resulting shared values vector. Apply the share
conversion to the output of each of the yi’s to obtain a converted vector y′ of values over G2.
Finally, locally evaluate some linear combination of the elements y′, using the linearity of Sh2.
Each server sends its resulting share to the client. The particular circuit to evaluate is that of an
“encoding” f ′ : C → G2 of their database, in turn viewed as a function f : {0, 1}n → {0, 1}.

4. The client reconstructs the output value from the obtained shares, using Sh2’s reconstruction
procedure. It then decodes f (x) from f ′(u) (the decoding procedure takes only f ′(u) as input; it
does not use x or the client’s randomness).

Note that the “privacy” property of Sh1 takes care of keeping the client’s input private from any
single server. It is not known how, and likely impossible, to devise a share conversion scheme for a
relation that is sufficiently useful to compute locally all functions f : {0, 1}l

1 → {0, 1} following the
framework suggested above, in a way that encodes every f : {0, 1}l → {0, 1}. Therefore, to encode
all functions f : {0, 1}l → {0, 1}, BIKOencodes the inputs x and function f : {0, 1}n → {0, 1} using
a larger parameter l > n. To gain in communication complexity, the code C is carefully chosen so
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that the resulting family F ⊆ { f ′ : Gl
1 → {0, 1}} implemented by the above protocol is as large as

possible (relative to l). More precisely, its VCdimension is at least 2n, allowing one to implement any
Boolean function on {0, 1}n. On the other hand, we must be able to match it with a relation R for which
a share conversion exists (Recall that the VC dimension captures the ability of a set F of functions
f : D → {0, 1} to “encode” any function f : {0, 1}n → {0, 1} by restriction to a subset I ⊆ D of size 2n

of values. Here, D is typically larger than {0, 1}n. By Saur’s lemma, the VC dimension is very closely
related to the size of the family F .) There is a tradeoff between the share conversions we are able to
devise and the complexity of F . The larger F in the above scheme is, the smaller l that can be used for
the encoding, and the lower the communication complexity of the resulting PIR protocol. Note that the
framework yields constructions where the communication complexity of O(l) bits is dominated by the
client’s message length and only constant-length server replies. On the other hand, for more complex
F , one would need share conversion schemes for “trickier” relations, which are harder to come by.

Only a few families of instantiations of the framework are known, with [4]’s particular
instantiation for three-server PIR as one example. Other instantiations are implicit in some previous
PIR protocols; see Section 2, or [4] for additional examples and more intuition.

1.1.1. BIKO’s New Family of Three-Server PIR

In their new three-server PIR, the work in [4] instantiated the components of the above framework
using a certain (family of) rings G1, G2, for which suitable encodings and share conversion exist. Details
follow. The rings are parameterized by three numbers p1, p2, p, where p1, p2 are distinct primes. Let us
denote m = p1 · p1. The various components are instantiated as follows:

• Sh1 is the (2,3)-CNF secret sharing scheme for the ring G1 = Zm, for certain m = p1 · p2, where
p1, p2 are distinct primes. Sh2 is the three-additive secret sharing over the ring G2 = Zβ

p, for some
β ∈ N.

• Let S ⊆ Zm \ {0}. The input x ∈ {0, 1}n is encoded as an element u of an S-Matching Vector (MV)
C ⊆ Zl

m family of size at least 2n over Zm [8]. Briefly, for S ⊆ Zm \ {0}, such an S-MV family is a
sequence of vectors v1, . . . , vL ∈ Zl

m, where for all i, < vi, vi >= 0, and for all i 6= j, < vi, vj >∈ S.
In particular, [8] demonstrates that an S-MV family of any VC dimension exists for all m = p1 p2

where p1, p2 are distinct primes for S as small as Sm; the set of all elements in Zm that are zero
or one modulo each of the pi’s, expect for zero. In particular, the vector’s length for an instance
corresponding to VC dimension 2n is l = 2Õ(

√
n).

• A share conversion between Sh1 and Sh2 for a relation CSm is obtained for certain triples (p, p1, p2).
Informally, this relation maps Sm to zero and zero to some non-zero value in G2. This type of share
conversion scheme is another novel technical contribution of [4] (and the focus of our work).

The complete BIKO construction is roughly as follows:

1. The client sends an encoding u = u(x) of its input x ∈ {0, 1}n, which belongs to the the Sm

MV-family C ⊆ Zl
m (here, l = O(2

√
nlog(n)) can be achieved). The servers locally evaluate the

following circuit:
C(u1, . . . , ul) = ORj( fi· < uj, u >)

using the following “noisy” procedure:
2. Generate the vector of values (yi) f (i)=1 where yi =< ui, u >. This evaluation uses the linearity of

CNF and produces a local Sh1 = (2, 3)-CNF over the Zm share of each value yi.
3. Apply share conversion from Sh1 to Sh2 as specified above on each yi, obtaining a vector of y′i’s,

shared according to Sh2.
4. Locally evaluate ∑i y′i, and then, send (Sh2) shares to the client. The client outputs zero if this

value is zero, and one otherwise.

It is not hard to see that the above construction always produces the correct value. In particular,
by the definition of CSm , only (the conversion of) < ui, ui > contributes a non-zero value y′i to ∑i y′i.
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Theorem 1 ([4], informal). Assume there exists a share conversion scheme from (2, 3)-CNF over G1 = Zm

and three-additive over G2 = Zβ
p for some β, where m = p1 · p2 is as above. Then, there exists a three-server

PIR with communication complexity O(22·p2
√

nlog(n)), where p2 > p1. The best asymptotic communication
complexity is obtained by setting m = 6, p = 2, using [8]’s Sm-MV family over Gl

1 over Z6 with l = 2Õ(
√

n)

and a share conversion with respect to CSm for p1 = p = β = 2, p2 = 3. In particular, the servers’ messages are
of length O(1).

Intuitively, having S-MV families for a “small” S as above facilitates the construction of share
conversion schemes as we needed for CS, since a small S imposes fewer constraints on the pairs (s, s′)
in the relation.

To conclude, it follows from Theorem 1 that to obtain three-server PIR with sub-polynomial (in
database size) CC, it suffices to design a share conversion for CSm from Sh1 to Sh2 over groups G1, G2

corresponding to any triple of parameters p1, p2, p as described above. Another useful contribution
of [4] is reducing the question of whether such a conversion exists (for some β) to a system of
equations and inequalities over Fp; see the following sections for more details on the usefulness of this
characterization (a solution to the system corresponds to the share conversion scheme).

1.1.2. On the Choice of Input and Output Schemes

In retrospect, trying to convert from CNF to additive is a natural choice. For once, the CNF scheme
is known as the most redundant secret sharing scheme and additive is the least redundant one [7].
More specifically, CNF sharing is convertible to any other linear scheme over the same field for the
same access structure, or one contained it with respect to the identity relation. This implies that for any
relation, if share conversion between two linear schemes exists for that relation, it must exist for CNF
to additive. Here the more standard linearity over fields is considered, and the same field us used for
both schemes. Still, for the more general notion of linearity over rings, and allowing different rings for
the two schemes, this still provides quite strong evidence that starting with CNF, and trying to convert
to additive is a good starting point. As to the choice of the structure of the particular G1, G2 over which
the conversion is defined, following are some of [4]’s considerations for their choice. One observation
is that trying to convert from, say, Zm to Zp would require finding a solution to a system of inequalities
over Zp for a fixed p. This problem is generally NP-complete, which is likely to make the problem
hard to analyze, even in this special case. Thus, the authors extend the search to allow conversion to
three-additive over some extension field Fpβ . As β is constant, it does not have much effect on the
share complexity of the resulting PIR protocol.

Using composite sizes for both G1 = Zm and G2 = Zm′ would lead to a greatly improved
VC dimension of F , with respect to the canonical relation CS, where S = Zm \ {0}. In fact, the
F = +Zm′

(modm) that can be locally evaluated over Zl
m is universal, resulting in near-optimal

O(log(n)) communication complexity. However, [4] have proven this type of conversion does not
exist, indicating that CS for smaller S for such G1, G2 could also be hard to find.

1.2. Our Contribution

As described above, the contribution of [4] was two-fold. First, they put forward a useful
framework for designing PIR protocols, capturing some of the best-known three-server (or more) PIR
protocols. Second, they put forward an instantiation of the framework, which reduces the question of
the existence of a three-server PIR protocol to the existence of a share conversion for certain parameters
p1, p2, p and certain linear sharing schemes over abelian rings G1, G2 determined by the parameters.
They further reduced the question of the existence of a share conversion as above for parameters
p1, p2, p to the question of whether a corresponding system of linear equations is solvable over Zp.
This system in turn is not solvable over some extension field Fpβ iff a certain system of both equalities
and inequalities over Zp is solvable over some field Fpβ .
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While the solvability of a system Ax = b can be verified efficiently for a concrete instance,
it does not provide a simple condition for characterizing triples (p, p1, p2) for which solutions exist.
More concretely, even the question of whether an infinite set of such triples exists remains open.
We resolve this question in the affirmative, proving the following.

Theorem 2. Let 2 < p1, p2 where p1 6= p2 are primes. Then, a share conversion from (2, 3)-CNF over Zp1 p2

to three-additive over Zβ
p1 exists for some β > 0.

In a nutshell, our goal is to study the solvability of the particular system Ax = b from [4]
corresponding to a given p, p1, p2. Our main tool is a clever form of elimination operations on the
(particular) matrix (A; b), so that at each step, the intermediate system A′x = b′ is solvable iff Ax = b
is. The special type of elimination we develop is useful here as it allows keeping our particular system
relatively simple at every step. This is as opposed to using standard Gaussian elimination, for instance,
which would have made the resulting system quite messy. The operations are largely oblivious of
the particular value of p1, p2, p until a very late point in the game. The proof consists of a series of
a (small) number of our elimination steps. On a high level, we perform a few such steps. At this
point, the matrix becomes quite complicated (at the end of Section 4.2). Then, we perform a change
of basis (Section 4.5) to facilitate another convenient application of the step. At this point, we are
ready to complete the proof by directly proving that the system is not solvable (and thus, a share
conversion exists).

1.2.1. On the Potential Usefulness of Our Result for PIR

In this work, we identified a certain infinite set of parameters (p1, p2, p) for which a share
conversion as required in Theorem 1 exists. This result itself does not appear to yield improved
three-server PIR protocols by instantiating the share conversion with the newly-found parameters via
Theorem 1. Indeed, increasing p2 beyond the minimal possible p2 = 3 (which was already known)
does not seem to help. However, Theorem 1 generalizes to m’s, which are products of a larger number
of primes. If a share conversion for G1 = Zm, G2 = Zβ

p derived from such m = p1 · p2 · p3, p exists,
it can be paired with an Sm-MV family (which is also known to exist from [8]) with significantly
improved (over m a product of two primes) VC dimension, to obtain an improved three-server PIR
seamlessly. Specifically for m = p1 · . . . · pr, an Sm MV family with VC dimension 2n in Zl

m for
exp(Õ(log1/r(n))) exists.

Therefore, it remains to design a corresponding share conversion scheme (or prove it impossible
to rule out this direction). Furthermore, the linear algebraic characterization of the existence of such
sharing schemes remains the same. Therefore, hopefully, the analytic techniques we developed here
for the the case where m is a product of two primes that could help understand the case of a larger
number of primes.

1.2.2. Road Map

In Section 2, we refer to some related work on PIR. In Section 3, we include some of the terminology
and preliminary results from [4], which is our starting point. In Section 4, we present our main result,
which is broken into subsections as follows. As explained above, we start with the reduction of the
problem by [4] to verify whether a certain matrix-vector pair (A, b), Rows(A) spans b. We perform a
series of elimination steps on the matrix (A|b) to bring it to a simpler form (A′, b′) so that Rows(A′)
spans b′ iff Rows(A) spans b. All elimination steps are of the same general form. Section 4.1 formalizes
this form as a certain lemma. Section 4.2 outlines an initial sequence of applications of that lemma.
In Section 4.5, we perform a change of basis to help facilitate further use of the lemma. In Section 4.6,
we indeed apply the lemma once again. Finally, in Section 4.7, we obtain a simple enough matrix
(A′|b′) for which we are able to prove A′ spans b′ directly for the proper choice of parameters, proving
our positive result.
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2. Related Work

2.1. Schemes with Polynomial CC

As stated in the Introduction, our work is a followup on a particular approach to constructing
PIR protocols [1], focusing on k = 3 servers (almost the hardest case). We will survey some of the
most relevant prior works on PIR (omitting numerous others). Already in [1], the authors suggested a
non-trivial solution to the hardest two-server case, with communication complexity O(2n/3), and more
generally, O(2

n
k ) for k ≥ 3 servers. Building on a series of prior improvements, the work in [9] put

forward protocols with CC 2
O(n·loglogk

klogk ) for large k. Their result also improved upon the state-of-the-art
at the time for small values of k, in particular achieving CC of O(24n/21) for k = 3, improving upon the
best previously-known CC of O(2n/5).

Work falling in the framework on BIKO

In [9], they restated some of the previous results in a more arithmetic language, in terms of
polynomials. Furthermore, they considered a certain encoding of the inputs and element-wise secret
sharing the encoding, which is somewhat close to the BIKO framework.

Particularly interesting for our purposes is their presentation of a “toy” protocol achieving CC
of O(2n/2) from earlier literature reformulated in [9], which constituted one of the building blocks of
the construction of [9]. That protocol was almost an instance of the BIKO framework as sketched in
the Introduction, and it is instructive to consider the differences (the full-fledged result of [9] used
additional ideas, and we will not go over it here for the sake of simplicity).

1. The client “encodes” its input x ∈ {0, 1}n via u ∈ Fl
2 where l ≈ 2n/2 by mapping the input to a

vector with exactly two ones and zeroes elsewhere.
2. Every bit uj is shared via Sh1, which is (2, 3)-CNF over F2.
3. The servers represent their database as a degree-two polynomial in F[x1, . . . , xl ] (where all

monomials are of degree exactly two). To evaluate a polynomial:

f (x) = ∑
i<j≤l

ai,jxixj

proceed as follows:

(a) At the bottom level, perform a two-to-one share conversion for evaluating each monomial,
where the output for gate xixj is a three-additive sharing of the result xixj. In some more
detail, let xi,1 + xi,2 + xi,3 denote the additive shares produced in Step 1 of the CNF-sharing.
The computation is made possible since (xi,1 + xi,2 + xi,3) · (xj,1 + xj,2 + xj,3), which needs
to be computed; for every share-monomial xi,kxk,d, at least one of the servers does not miss
any shares in it. Each server outputs the sum of the monomials it knows as its new share.

(b) Using the linearity of the three-additive scheme, the servers compute a three-additive
sharing f (x), based on the shares of the individual monomial evaluations yi.

Each server sends its resulting share to the client.
4. The client reconstructs the output value from the obtained shares, as in BIKO.

This framework differs from BIKO in a few ways. First, the structure of the circuit locally evaluated
is different. In the above example, “many-to-one” rather than “one-to-one” secret sharing is used at
the bottom level. Then, the linearity of Sh2 is employed on the upper level. In BIKO, first, the linearity
of Sh1 is used to evaluate a vector of linear combinations, then a one-to-one share conversion from
Sh1 is used at the middle level, then again, the linearity of Sh2 is used at the top gate. Besides the
different structure of the circuit, using many-to-one share conversion is the main conceptual change.
It employs the extra property of (2, 3)-CNF, which allows it to evaluate degree-two polynomials,
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rather than just linear functions. In the evaluation process, the output is already converted to the less
redundant three-additive sharing. The relation the share conversion respects is just the evaluation of
the monomial: R(o, x1, x2) iff o = x1x2. Conceptually, local evaluation of linear functions as used in
BIKO is in fact already a many-to-one share conversion from a linear scheme to itself, evaluating a
relation R(x1, . . . , xl , o), which is satisfied iff o = `(x1, . . . , xl) for a certain linear function `.

2.2. Schemes with Sub-Polynomial CC

The first three-server PIR protocol with (unconditionally) sub-polynomial (in 2n) CC was put
forward by [10]. It falls precisely into BIKO’s framework, using a share conversion from the so-called
(2, 3)-modified Shamir secret over G1 = Zm for m = p1 · p2 where p1 6= p2 are odd primes to
three-additive over the field G2 = Fpβ where p is some prime, such that m divides |G∗2 | = pβ − 1.

To get to three, rather than four servers, some additional properties of G1, G2 were in fact
required. The share conversion is with respect to the relation CSm (actually, a slightly stricter relation,
even). Concretely, the work in [10] found an example of such groups G1, G2 as above obtained from
m = 7 · 73 = 511, p = 2, β = 9, having an additional useful property, which allowed going down
from four to three servers via computer-aided search. We note that a share conversion from (2, 3)-CNF
to three-additive over that pair of groups also exists since (2, 3)-CNF can be converted to any linear
scheme for an access structure containing a two-threshold (including modified (2, 3)-Shamir) [7].

The encoding used is via a Sm-MV family over Zm, as in [4]. The evaluation points in the Shamir

scheme used are tailored to Sm in the corresponding MV family. It achieves a CC of O(2146
√

n log(n)),

later improved to O(26
√

n log(n)) by BIKO’s construction.
Qualitatively, the result of [10], preceded by [11] in terms of using a similar idea, and most later

constructions greatly improved the CC relative to earlier constructions such as [9] by using MV-codes
rather than low-degree polynomial codes. The former codes had a surprisingly large rate. Indeed,
looking at MV-families from the perspective of [12], these are also polynomial codes, over a basis of
monomials corresponding to an MV family, rather than low-degree monomials.

All the above examples generalize to larger k, with somewhat improved complexity; we focused
on the (hardest) k = 3 here for simplicity.

Two-Server PIR

In a breakthrough result, the work in [13] matched the CC of two-server PIR with the CC of the

best-known three-server PIR, improving from the best previously-known 2n/3 to 2O(
√

nlog(n)). Their
work cleverly combined and extended several non-trivial ideas, both new and ones that appeared
in previous work in some form. In a nutshell, one idea is to encode inputs via MV codes, where the
operations on the vectors are done “in the exponent”, resulting in a variant of MV codes as polynomials,
as defined in [12] and implicitly used in [10]. Another idea is to output both evaluations of these
“exponentiated” polynomials and the vector of their partial derivatives, to yield more information to
facilitate reconstruction given only two servers.

As for casting their result into the BIKO framework(we believe it is a meaningful generalization
thereof, as we describe below):

1. The client encodes its input x ∈ {0, 1}n via a vector u = u(x) in an S6-MV family C ⊆ Zl
6 (with l

about 2Õ(
√

n) as explained above).
2. Every bit uj is shared via Sh1, which is the (2, 2)-modified Shamir scheme over Zm. The evaluation

points are zero and one. We note that the choice of m is not as constrained as in the construction
of [10], and many other pairs would work as well. This holds as the purpose of the polynomial
involved is somewhat different.
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3. Let R6,6 denote the ring Z6[z]/(z6 − 1). Let γ = z, which has multiplicative degree six in R6,6.
The servers are able to evaluate locally the encoded database:

F(x1, . . . , xl) = ∑
i∈[2n ]

aixui

roughly as follows:

(a) At the bottom level, use the linearity of Sh1 to evaluate locally each yi =< ui, x >.
(b) Convert each of the yi’s into a (2, 2)-sharing scheme Sh2 over a ring G2 = RΩ(l)

6,6 , obtaining
a vector of y′i’s. The conversion is a many-to-one conversion with respect to a relation R
over the entire input vector, the current yi and y′i, so that R(x1, . . . , x2n , yi, y′i) that outputs
CS6(yi, y′i) if (x1, . . . , x2n) is in C, and otherwise undefined.

(c) Use the “almost linearity” of Sh2 over our particular subset of values to evaluate ∑i aiy′i.
Here. “almost linearity” means that to evaluate a sum of shared secrets, we add some of
the coordinates and copy other coordinates.

4. The client reconstructs the output value from the obtained shares, according to Sh2 (the
reconstruction function is of degree-two.) In a nutshell, the coefficient ax is the only one
determining the free coefficient of a degree-six univariate polynomial obtained from restricting
F to the line z + ut, where z is a random vector. The reconstruction procedure uses the shared
evaluations as derivatives to compute this free coefficient, which is non-zero iff ax is one. In the
original protocol description of [13], the client used the input for reconstructing the output, which
is not consistent with share conversion, where the input is not required for reconstruction. We
restate the above protocol by letting the servers “play back” the original shares to the client to
stay consistent with the BIKO share conversion framework.

To summarize, the construction falls into an extended BIKO framework, where the middle-layer
share conversions are many-to-one rather than one-to-one. Furthermore, the scheme Sh2 is non-linear
and is defined over a non-constant domain. It is important to observe that the relations used for
the conversions are independent of the database function F itself, but only depend on its size. The
locally-evaluated relations are as small as O(2n), similarly to BIKO. One potential difficulty with using
such an extended design framework is in verifying whether a many-to-one share conversion exists,
or even one-to-one for a large share domain of Sh2, as we have here.

One question that remains open in the two-server setting is to make the server’s output size
constant as in [4,10] for three servers.

3. Preliminaries

3.1. Secret Sharing Schemes

For a set A ⊆ [n] and sequence of shares s = (s1, . . . , sn), we denote s[A] by the sequence of
shares (si)i∈A. A secret sharing scheme for n parties implements an access structure specified by a
monotone function f : {0, 1}n → {0, 1} specifying the so-called qualified sets of parties that recover the
secret (preimages of one), while other sets learn nothing about the secret (in this paper, we consider
the standard perfect setting). We refer to such a scheme as an n-party secret sharing scheme. More
formally, an n-party secret sharing scheme is a randomized mapping:

Sh : S× R→ S1 × . . .× Sn

where S is a finite domain of secrets and R is a randomness set, while S1, . . . , Sn are finite share domains
such that the following holds:
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• Correctness: For all A ⊆ [n] with f (A) = 1, referred to as qualified sets, and all s1 6= s2 ∈ S,
we have:

support(Shr←R(s1, r)[A]) ∪ support(Shr←R(s2, r)[A]) = φ

We use sets and their characteristic vectors interchangeably.
• Privacy: For all A ⊆ [n] with f (A) = 0 and all s1 6= s2 ∈ S, the following distributions are equal.

Shr←R(s1, r)[A]) = (Shr←R(s2, r)[A])

Access structures where the set of qualified subsets is exactly those of size some t or more,
are called threshold access structures.

We say that a secret sharing scheme is linear over some ring G, generalizing the standard notion
of linearity over a field, if S = G, R = Gl for some l ∈ N for some finite Abelian ring G. Each share
consists of one or more linear functions for the form l(s, r1, . . . , rm) = α0 · s + ∑i αi · ri (Observe that
unlike linear schemes over a field, such a scheme does not always have perfect correctness for all
secrets s ∈ R, but this is not required in our context. We will require perfect privacy though.) A useful
property of such schemes is that they allow evaluating locally linear functions of the shares. That is,
for a pair of sharings s1 = (s1

1, . . . , s1
n) s2 = (s2

1, . . . , s2
n) of some s1, s2, respectively, s1 + s2 (performing

addition coordinate-wise on each group element in the share vector) is a sharing of s1 + s2. Similarly,
for a ∈ G, a · s1 is sharing of a · s1.

See [14] for a survey on secret sharing.
Let us recall the well-known schemes (2, 3)-CNF and 3-additive for completeness. The schemes

are more general, (2, 3)-CNF is a special case of (t, n)-CNF and 3-additive is a special case of (t, n)-DNF
with t = n = 3. Here we explicitly recall the definitions only of the special cases we need.

A 3-additive secret sharing scheme over a ring G is a randomized mapping fADD : S× R →
S1 × S2 × S3, where S = Si = G, R = G2, such that fADD(s; a1, a2) = (a1, a2, s− a1 − a2). It is not hard
to see that fADD indeed implements an access structure where only the set {1, 2, 3} is qualified.

A (2, 3)-CNF over a ring G is defined by a randomized mapping fCNF : S× R→ G3 for S = G,
Si = R = G× G. It is defined as follows fCNF(s; a1, a2) :

1. Calculate a three-additive sharing (a, b, c) = fADD(s; a1, a2).
2. Output shares (s1, s2, s3) where si equals the two elements from the tuple in one, which are not at

its index. For example, s3 = (a, b).

It is not hard to see that (2, 3)-CNF is indeed a 2-threshold scheme. It is also not hard to see that the
above schemes are linear over their respective rings.

A (2, n)-modified Shamir scheme over a ring G is defined by a randomized mapping fSh(s; z) :
G× G → G outputs shares (s1, . . . , sn) si = z + sxi, where xi ∈ G is a distinct constant ‘evaluation
point’.

It is not hard to see that (2, 3)-CNF is indeed a two-threshold scheme. It is also not hard to see
that the above schemes are linear over their respective rings.

3.2. Share Conversion

We recall the definition of (generalized) share conversion schemes as considered in our paper.
Our definition is exactly the definition in [4], in turn adopted from previous work.

Definition 1 ([4]). Let L1 and L2 be two n-party secret-sharing schemes over the domains of secrets K1 and
K2, respectively, and let C ⊆ K1 × K2 be a relation such that, for every a ∈ A1, there exists at least one b ∈ K2

such that (a, b) ∈ C. A share conversion scheme convert(s1, . . . , sn) from L1 to L2 with respect to relation C is
specified by (deterministic) local conversion functions g1, . . . , gn such that: If (s1, . . . sn) is a valid sharing for
some secret s in L1, then g1(s1), . . . gn(sn) is a valid sharing for some secret s′ in L2 such that (s, s′) ∈ C.
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(In [4], they referred to such share conversion schemes as “local” share conversion. As this is the only type
we consider here, we will refer to it as simply “share conversion”.)

For a pair of Abelian groups G1, G2 (when G1, G2 are rings, we consider G1, G2 as groups with
respect to the “+′′ operation of the rings), we define the relation CS as in [4] (G1, G2 will be clear from
the context, so we exclude the groups from the definition of CS to simplify notation).

Definition 2 (The relation CS [4]). Let G1 and G2 be finite Abelian groups, and let S ⊆ G2 \ {0} (when
G1, G2 are rings, we will by default refer to the additive groups of the rings in this context). The relation CS
converts s = 0 ∈ G1 to any nonzero s ∈ G2 and every s ∈ S to s = 0. There is no requirement when
s /∈ S ∪ 0. Formally,

CS = {(s, 0)|s ∈ S} ∪ {(0, s′) : s′ ∈ G2 \ {0}} ∪ {(s, s′)|s /∈ S ∪ {0}, s′ ∈ G2}

Given m = p1 · p2, where p1 6= p2 are primes and p is a prime, we consider pairs of rings
G1 = Zm, G2 = Zβ

p. We denote Sm = {x ∈ G1|∀i ∈ [2], x mod pi ∈ {0, 1}} \ {0}.

3.3. Our Starting Point: The Modeling of [4]

In this work, we study the existence of share conversions for three parties with respect to the
canonical relation CG1,G2 as above, from (2, 3)-CNF to three-additive for various parameters p1, p2, p.

Our starting point is the characterization from [4] of triples (p1, p2, p) for which a share conversion
with respect to (G1, G2) as above exists via a linear-algebraic constraint.

In some more detail, consider (p1, p2, p) as above. A share conversion from (2, 3)-CNF to
three-additive exists for Sm iff a certain condition is satisfied by the following matrix M≡, 6≡ over Zp.

In the matrix M≡, 6≡, the rows are indexed by triples (a, b, c) ∈ Z3
m, corresponding to (2, 3)-CNF

sharings of some s ∈ S ∪ {0}. Namely, (a, b, c) are the (additive) shares generated by fCNF in Step 1.
The rows corresponding to s 6= 0 form M≡. The rows corresponding to s = 0 form M 6≡. The columns
of M≡, 6≡ are indexed by values in [3]×Zm ×Zm. Intuitively, an index (i, x, y) of a column corresponds
to share si of the (2, 3)-CNF scheme being equal to (x, y). Row (a, b, c) has ones at three locations:
(3, a, b), (2, a, c), (1, b, c), and zeros elsewhere. That is, there are zeros at columns corresponding to the
shares si output by fCNF corresponding to (a, b, c) produced in Step 1 of fCNF’s execution.

We are searching for a vector u that by multiplying it with each row of the “equality rows” of the
matrix, it will be equal zero, and by multiplying it with one of the inequality rows, it will not be equal
to zero.

The solution vector u (and thus, the columns of the matrix) is indexed by [3]×Zm×Zm. The index
of an entry (i, x, y) corresponds to a CNF-share si that equals (x, y), and the value u(i,x,y) at this index
is the value in Fbβ to which share si = (x, y) is converted.

Indeed, it is not hard to see that a share conversion scheme exists iff a solution x ∈ Fpβ to
the system: {

M≡x = 0

M 6≡x 6= 0

exists.
Some basic linear-algebraic observations imply that the above is equivalent to the fact that the

rows of M≡ do not span some row of M≡ over Fp (this simplification matters, as it does not require us
to know β in advance, if it exists).

Furthermore, the work in [4] provided a quantitative lower bound on β, depending on the degree
difference between M≡ and M 6≡ (the latter is not significant towards our goal of just understanding
feasibility). Their characterization is summarized in the following theorem.

Theorem 3 (Theorem 4.5 [4]). Let β = rankFp(M≡, 6≡))− rankFp(M≡)) > 0. Then, we have:
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• If β = 0, then there is no conversion from (2, 3)-CNF sharing over Zm to additive sharing over Zκ
p with

respect to CSm , for every κ > 0.
• If β > 0, then there is a conversion from (2, 3)-CNF sharing over Zm to additive sharing over Zβ

p with
respect to CSm .
Furthermore, in this case, every row v of M 6≡ is not spanned by the rows of M≡.

Moreover, it was proven in [4] that the above is in fact equivalent to having the rows of M≡ not
span any row of M≡. The latter simplification is a result of certain symmetry existing for the particular
relation and secret sharing schemes in question.

Corollary 1. For every row v of M 6≡, v is not spanned by the rows of M≡ iff there exists some β > 0 for which
a conversion from (2, 3)-CNF sharing over Zm to additive sharing over Zβ

p with respect to CSm exists.

Theorem 3 provides a full characterization via a condition that given (p1, p2, p) can be verified in
polynomial time in (p1, p2, log(p)). More precisely, the size of our matrix M≡, 6≡ is 4m2 × 3m2 (in fact
slightly smaller, at (3m2 + 1)× 3m2, if working with Corollary 1, but this is insignificant), so verifying
the condition amounts to solving a set of linear equations, which naively takes about O(m6) time,
or slightly better using improved algorithms for matrix multiplication, and the running time cannot be
better than Ω̃(m4) using generic matrix multiplication algorithms. Thus, the complexity of verification
grows very fast with m, becoming essentially infeasible for p1, p2 circa 50.

In any case, direct verification of the condition on concrete inputs does not answer the following
fundamental question.

Question 1 (Informal). Do there exist infinitely many triples (p1, p2, p) for which a share conversion scheme
from (2, 3)-CNF to three-additive secret sharing (with parameters as discussed above) exists?

It was conjectured in [4] that all tuples where p = p1 and p1, p2, p are all odd allow for such a
sharing scheme. We answer this question in the affirmative. While it is not clear that our result may
be directly useful towards constructing better PIR schemes, our work is a first step towards possibly
improving PIR complexity using this direction, in terms of the tools developed. See the discussion in
Section 5 for more details.

To resolve this question, we develop an analytic understanding of the condition for the particular
type of matrices at hand. Our goal is to simplify the matrices into a more human-understandable form,
so we are able to verify directly the linear-algebraic condition for infinitely many parameter triples.

3.4. Some Notation

In this paper, we will consider matrices over some field F, typically over a finite field F = Zp.
For matrices A, B with the same number of columns, (A; B) denotes the matrix comprised by
concatenating B below A. For matrices A, B with the same number of rows, we denote by (A|B)
the matrix obtained by concatenating B to the right of A. For entry i, j of a matrix A, we use the
standard notation of A[i, j]. More generally, for a matrix A ∈ Fu×v, for subsets R ⊆ [v] of rows and
C ⊆ [u] of columns, A[R, C] denotes the sub-matrix with rows restricted to R and columns restricted
to C (ordered in the original order of rows and columns in A). As special cases, using a single index i
instead of R (C) refers to a single row (column). A “·” instead of R (C) stands for [u] ([v]).

We often consider imposing a block structure upon a matrix A. The block structure is specified by
a grid defined by a partition of the columns into non-empty sets of consecutive columns C1, . . . , Ct and
a partition of the rows into non-empty sets of consecutive rows R1, . . . , Rh. The matrix A viewed as a
block matrix is not a t× h matrix where entry (i, j) is the sub-matrix A[Ci, Ri]. We denote the block
matrix obtained from A by V (for instance, a matrix named A(3) is replaced by V(3)). In a block matrix
V, we typically index the matrix by subscripts: Vi,j denotes (the matrix at) entry i, j of V. For instance,
Vi,j[i, k] denotes entry [i, k] in (sub)matrix Vi,j.
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Typically, the Ci’s and the Ri’s are of the same size, and C0, R0 start at zero. Sometimes, the sets
will not be of the same size (typically, the first or last set will be of a different size than the rest).
Furthermore, most generally, C0, R0 may start elsewhere. Additionally, the indices may be consecutive
modulo u (v), so one of the sets Ci (Ri) may not consist of truly consecutive indices.

Most of the time, index arithmetic will be done modulo the matrices’ number of rows and columns
(we will however state this explicitly).

4. Our Result

4.1. Starting Point and Main Technical Tool

Starting off with Corollary 1, it suffices to prove the following theorem.
We prove the following result.

Theorem 4. Assume m = p1 · p2, p = p1, and p1, p2 > 2. Then, there exists a row v in M 6≡ such that
Rows(M≡) does not span v.

As a corollary from Corollary 1 and Theorem 4, we immediately obtain:

Corollary 2. Assume m = p1 · p2, p = p1, and p1, p2 > 2. Then, there exists some β > 0 for which a
conversion from (2, 3)-CNF sharing over Zm to additive sharing over Zβ

p with respect to CSm exists.

To prove Theorem 4, we choose any vector v in the M≡, 6≡, outside of M≡, and prove that M≡
does not span v. The particular choice of v we will make is a somewhat convenient choice, but any v
will do, so we will fix it later. To this end, we apply carefully-chosen row operations, but in a specific
way, so we (as humans) can understand the matrices that result.

Our main technical tool is the following simple lemma.

Lemma 1. Let A denote a matrix in Zv×u
p , and let b = A[v, [u]]. Let I1 ⊆ [v− 1], I2 ⊆ [u] denote non-empty

sets of rows and columns, respectively. A′ obtained from A by a sequence of row operations on A, so that A′[I1, I2]

is a basis of A′[[v], I2], and the rest of the rows in A′[I1, I2] are zero. Then, Rows(A′[[v] \ I1, [u] \ I2]) span
b′[[u] \ I2] iff Rows(A[[v− 1], [u]]) span A[v, [u]].

The proof of the Lemma follows by the fact that any solution to xA[[v− 1], [u]] = A[v, [u]] must
have zero at indices corresponding to I1, to obtain zero at the coordinates corresponding to v2 (and the
fact that row operations on [A; b] do not change the solvability of a system Ax = b).

We start with M′≡ = [M≡; v] and need to resolve the question of whether Rows(M≡) span v. On a
high level, we proceed by applying the following lemma several times, thereby reducing the problem
to considering a certain submatrix of the original matrix.

4.2. A Few Initial Elimination Sequences

4.2.1. Elimination Step 0

We introduce some more notation we will use along the way. We think of the matrix M′≡, 6≡ as
divided into blocks of 4× 3. We denote constants by capital letters (e.g., a secret value S1, or index
(A, B)) and running indices by small letters, typically a, b, c. Row 1 of the block matrix V, Vi,· is indexed
inside by (a, b, c), going over all (a, b, c) that constitute an additive sharing of S1 = (0, 1)Zm . Here,
(0, 1)Zm denotes a single element of Zm, corresponding to its residues modulo p1 and p2, respectively.
We omit the Zm subscript when it is clear from the context whether a pair (x, y) is in Zm or in Zm.
Similarly, rows V2,·, V3,·, V4,· correspond to S2 = (1, 0)Zm , S3 = (1, 1)Zm , S4 = (0, 0)Zm , respectively. The
rows inside rows 1, 2, 3 in the block matrix are internally indexed by (a, b) (c is determined by a, b, Si
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as Si − a− b), where the (a, b)’s are ordered lexicographically (we stress that the particular order is
not important for analyzing the rank of the matrix, but it will play some role in creating a matrix that
“looks simple” and is easier to understand). The last block is indexed by some (A, B) ∈ Zm ×Zm to be
chosen later; as follows from Corollary 1, any (A, B) can be chosen.

Column V·,1 in the block matrix is internally indexed by the CNF-share (a, b) received by P3.
Column V·,2 is indexed by (a, c) (share received by P2), and V·,3 is indexed by (b, c) (share received
by P3). As in the case of rows, the values (x, y) ∈ Zm internally indexing a column of V are
ordered lexicographically.

Pictorially, the matrix M′≡, has the following general form.
(0, 0) · · · (m− 1, m− 1) (0, 0) · · · (m− 1, m− 1) (0, 0) · · · (m− 1, m− 1)



(0, 0)
· · · I V1,2 V1,3

(m− 1, m− 1)
(0, 0)
· · · I V2,2 V2,3

(m− 1, m− 1)
(0, 0)
· · · I V3,2 V3,3

(m− 1, m− 1)
(A, B) eA,B eA,S4−A−B eB,S4−A−B

In the above, I denotes the identity matrix, and each Vi,1 indeed equals I. The other Vi,j’s for
j ∈ {2, 3} are m2 ×m2 permutation matrices, and ex,y ∈ Zm×n

p denotes a row vector with one at index
(x, y), and zeroes elsewhere.

For a fixed i ∈ [3], row (a, b) equals (ea,b, ea,Si−a−b, eb,Si−a−b) for Block Columns 1, 2, 3 respectively.
Next, we apply Lemma 1 to A = M′≡ with I1 = [m], and I2 = [m2] (I2 corresponds to the

first column in the block). The sequence of operations to b-zero the columns in A[[3m2 + 1], [m2]] is
carried out by subtracting from each row ea,b (indexed by (a, b)) in Blocks 2, 3, 4 the corresponding
row ea,b (indexed by (a, b)) in Block 1. The resulting matrix A′ (of size (2m2 + 1)× 2m2) is described
in the following.

4.2.2. Elimination Step 1

We view the matrix A′ as a block matrix with the same subdivision into blocks as in M′≡ (with
one less block in both rows and columns, with Row 1 and Column 1 removed). Let V′ denote the
corresponding 3× 2 block matrix.

Consider the row indexed by (a, b) in V′i,· for i ∈ [3] (corresponds to Block Rows 2, 3, 4 respectively
in M′≡). We have:

Observation 1. The row V′i,· indexed by (a, b) - V′i,·[(a, b), ·] equals:

(ea,Si−a−b − ea,S1−a−b; eb,Si−a−b − eb,S1−a−b) (1)

Here, (a, b) = (A, B) for i = 3.

The resulting matrix A′ is depicted next.
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(
0,
0

)
· · ·

(
m− 1,
m− 1

) (
0,
0

)
· · ·

(
m− 1,
m− 1

)




(
0,
0

)
... V2,2 −V1,2 V2,3 −V1,3(

m− 1,
m− 1

)
(

0,
0

)
... V3,2 −V1,2 V3,3 −V1,3(

m− 1,
m− 1

)
(

A,
B

)
eA,S4−A−B−
eA,S1−A−B

eB,S4−A−B−
eB,S1−A−B

Next, we find a basis for Rows(A[I1, [m2]]) and apply Lemma 1 again, “getting rid” of the first
block column in A′. For i ∈ {1, 2, 3, 4}, let ∆i,j = Si − Sj.

We will need another simple observation.

Observation 2. The rows of V′i,1 for i ∈ [1, 2] are a permutation of the sequence of all m2 vectors of the form
(x, y)− (x, y + ∆1,i+1). Additionally, ∆1,2 = (−1, 1)Zm , and therefore, (−1, 1)Zm generates Zm.

We are now ready to demonstrate that the set of rows of V′1,1, according to the coordinate of one in
their row: B = {(a, b)|c = S2 − a− b 6= m− 1} constitutes the basis of V′·,I2

for I2 = [m2], as we seek.
Therefore, we will again be able to apply Lemma 1. The other rows are spanned by this set, in one of
two ways. We classify them into two types according to these ways. We refer to them as Type 1 and
Type 2.

Type 1 constitutes of rows in V′1,1 indexed by (a, b) with c = S2 − a− b = m− 1, for which the
location of the ‘1’ in V1,1[(a, b), ·] is (a, c) for c as above. We observe that every such row is spanned by
V′1,1[B, ·], as for every a ∈ Zm, we have:

∑
b∈Zm

V′1,1[(a, b), ·] = (2)

∑
c∈Zm

ea,c − ea,c+∆1,2 = (3)

∑
c∈Zm

ea,c − ∑
c∈Zm

ea,c+∆1,2 = (4)

1− 1 = 0 (5)

Here, the transition from Equation (2) to Equation (3) is by Observation 1 and the observation
that for a fixed a, (S2 − a− b)b∈Zm is a permutation over Zm, so the change of coordinates we perform
is valid. We b-zero rows (a, b) of V′1,1 of Type 1 by adding all other rows of the form (a, b′) to each
of them.
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Type 2 includes all rows in V′i,1 for i ∈ {2, 3} are of this type. Consider a row indexed by (a, b) in
V′i,1 (in particular, the row in block V′3,· is of that type). It is spanned by rows in B as follows:

∆1,i+1
∆1,2

−1

∑
j=0

V′1,1[(a, b + ∆2,i+1 − j · ∆1,2), ·] = (6)

∆1,i+1
∆1,2

−1

∑
j=0

(ea,Si+1−a−b+j·∆1,2 − ea,Si+1−a−b+(j+1)·∆1,2
) = (7)

ea,Si+1−a−b − ea,Si+1−a−b+∆1,i+1
= V′i,1[(a, b), ·] (8)

Here, the transition to Equation (8) is by observing that a telescopic sum is formed, where all
but the first and last ex,y’s in the sum cancel out. Note that the number in the superscript of the sum
indeed exists, as ∆1,2 generates Zm, and so, in particular, ∆1,i+1 = k · ∆1,2 for some integer k > 0.

Rearranging the equality above, we get:

V′i,1[(a, b), ·]−

∆1,i+1
∆1,2

−1

∑
j=0

V′1,1[(a, b + ∆2,i+1 − j · ∆1,2), ·] = 0 (9)

That is, we have identified the linear combinations of rows in B that add up to V′i,1.

4.3. Elimination Step 2

After applying Lemma 1 to each row to Type 1 and Type 2 and making it zero, we turn to

considering the remaining matrix A′′ ∈ Z(m+m2+1)×m2

p . It is a block matrix of size 3× 1, with blocks
corresponding to V′1,2, V′1,3, V′1,4 in A′, with m, m2, and one row, respectively. Let us calculate the form
of rows of both types, when restricted to V′′ (following elimination step 1 from Section 4.2.2).

Type 1 in V′′: From Equation (2), we conclude that for a fixed a, for the (single) b such that
(a, b) /∈ B, we have:

V′′1,1[(a, b), ·] = (10)

∑
b∈Zm

V′1,2[(a, b), ·] = (11)

∑
b∈Zm

(eb,S2−a−b − eb,S1−a−b) (12)

Type 2 in V′′: This type consists of row blocks i ∈ {2, 3} in V′′. By construction, we have:

V′′i,1[(a, b), ·] = V′i+1,2[(a, b), ·]−

∆1,i+1
∆1,2

−1

∑
j=0

V′1,2[(a, b + ∆2,i+1 − j · ∆1,2), ·] (13)
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Fix some (a, b) ∈ Zm × Zm. Now, from Observation 1 and Equation (9), it follows that for all
(a, b) ∈ Zm ×Zm, we have:

V′′i,1[(a, b), ·] = (14)

V′i,2[(a, b), ·]−

∆1,i+1
∆1,2−1

∑
j=0

V′1,2[(a, b + ∆2,i+1 − j · ∆1,2), ·] = (15)

eb,Si+1−a−b − eb,S1−a−b

−

∆1,i+1
∆1,2

−1

∑
j=0

( eb+∆2,i+1−j·∆1,2,Si+1−a−b−∆2,i+1+j·∆1,2

−eb+∆2,i+1−j·∆1,2,S1−a−b−∆2,i+1+(j+1)·∆1,2
)

(16)

4.4. Permuting the Columns

Next, we permute the columns of A′′, to gain insight into its form. Note that this does not
affect the question of whether A′′[m + m2 + 1] (last line) is spanned by the rest of the rows in A′′,
Rows(A′′[[m + m2], [m2]]). We refer to the new matrix as A(3) and the resulting block matrix as V(3).

The permutation is as follows: the content of a column indexed by (b, c) ∈ Zm × Zm moves
to (b, b + c)/∆1,2 in the new matrix. We therefore obtain the following matrix M for Types 1 and 2,
respectively (from Equations (12) and (16)).

4.4.1. Type 1

V(3)
1,1 [(a, b), ·] = ∑

b∈Zm

e(b,S2−a)/∆1,2
− e(b,S1−a)/∆1,2

= (17)

∑
b,c∈Zm

e(b,c)/∆1,2
− e(b,c+∆1,2)/∆1,2

= (18)

∑
b,c∈Zm

eb,c − eb,c+1 (19)

Here, the last transition is due to the fact that dividing by ∆1,2 is a permutation over Zm (as ∆1,2

is invertible).

4.4.2. Type 2

For i ∈ {2, 3}, we have:

V(3)
1,i [(a, b), ·] = (20)

e(b,Si+1−a)/∆1,2
− e(b,S1−a)/∆1,2

(21)

−

∆1,i+1
∆1,2

−1

∑
j=0

(e(b+∆2,i+1−j·∆1,2,Si+1−a)/∆1,2
− e(b+∆2,i+1−j·∆1,2,S1−a+∆1,2)/∆1,2

) =

eb′ ,c′ − eb′ ,c′+∆1,i+1/∆1,2
−

∆1,i+1
∆1,2

−1

∑
j=0

(e(b′−j+∆2,i+1/∆1,2,c′) − e(b′−j+∆2,i+1/∆1,2,c′+1) = (22)

e(b′ ,c′) − e(b′ ,c′+∆1,i+1/∆1,2)
−

∆1,i+1
∆1,2

−1

∑
j=0

eb′+j,c′ − eb′+j,c′+1 (23)
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In Equation (21), we simply rename b′ = b/∆1,2, c′ = (Si+1 − a)/∆1,2. In Equation (22), we
observe that for j = ∆1,i+1

∆1,2
, we have:

b′ − j + ∆2,i+1/∆1,2 =

b′ + 1 +
∆2,i+1 − ∆1,i+1

∆1,2
=

b′ + 1 +
∆2,1

∆1,2
= b′ + 1− 1 = b′

Thus, making a change of coordinates and letting the index j in the ∑ in Equation (23) run from
j = ∆1,i+1

∆1,2
− 1 down to zero yield the expression in Line 23.

4.4.3. Summary

We have obtained a matrix with rows of the following form.

• Type 1 (contributed by Row Block 1 in V(3)) yields all vectors of the form:

∑
b∈Zm

eb,c − eb,c+1

for c ∈ Zm.
• Type 2 (contributed by Row Block 2 in V(3)) yields all vectors of the form:

e(b,c) − e(b,c+∆1,3/∆1,2)
−

∆1,3
∆1,2
−1

∑
j=0

eb+j,c − eb+j,c+1 =

e(b,c) − e(b,c+(1,0)Zm ) −
(0,−1)Zm

∑
j=0

eb+j,c − eb+j,c+1 =

(24)

For all pairs b, c ∈ Zm.
• The last line of V(3) is subsequently referred to as Type 3. Similarly to Type 2, it follows from

Equation (23) that the line in the last block (i = 3) has the form:

e(B,C) − e(B,C+(0,1)Zm ) −
(−1,0)Zm

∑
j=0

eB+j,C − eB+j,C+1 (25)

Here, B, C ∈ Zm is some pair of constants (corresponding to A, B to be chosen above) to be
fixed later.

In the above, (−1, 0)Zm = (0, 1)Zm − 1 in the sum limit corresponds to “lifting” the element of Zm

into Z and viewing as an integer in {0, . . . , m− 1}. Note that no “wrap around” occurs as (0,−1) 6= 0
in Zm, so we get the correct number in the sum limit.

4.5. A Change of Basis

Occasionally, we will refer to rows A(3) as matrices, with rows indexed by b and columns by c.
As we have witnessed, so far, we have performed applications of Lemma 1 on the original matrix

A, which was a simple block matrix of size 4× 3 blocks, and the upper three row blocks had three cells
of size m2× m2 each and another “block” row with three cells of size 1 × m2 each cell. By performing
two applications of the lemma, we obtained a much smaller matrix A(3). Namely, we obtained a block
matrix with 3 × 1 blocks, with cells of size m × m2, m2× m2, and 1 × m2, respectively. The price
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we have paid for the reduction in size is that the structure of the matrix has became more complex.
In particular, it is no longer clear how to identify additional row sets I1 to continue applying the
lemma conveniently.

To create a matrix of more manageable form, we perform a change of basis. We suggest the
following basis for the row space of A(3). B = B1 ∪ B2. Here:

B1 = {eb,i − eb,i+1|b ∈ Zm, i ∈ {0, . . . , p2 − 2}, }

and:
B2 = {−eb,i+j·(1,0)Zm

+ eb,i+(j+1)·(1,0)Zm
|b ∈ Zm, i ∈ Zp2 , j ∈ Zp1 \ {p1 − 1}}

In all indices here and elsewhere, the arithmetic is over Zm.
Indeed B1 ∪ B2 is a basis of Rows(A(3)). To prove this, we first note that it is an independent set.

Roughly, this follows by separately considering the vectors in B with nonzero values in each row (b, ·)
separately and the fact that p2 divides m.

Next, we show that the rows of A(3) are indeed spanned by the above set of vectors. Furthermore,
the matrix re-written in this basis will have a nice block structure that we will be able to exploit for the
purpose of using Lemma 1.

We denote by Tb,i = eb,i − eb,i+1 a vector in B1 and by Rb,i+j(1,0)Zm
= −eb,i+j·(1,0)Zm

+

eb,i+(j+1)·(1,0)Zm
a vector in B2.

To rewrite our matrix A(3), we will specify an ordering of the vectors in B, from left to right

1. The columns in B1 come first, in increasing order of c, starting from zero.
2. The columns of the form Rb,i+j(1,0) in B2 are ordered on several levels:

(a) On the highest level, order Rb,i+j·(1,0)’s according to the index i above, starting from zero
up to p2 − 1. There are p2 blocks of this form on the highest level.

(b) For a fixed i, order Rb,i+j·(1,0)’s according to increasing order of j starting from zero, up to
p1 − 2.

(c) For fixed i, j, order in increasing order of b′s, starting from zero up to m− 1.

We order the rows of the matrix as follows:

1. The rows of Type 2 appear first, then Type 1, then Type 3 (the distinguished row to span via the
others).

2. Within Type 1, we denote r1
c = ∑b∈Zm eb,c − eb,c+1.

3. Within Type 2, denote by r2
b,c the vector e(b,c)− e(b,c+(1,0)Zm )−∑

(0,−1)Zm
j=0 eb+j,c− eb+j,c+1. Consider

one such vector, r2
b,c, We order these vectors according to i, then j, then b, where c = i + j · (1, 0).

Similarly, for Type 3, denote r3
B,C = e(B,C) − e(B,C+(0,1)Zm ) −∑

(−1,0)Zm
j=0 eB+j,B − eB+j,C+1.

Let us now study the form of the resulting matrix, divided into blocks, as follows from the
representation of the various vectors in Rows(A(3)) in basis B.

Let us represent the matrix as a block matrix, then we further break down each block into lower
level blocks as follows. Let us denote the new matrix by A(4).

The Type 2 set of rows in A(4) has structure as depicted in the following matrix.
A(4) = (A(4),2; A(4),1, A(4),3). Let us describe each of the matrices A(2),i below.

4.5.1. The Matrix A(4),2

A(4),2 = (A(4),L,2|A(4),R,2)

Here, the “right side” AR,2 is a p2 × p2 block matrix. Its contents are as follows.
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0 1 2 · · · p2 − 2 p2 − 1
0


R1

1 + R2
1 −R2

1


1 R1
1 + R2

1 −R2
1

...
. . .

p2 − 2 R1
1 + R2

1 −R2
1

p2 − 1 R3
1 − R2

1 R1
1 + R2

1

The left-side matrix A(4),L,2 is a block matrix of size p2 × 1 (where indeed the number of rows in
each of its p2 blocks is consistent with that of A(4),R,2). It has the following structure.

0


L0
1


1 L1

1
...

...
p2 − 2 Lp2−2

1
p2 − 1 ∑

p2−2
i=0 Li

1

We refer to this partition into p2 × (p2 + 1) blocks of A(4),2 as the “Level-1” partition of A(4),2.
We continue next with describing the “Level-0” detail of R1

2, R2
2, R3

2, Li
2 of A(4),R,2, A(4),L2 .

The matrix Li
1 for i ∈ {0, . . . , p2 − 2} is a p1 × (p2 − 1) block matrix of the following form:

0 1 · · · i · · · p2 − 2
0


T0


1 T0
...

...
p1 − 2 T0

p1 − 1 T0

for a matrix T0 to be specified later. Note that by the structure of A(4),L,2, the last matrix Lp2−1
1 is a

block matrix of size p1 × (p2 − 1), where each block equals −T0.
The matrix R1

1 is a p1 × (p1 − 1) matrix of the following form.

0 1 · · · p1 − 2
0


I


1 I
...

. . .
p1 − 2 I
p1 − 1 −I −I · · · −I

Here, I is the m×m identity matrix. The matrix R2
1 is a p1× (p1− 1) matrix of the following form.

0 1 · · · p1 − 3 p1 − 2
0




1 T0

2 T0 T0
... T0 T0

. . .
p1 − 2 T0 T0 · · · T0

p1 − 1 T0 T0 · · · T0 T0
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Here, T0 is a m×m matrix, as above. Finally, the matrix R3
2 is a p1 × (p1 − 1) block matrix of the

following form.

0 · · · p2 mod p1 · · · p1 − 2
0

 −T0 · · · −T0
· · ·

...
. . .

...
p1 − 1 −T0 · · · −T0

It remains to specify T0. It is a m×m circulant matrix of the following form.

0 · · · (1, 0)Zm − 2 (1, 0)Zm − 1 (1, 0)Zm · · · m− 1
0


1 · · · 1 1

1 · · · 1 1
...

. . . . . . . . . . . .
m− 1 1 · · · 1 1

4.5.2. The Matrix A(4),3

We choose (B, C) = (0, 0). Then, the line is of the form:

(0,1)Zm−1

∑
b=1

Tb,0 +
p1−2

∑
j=0

R0,1+j·(1,0)Zm

4.5.3. The Matrix A(4),1

The matrix A(4),1 is of the form A(4),1 = (A(4),L,1; A(4),R,1). To describe the left and right parts, we
apply a certain transformation to A(4),L,2 and A(4),R,2, respectively. First, view each as a block matrix
comprised of blocks of size m×m (A(4),L,2 has m× (p2 − 1) blocks, and A(4),R,2 has m× p2(p1 − 1)).
Now, A(4),L,1 is obtained from A(4),L,2 by applying a linear mapping satisfying l(T0) = (1, . . . , 1)︸ ︷︷ ︸

m times

to

each block X, replacing X by m(X) (it is not important how exactly we define it on other inputs).
The matrix A(4),L,1 is obtained from A(4),L,1 by replacing each block by a linear transformation that
maps I to the zero vector and T0 to (1, . . . , 1)︸ ︷︷ ︸

m times

. That is, the resulting A(4),L,1 equals:

0


L̃0
1


1 L̃1

1
... · · ·

p2 − 2 L̃p2−2
1

p2 − 1 ∑
p2−2
i=0 L̃i

1

where L̃i
1 equals:

0 1 · · · i · · · p2 − 2
0


(1, · · · , 1)


1 (1, · · · , 1)
...

...
p1 − 2 (1, · · · , 1)
p1 − 1 (1, · · · , 1)

The resulting matrix A(4),R,1 equals:
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0 1 2 · · · p2 − 2 p2 − 1
0


R̃2

1 −R̃2
1


1 R̃2

1 −R̃2
1

...
. . .

p2 − 2 R̃2
1 −R̃2

1
p2 − 1 R̃3

1 − R̃2
1 R̃2

1

where the resulting R̃2
1 is of the form:

0 1 · · · p1 − 3 p1 − 2
0




1 (1, . . . , 1)
2 (1, . . . , 1) (1, . . . , 1)
... (1, . . . , 1) (1, . . . , 1)

. . .
p1 − 2 (1, . . . , 1) (1, . . . , 1) · · · (1, . . . , 1)
p1 − 1 (1, . . . , 1) (1, . . . , 1) · · · (1, . . . , 1) (1, . . . , 1)

4.6. Another Elimination Sequence

From now on, assume that p = p1 and that p2 > 2. We leave the full analysis of other cases for
future work. We are now able to apply Lemma 1. We perform this step for I2 corresponding to the
L-part blocks of A(4) and proceed in several steps. We perform the row operations starting at a grosser
resolution and then proceed to finer resolution.

4.6.1. Step 1: Working at the Resolution of Level-1 Blocks

View A(4),2 as a block matrix of Level-1 as described above. Let V(4),2 denote the corresponding
block matrix. Replace the last row of V(4),2, V(4),2[p1 − 1, ·] by ∑

p2−1
i=0 V(4),2[i, ·]. We thus obtain a new

matrix A(5),2 of the following form. A(5),2 = (A(5),L,2|A(5),R,2) has the same block structure as A(4),2

on all levels, so we do not repeat that, but rather only review its content.
The resulting right side A(5),R,2 is as follows.

0 1 2 · · · p2 − 2 p2 − 1
0


R1

1 + R2
1 −R2

1


1 R1
1 + R2

1 −R2
1

...
. . .

p2 − 2 R1
1 + R2

1 −R2
1

p2 − 1 R3
1 + R1

1 R1
1 R1

1 · · · R1
1 R1

1

The resulting left-side matrix A(5),L,2 is:

0


L0
1


1 L1

1
...

...
p2 − 2 Lp2−2

1
p2 − 1 0

We perform a similar transformation on A(4),1, resulting in:

A(5),1 = (A(5),R,1|A(5),L,1)
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where A(5),R,1 equals:

0 1 2 · · · p2 − 2 p2 − 1
0


R̃2

1 −R̃2
1


1 R̃2

1 −R̃2
1

...
. . .

p2 − 2 R̃2
1 −R̃2

1
p2 − 1 R̃3

1

and A(5),L,1 equals:

0


L̃0
1


1 L̃1

1
...

...
p2 − 2 L̃p2−2

1
p2 − 1 0

4.6.2. Step 2: Working at the Resolution of Level-0 Blocks

Here, we view the matrix A(5) as a block matrix over Level-0 blocks. That is, denote by (i, j) the
row block corresponding to the jth Level-0 block inside the ith Level-1 block of A(6). We transform A(5)

into a matrix V(6) as follows.
For each i ∈ {0, . . . , p2 − 2}, j ∈ {1, . . . , p1}, replace each row in V(5),2[(i, j), ·] with

V(5),2 − [(i, 0), ·]. The resulting matrix A(6),2 is of the form A(6),2 = A((6),L,2|A(6),R,2).
The right side A(6),R,2 is as follows.

0 1 2 · · · p2 − 2 p2 − 1
0


R4

1 + R2
1 −R2

1


1 R4
1 + R2

1 −R2
1

...
. . .

p2 − 2 R4
1 + R2

1 −R2
1

p2 − 1 R3
1 + R1

1 R1
1 · · · R1

1 R1
1

where R4
1 equals:

0 1 · · · p1 − 2
0


I


1 −I I
...

...
. . .

p1 − 2 −I I
p1 − 1 −2I −I · · · −I

The resulting left-side matrix A(6),L,2 is:

0


L−,0
1


1 L−,1

1
...

...
p2 − 2 L−,p2−2

1
p2 − 1 0
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where L−,i
1 is of the form:

0 1 · · · i · · · p2 − 2
0


T0


1
...

p1 − 2
p1 − 1

Finally, we apply a similar transformation to A(5),1 resulting in A(6),L,1 that equals:

0


L̃−,0
1


1 L̃−,1

1
...

...
p2 − 2 L̃−,p2−2

1
p2 − 1 0

where L̃−,i
1 is of the form:

0 1 · · · i · · · p2 − 2
0


(1, . . . , 1)


1
...

p1 − 2
p1 − 1

The resulting right-hand side is A(6),R,1 = A(5),R,1 (there is no change, since the first block-row in
V(5),R,1 is zero).

4.6.3. Step 3: Working within Level-0 Blocks

Here, we move to working with individual rows and complete the task of leaving a basis of
the original A(4),L’s rows as the set of non-zero rows of the matrix A(7),L obtained by a series of row
operations. To this end, our goal is to understand the set of remaining rows in A(6),L. In the A(6),L,2

part, each Level-0 block-column (with blocks of size m× m) has only G = Rows(T0) ∪ {(1, . . . , 1)}
(here, one appears m times) as non-zero rows, and in each row, there are non-zero entries in only one
of the blocks. Thus, it suffices to find a basis for the set G of vectors.

Lemma 2. Assume p = p1. Then, the index set I = {k|0 ≤ k ≤ (p1 − 1)p2} satisfies that Rows(T0[I, [m]])

is a basis for G. In particular, we have ∑
p1−1
j=0 T0[j · p2, [m]] = x · (1, . . . , 1). Here, x is computed as follows:

first calculate y as p−1
2 modulo p1 (that is, in Zp1 ). Then, we “lift” y back into Z (1 ≤ y ≤ p1 − 1) and then set

x to be y modulo p – that is, x is an element of Zp (note that all non-zero coefficients in the linear combination
that results in (1, . . . , 1) indeed belong to I).

Another observation that will be useful to us identifies the dual of T0.
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Lemma 3. Assume p = p1. Then, the set of vectors:

S = {
p1−1

∑
j=0

ej·p2 − ei+(j+1)·p2
|i ∈ Zp2 \ {0}}

is a basis of Ker(T0), where Ker(M) = {v|v ·M} denotes the left kernel of the matrix M.

The observations are rather simple to prove by basic techniques; see Appendix A. Note that the
general theory of cyclotomic matrices is not useful here, as it holds over infinite or large (larger than
matrix size) fields, so we proceed by ad-hoc analysis of the (particularly simple) matrices at hand.

We handle the A(7),2 part first. We conclude from Lemma 2 that for every block specified by (i, j)
where i 6= p2 − 1, in V(6),L,2[(i, j), ·], the rows indexed by b ∈ I (as in Lemma 2) span all rows in that
block. Furthermore, for the purpose of Lemma 1, we b-zero the rest of the rows, by a sequence of
row operations as specified by Ker(T0) in Lemma 3, starting from row (p1 − 1)p2 + 1 and moving
forward up to m− 1. That is, for b -zeroing row (p1 − 1)p2 + k (where k > 0) in V(6),L,2[(i, j), ·] as
above, we store the combination:

p1−1

∑
h=0

V(6),1[(i, j, k + h · p2), ·]−V(6),1[(i, j, k + (h + 1) · p2), ·]

in row (i, j, k) of A(7),2.
Overall, the resulting A(7),2 is as follows:
A(7),R,2 is identical to A(6),R,2, except for replacing R4

1 with R5
1.

That is, in the last block row R5
1, all cells are R2

−1, and there are p1 such cells.
Here, R2

−1 is of the form:

0 1 2 · · · p2 − 2 p2 − 1
1


1 −1


2 1 −1
...

. . .
p2 − 2 1 −1
p2 − 1 1 −1

0 · · · p2 − 1 · · · 2p2 − 1 · · · m− p2 · · · m− 1
0



I



...

m− p2

m− p2 + 1
R2
−1 R2

−1 · · · R2
−1

...
m− 1

Next, we handle the A(7),1 part. Here, we b-zero the remaining rows in A(6),L,1 by adding the
right combination of rows in A(6),L,2. The combination is determined by the “in particular” part of
Lemma 3.
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The resulting matrix A(7),L,2 is identical to A(6),L,2, except for T0 in each L−,i
1 being replaced by T′0.

Here, T′0 has the form:

0 1 · · · (1, 0)Zm − p2 − 1 · · · (1, 0)Zm − 1 (1, 0)Zm · · · m− p2 · · · m− 1
0



1 1 · · · 1


... 1 · · · 1
...

m− p2 1 1 · · · 1 1 · · · 1
m− p2 + 1

...
m− 1

Here, A(7),L,1 becomes zero, which was our goal. Note that as opposed to previous
transformations, the transformation performed on A(6),L,1 does not “mirror” the transformation
performed on A(6),L,2 and in fact involves rows from both A(6),L,2 and A(6),L,1. A(7),R,1 is identical to
A(6),R,1, except that in each Level-1 block (i, i) for i ∈ {0, . . . , p2 − 2}, the first row of R̃2

1 (the content of
this block) is replaced by:

−
p1−1

∑
i=0

xei·p2 .

It remains to b-zero the L-part of A(6),3. For simplicity, we focus on V(6),L,3[0, 0] (which is the
only non-zero block in V(6),L,2) and then use the resulting linear dependence to produce the new row
V(6),3[0, ·].

V(6),L,3[0, 0] = x
p1−1

∑
i=0

V(6),L,2[(0, 0, i · p2), 0]−V((6),L,2)[(0, 0, (−1, 0)Zm + 1), 0]

This results in:

A(7),R,3 = −x
p1−1

∑
i=0

e(0,0,i·p2)
+ e(0,0,(−1,0)Zm )+

(0,1)Zm−1

∑
b=1

Tb,0[R] +
p1−2

∑
j=0

R0,1+j·(1,0)Zm
[R] (26)

4.6.4. A Reduced Matrix We Will Analyze Directly

Taking I1 to be the set of rows in A(7) that correspond to non-zero rows in A(7),L,1 and I2

corresponding to L, we obtain the following matrix A(8). On Level-1, it has a block structure similar to
that of A(7),R (where the number of rows changes in some of the matrices). More concretely, A(8),2 has
the form:

0 1 2 · · · p2 − 2 p2 − 1
0


R5,−

1 + R2,−
1 −R2,−

1


1 R5,−

1 + R2,−
1 −R2,−

1
...

. . .
p2 − 2 R5,−

1 + R2,−
1 −R2,−

1
p2 − 1 R3

1 + R1
1 R1

1 · · · R1
1 R1

1
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Here, R5,−
1 is identical to R5

1 except that the top m− p2 + 1 rows in it are removed. That is, it is
identical to R4

1, except that the (0,0)th Level-0 block in R4
1 replaces I by C, which are equal.

m− p2 + 1
 R2

−1 R2
−1 · · · R2

−1

...
m− 1

Similarly, R2,−
1 is obtained from R2

1 in the same manner. In this case, only zero rows are removed.
A(8),1 is precisely A(7),R,1 (no rows were eliminated from there, as all corresponding rows on the left
side became zero). Similarly, A(8),3 = A(7),R,3.

4.7. Completing the Proof - Analysis of A(8)

We are now ready to make our conclusion, assuming p = p1 and p1, p2 > 2. We stress that further
analysis of the matrix is needed for identifying all p’s for which a share conversion exists. In fact, some
of the detailed calculations of the resulting matrix structure are not needed for our conclusion, and we
could instead identify only the properties that we need of various sub-matrices. However, some of the
details may be useful for future analysis, so we made all the calculations.

Our last step is to reduce the matrix A(8) “modulo” the set G: for every row r in A(8) and every
Level-0 block in this row, we reduce the contents of that row “modulo” span(Rows(T0)). That is,
we complement the basis of Rows(T0) specified in Lemma 2 into a basis of Zm

p , where e0 is one of
the added vectors and define a linear mapping L taking elements of Rows(T0[I, ·]) to zero and other
elements of the basis onto themselves (it is inconsequential what the other base elements are). Indeed,
observe that e0 is not in span(Rows(T0)), as it is not in Ker(Ker(span(Rows(T0)))), as implied by
Lemma 2. To verify this, observe for instance that:

<
p1−1

∑
i=0

(ei·p2 − e1+i·p2), e0 >= 1 6= 0.

We apply a linear mapping L taking x ∈ span(Rows(T0)) to 0 and other base elements to
themselves. Recall that Level-0 blocks indeed have m columns each. We make the following
observations. We let A(9) denote the resulting matrix.

Observation 3. The rows of A(9),1 are zero.

Observation 4. A(9),3 maps to ∑
(0,1)Zm−1
b=1 Tb,0[R] + ∑

p1−2
j=0 R0,1+j·(1,0)Zm

[R].

Observation 3 follows easily from the form of the matrix A(8) and Lemmas 2 and 3, which implies
that span(Rows(T0)) is exactly the kernel of S from Lemma 2 (this is the reason we need Lemma 2: it is
easier to verify that a given vector is not in Ker(span(S)), rather than verifying it is not in span(T0)).

Observation 4 follows by the structure of A(8) and definition of L.
Now, if A(8),3 is spanned by the rest of the rows in A(8), then it must be the case that the same

dependence exists in A(9). Thus, it suffices to prove that the latter does not hold. Assume for the sake
of contradiction that:

v(A(9),1; A(9),2) = A(9),3

for some vector v. In the following, we use V0 for viewing v as a block vector with Level-0 blocks.
Note that unusually for this type of matrix, the blocks in the first row have p2 − 1 rows, and in other
block row, the cells have m rows, as usual. Similarly, we use V1 to impose Level-1 structure onto v.
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By the structure of R2,−
1 , we conclude that A(9),2 is of the form:

0 1 2 · · · p2 − 2 p2 − 1
0


R5,−

1


1 R5,−

1
...

. . .
p2 − 2 R5,−

1
p2 − 1 R1

1 R1
1 · · · R1

1 R1
1

Observe that in A(9),3, non-zero values exist only in Level-1 blocks i = 0, 1. As there are p2

such blocks and p2 > 2, by our assumption, we conclude that the last row contributes zero to
v(A(9),1; A(9),2), as in the last block, the output needs to be zero, and it equals V[p2]A(9),2, which is the
same contribution for all (Level-1) blocks.

To agree with A(9),3 at block i, we must then have v · R5,−
1 = e0. Viewing R5,−

1 as a block-matrix
of Level00, because of the zeroes at all blocks but Block 0, the contributions of all block-rows but the
first one to v · R5,−

1 is:
−(2 + (p1 − 2)) ·V1[p2] = −p1 ·V1[0] = 0.

In the above, the last equality is due to the fact that p = p1. Thus, we must have V1[0] · C = e0.
However, we observe that Rows(C) is a subset of Ker(span(S)), where S is specified in Lemma 3 and
thus cannot equal e0 (which is not in Ker(span(S))).

This concludes the proof of Theorem 4.

5. Future Directions

Our work leaves several interesting problems open.

• For what other parameters is a share conversion from (2, 3)-CNF to three-additive possible?
For instance, surprisingly, p 6= p1, p2 is possible for (m = 7 · 73, p = 2) as follows from [10].
Our analysis does not explain this phenomenon, as we did not complete the full analysis of the
resulting matrix. We believe that given the work we have done, this is a very realistic goal.

• We need to understand share conversion for different sets S. One direction is by considering
m’s, which are a product of more than two primes. As discussed in the Introduction, already
using three primes, a conversion from (2,3)-CNF over Sm would improve over the best known
constructions for three-server PIR via the BIKO paradigm. One advantage of such schemes
following the BIKO framework is the constant answer size achieved. Here, we initially worked
with two primes, rather than with three, to develop the tools and intuition for a slightly technically
simpler setting.

• As discussed in the Introduction, some of the previous results not falling in the BIKO framework
can be viewed as instances of an extended BIKO framework using a “many-to-one” share
conversion. Viewing PIR protocols as based on share conversions between secret sharing schemes
is apparently “the right” way to look at it. As certain evidence, using the more redundant CNF
instead of Shamir as in [10] was a useful insight from secret sharing allowing us to further
improve CC. In particular, in the case that there are no share conversions for CSm for m’s that are
a product of three or more primes, perhaps a suitable many-to-one conversion may still exist.

Further extending this view could lead to new insights on PIR design. In particular, in many of
the existing schemes, a shallow circuit is evaluated essentially by performing share conversions.
In particular, local evaluation of linear functions over the inputs is a special case of such a
many-to-one conversion (from a linear scheme to itself). In all schemes we have surveyed here,
PIR for a large family F of functions (of size 22n

) was implemented via share conversion for a
small set of relations. For instance, BIKO’s 3-PIR was based on 2n linear functions (implementing



Entropy 2019, 21, 826 28 of 31

inner products with vectors in the MV family) and a share conversion for CSm , thus only O(2n)

relations. Similarly, in the two-server PIR, the situation is similar.

One concrete direction may be proving lower bounds on PIR protocols based on “circuits”
containing only certain share conversion “gates”. Perhaps analogies to circuit complexity could
be made, borrowing techniques from circuit lower bounds. Insights for such limited classes of
schemes could hopefully advance our understanding of lower bounds for PIR CC; currently,
the best-known lower bound even for two-server PIR is 5n, only slightly above trivial [15].
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Appendix A. Deferred Proofs

Appendix A.1. Proof of Lemma 2

We start with a few Claims to be used by the proof.

Lemma A1. Let p be a prime and 0 < x < p an integer. Let T(p)
0 denote a matrix in Zp×p where the ith row is:

[T(p)
0 [i, ·] =

x−1

∑
j=0

ei+j.

Then rank(T(p)
0 ) = p.

Proof of Lemma A1. In the following, all index arithmetic in vectors and matrices is done over Zp.

First, observe that transpose(T(p)
0 ) = T(p)

0 . In particular:

transpose(T(p)
0 )[·, i] = T(p)

0 [p− x, ·]

Let us figure out the left kernel of T(p)
0 , K. In particular, for all z ∈ K, all coordinates of z · T(p)

0
are equal.

We note that since for all i ∈ Zp:

z · T(p)
0 [·, i]− z · T(p)

0 [·, i + 1] = 0,

then by the structure of the columns, we have z[i] = z[i + x]. Since p is prime and x < p, the sequence
z[0], z[x], z[2x], . . . , z[(p− 1)x] goes over all entries in z. We thus conclude that z = a(1, . . . , 1) for some
a ∈ Zp. By a simple calculation, we have z · T(p)

0 = a · x. As x 6= 0 as an element of Zp, then to obtain

zT(p)
0 = 0, we must have a = 0. That is, there is no non-zero linear combination of Rows(T(p)

0 ) leading

to zero, so Rows(T(p)
0 ) are independent, as required.

Observation 5. There exist at least two αj’s that belong to distinct orbits that are non-zero.

Proof of Observation 5. For any single orbit Ii (0 ≤ i < p2), one may view the matrix T0[Ii, ·] as
consisting of 1× p2 blocks, with the first block in each row starting at entry i (and one of the blocks
possibly wrapping around). The matrix T0[Ii, ·] (with rows permuted for convenience) is thus a p1× p1

block-matrix such that every block initially consists of entries of the form a · (1, . . . , 1) for a ∈ {0, 1}
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in each block. Consider a linear L mapping applied to the resulting block matrix Vi
0, replacing each

block with a single element of Zp that maps (1, . . . , 1) to one. Then, clearly, Li
0 = L(T0[Ii, ·]) is a p1× p1

matrix over Zp satisfying the conditions of Lemma A1. This is the case since p = p1, and each row
has p−1

2 mod p1 non-zero blocks. By Lemma A1, the rows of Li
0 are therefore linearly independent.

We conclude that so are the rows of T0[Ii, ·] (or else the rows of Li
0 would also be dependent via the

same linear combination). Therefore, the rows of the T0[Ii ∩ I, ·] are also linearly independent.

Proof of Lemma 2. We start with the “in particular” part. To prove this, recall that in each row in T0,
there are exactly (1, 0)Zm consecutive one. That is, for x = p−1

2 mod p1, we have xp2 = x(p2, 0) =
(1, 0)Zm . That is, p2 fits into (1, 0)Zm p−1

2 mod p1 (lifted back to Z) times. Indeed, p−1
2 mod p1 exists,

as p2 6= p1 and is a prime, so it does not equal zero mod p1.
We therefore get:

p1−1

∑
i=0

T0[i · p2, [m]] = x · (1, . . . , 1)

over Zp. This holds, since at every point, we add exactly x vectors that contribute one to that point.
Here, the integer x is viewed as an element of Zp. As p = p1, x is non-zero in Zp.

It is not hard to see that every other vector in Rows(T0) is spanned by Rows(T0[I, [m]]): Let use
define an orbit as a sub-set of vectors Ii = {i + jp2|0 ≤ j ≤ p1 − 1} for i ∈ Zp2 . It is easy to see that we
have ∑j∈Si

T0[j, ·] = ∑j∈I T0[j, ·] = x(1, . . . , 1) for any i ∈ Zp2 . Therefore, for any T0[i + (p1 − 1)p2, ·]
for i + (p1 − 1)p2 /∈ I, we have:

T0[i + (p1 − 1)p2, ·] +
p1−2

∑
j=0

T0[i + jp2, ·]− x(1, . . . , 1) = (A1)

T0[i + (p1 − 1)p2, ·] +
p1−2

∑
j=0

T0[i + jp2, ·]−
p1−1

∑
i=0

T0[i · p2, ·] = 0 (A2)

Indeed, in the above equation, all summands but T0[i + (p1 − 1)p2, ·] are in Rows(T0[I, ·]).
To complete the proof, it remains to prove that Rows(T0[I, ·]) is an independent set. Assume for

contradiction that a non-trivial linear combination of Rows(T0[I, ·]) leads to zero. Let:

∑
i∈I

αiT0[i, ·] = 0 (A3)

where not all αi’s are zero. Splitting the sum into orbits, we get:

∑
i∈Zp2

∑
j∈I∩Ii

αjT0[j, ·] = 0 (A4)

Consider all orbits i1 < i2 . . . < it in which non-zero coefficients in the above combination exist.
By Observation 5, t ≥ 2. In particular, starting from h = 2, not all αj’s corresponding to j ∈ Ih are
non-zero (because |I ∩ Ii| = p1 only for i = 0 and equals p1 − 1 otherwise).

Thus, we have ∑j∈Ii1
αjT0[j, ·] = −∑t

g=2 ∑j∈Iig
αjT0[j, ·]. Note that the vector on the left-hand side

has the property that every block of p2 consecutive elements starting at some index jp2 is of the form
a(1, . . . , 1). On the right-hand side, as orbit Ii2 has non-zero αj’s, but not all of them non-zero, the sum:

∑
j∈Ii2

αjT0[j, ·] (A5)

is non constant. The latter holds since all the rows indexed by this orbit are independent by Lemma A1,
and z = a(1, . . . , 1) lead to constant zT0[Ii2 , ·]. We thus conclude that only such z’s lead to constant
zT0[Ii2 , ·]. As at least one αj in this orbit is zero, and at least one is not. z cannot be of this form,
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and thus, the zT0[Ii2 , 0] is not constant. On the other hand, by the structure of zT0[Ii2 , ·], every block
of size p2 starting at i2 + jp2 is of the form a(1, . . . , 1). In particular, there must exist two consecutive
blocks starting at i2 + jp2, i2 + (j + 1)p2 respectively with different values a1(1, . . . , 1) a2(1, . . . , 1)
respectively. In this pair of blocks, each intersects the block B0 starting at (j + 1)p2 from orbit I0. Thus,
on the right-hand side, this block has the same value a1 at indices {(j + 1)p2, . . . , (j + 1)p2 + i2 − 1}
(a non-empty set, as i2 6= 0) and a different value a2 at indices {(j + 1)p2 + i2, . . . , (j + 2)p2− 1}. Going
over the following ig’s, a similar situation results. Spelling it out, i3 (if it exists) will perhaps create
one or more additional “imbalanced” blocks (j′ + 1)p2 and maybe affect the original block we singled
out, (j + 1)p2 affected by i2. In the latter case, it will not fix the original imbalance. To see that, let
us consider the sequence of orbits 0 < i′1 < i′2 < . . . < i′t′ affecting the block B0 in the way described
above. As we add the contribution of the ij’s from left to right, we consider the sequence going from
the end of the block to the left up to entry (j + 1)p2 + i′j included. It is not hard to show by induction
on j that this sequence consists of the same value. When adding the contribution of i′t′ , this sequence
(of length at least two at this point, as t′ ≤ p1 − 1) is broken into two, where the first entry in the
sequence now differs from the last. The delta equal between these entries is a2 − a1, where a1, a2 are
the constants corresponding to i′t′ , as explained for i′2 above. We conclude that the right-hand side is
not a multiple of (1, . . . , 1) (as the block B0 is not constant) and in particular may not equal zero.

Appendix A.2. Proof of Lemma 3

Proof of Lemma 3. We prove the claim in two steps. First, we observe that S is the right kernel of T0.
Then, by recalling transpose(T0) = T0, the claim follows. To prove the first observation, we note that
indeed, S is a subset of the right kernel of T0, by calculating the products T0 · v for each v ∈ S, essentially
following from the observation that the sum over all rows indexed by any single orbit Ii (as defined
in the previous section) is the same. Next, it is easy to see that the set S is independent; for instance,
focus on the first block I2 of p2 columns, and observe that the rank of T0[·, I2] is by itself p2 − 1 = |S|.
Finally, rank(T0[I, ·]) defined in Lemma 2 is |I| = (p1 − 1)p2 + 1. As Rows(T0[I, ·]) span T0[I, ·], then
by the Cayley–Hamilton theorem, the rank of the right kernel of T0 is m− (p1 − 1)p2 − 1 = p2 − 1.
We conclude that S is a basis of the (right) kernel of T0, which concludes the proof.
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