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Abstract: It is becoming increasingly clear that causal analysis of dynamical systems requires different
approaches than, for example, causal analysis of interconnected autoregressive processes. In this study,
a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic
dynamics plays a dominant role in data then the method based on the correlation dimension can serve
as a fast and reliable way to reveal causal relationships between and within the systems. This study
demonstrates that the method, unlike most other causal approaches, detects causality well, even for
very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden
common driver.
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1. Introduction

Causality, as a relation between cause and effect, is a complex topic discussed from many
perspectives, starting from situations of everyday life, through philosophy, to mathematics and physics.

In the last few decades, new causal methods are continually being designed and at the same time,
there is an ongoing debate over whether or not the relationships found using the individual methods
are actually causal. The interested reader can learn more from the book of Pearl and Mackenzie [1].
As the authors emphasize in the book, several operational methods exist for discovering potential
causal relations. However, regardless of language, reasoning through algorithms of inductive causation
should follow to determine which connections can be inferred from empirical observations even in the
presence of latent variables. The concept reveals the limits of what can be learned by causal analysis
from observational studies and represents a more general strategy comprising approaches used so far.
However, the development of successful techniques, such as times series causality tools, remains useful
as these tools help to draw potential causal links that are later verified by means such as Pearl’s model.

In this study, we will present one of such tools, that is applicable in a special case—when we ask
about the causal relationship between dynamical systems.

We restrict ourselves to the study of causality in situations where processes are represented by
time series. Following the concept, introduced by Clive Granger in 1969, we respect that an effect
cannot occur before its cause and we say that x causes y if, information on the recent past of the time
series x helps improve the prediction of y [2]. Comparison of several causal methods in [3] has shown
that the Granger causality test works well for autoregressive models but produces false positives
for time series coming from coupled dynamical systems. Some more recent information-theoretic
methods such as conditional mutual information or transfer entropy [4,5] are usually more successful
with data from dynamical systems. Methods that work in reconstructed state spaces may also be
used successfully. This includes the method of predictability improvement, which determines whether
a prediction of an observable from system Y, made in a reconstructed state space, improves when
observable from system X is included in the reconstruction. If the predictability improves, then,
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analogously to the idea of Granger’s causality in the case of autoregressive processes, we hypothesize
that X causes Y [3].

However, Cummins et al. have introduced a comprehensive theory showing that in coupled
dynamical systems we have limited possibilities when it comes to uncovering causal links. The best
we can hope for is finding the strongly connected components of the graph (sets of mutually
reachable vertices) which represent distinct subsystems coupled through one-way driving links [6].
We cannot identify self-loops, and, we cannot distinguish the direct driving, indirect driving, correlate
of direct driving and correlate of an indirect driving.

In this study, we would like to draw attention to an interesting new way to reveal detectable
causal relationships in dynamical systems. The method makes use of the fact that the driver has
lower complexity and degree of freedom than the driven system containing information about the
driving dynamics. To quantify the complexity, the so-called correlation dimension (D2) will be used.

The use of the correlation dimension in the context of causality detection has been proposed by
Janjarasjitt and Loparo in 2008 [7]. The study has built on the fact that, if the subsystems X and Y
are independent, then the active degrees of freedom of the combined system is equal to the sum of
the active degrees of the subsystems. On the other hand, if X and Y are coupled, the active degrees
of freedom of the combination is expected to be reduced. The authors have introduced an index
named dynamic complexity coherence measure. It has been defined as the ratio of the sum of the
correlation dimensions of the individual subsystems to the correlation dimension of the combination of
the subsystems. It has been shown that the index is useful to quantify the degree of coupling because
it is increasing with intensifying coupling strength. The index was designed to detect the presence
of coupling but not to determine the direction of the link. Regarding the direction, the authors have
suggested utilizing the variability in the correlation dimension, which is supposed to be greater in the
case of the response system than in the driving system alone.

However, we have shown in 2013 that not just the presence but also the direction of the
link is simply identifiable from the D2 estimates [8]. The study has demonstrated that D2 for a
unidirectionally driven system and the combined state portrait are equal and significantly higher than
D2 for the driving system. Bidirectional causality and synchronized dynamics, on the other hand,
are characterized by the equality of all three evaluated dimensions.

Finally, in a recent study [9], the authors pointed out that even the hidden common driver
of the systems X and Y can be detected through estimates of fractal dimensions (they used the
information dimension), although it must always be emphasized that this is only possible in cases
where X and Y are not interconnected.

In this study, the topic of using the fractal dimension for causality detection is revisited. Our goal
is to systematically specify detectable types of causal relations, test the D2-based method for different
levels of coupling strength, and highlight the potential of the methodology.

In the following section, we focus on the choice of the so-called embedding parameters for the
reconstruction of the examined dynamics, as the quality of the reconstruction is essential for the
accuracy of dimension estimation. Then the D2-based method of causality detection is explained.
Finally, test examples of different causal relationships are given and the results are presented.
The sensitivity of the method to the strength of the links is also discussed. We also briefly comment on
the D2-based approach concerning the current topic of causal analysis of time-reversed measurements.

2. Methods

2.1. State Space Reconstruction

The goal of this study is to use D2 to identify the causal relationship between dynamical
systems X and Y, represented by time series x and y, respectively. Since we are interested in
the correlation dimension for dynamics of the whole systems, as a first step, an mX-dimensional
manifold MX is reconstructed from lags of observable x so that the state of the system in time
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t is [x(t), x(t − τX), x(t − 2τX), . . . , x(t − (mX − 1)τX)]. Using τY and mY, the manifold MY is
reconstructed analogously. Given certain conditions, the reconstructed manifold is, in the sense
of diffeomorphism, equivalent to the original one [10]. Consequently, they share the same features in
many ways. Most importantly for us, the reconstruction preserves relevant geometrical and dynamical
invariants, including the fractal dimension.

Theoretically, for noise-free data of unlimited length, the existence of a diffeomorphism between
the original attractor and the reconstructed image is guaranteed for a sufficiently high embedding
dimension m and almost any choice of delay τ. The theorem of Whitney (called Embedding
theorem in [11]) guarantees the possibility of embedding any d-dimensional smooth manifold into
m = (2d + 1)-dimensional Euclidean space. Sauer et al. have generalized this theorem to fractal
objects [12]. The authors have proved that, under some conditions regarding periodic orbits and
the measurement function, almost every C1 map from the fractal A to Rm with m > 2DA forms an
embedding, whereby DA is the box-counting dimension of A. This finding means that it is not the
size d of the manifold of the original attractor that determines the minimal embedding dimension but
only the fractal dimension DA. However, even 2DA represents only an upper limit—the embedding
theorem does not rule out an embedding dimension that is, in some situations, lower than 2DA
(occasionally as low as the dimension of the original system).

Sometimes, the sufficient size of the reconstruction space can be smaller than 2DA because of the
less demanding goal of the investigation. For example, for the numerical estimation of the correlation
dimension of the attractor A, any dimension above the box-counting dimension of A is enough [13].
Of course, such cases do not guarantee that the original attractor is mapped one-to-one onto its
reconstructed version; however, that is not necessary for dimension estimation.

In real-world applications, the time series can be short and noisy. Then, the quality of
reconstruction varies greatly depending on the value of τ and m and it is worthwhile to pay close
attention to the selection of these parameters. The simple idea is to unfold the reconstruction of the
trajectories sufficiently to avoid self-crossings and extreme closeness of distinct parts. To achieve this,
the first minimum of the mutual information is usually used to estimate τ and the false nearest neighbor
test to find the sufficient m [14]. However, it should be emphasized that using mutual information
for the selection of the time delay can be regarded as effective only for a time series that has a single,
dominant periodicity or recurrence time. In this case, the suitable lag is approximately one-quarter
of the dominant period, and this value is also in good agreement with the minimum of the mutual
information or the first zero of the auto-correlation function. This is true for a two-dimensional plot.
However, the same delay time is often used regardless of the number of delay vectors that form
the reconstruction, although some authors suggest lowering the delay time when increasing the
embedding dimension. They argue that the independent parameter that should be estimated is not the
delay τ or the embedding dimension m separately but rather the whole embedding time window mτ.
As demonstrated in [15], the appropriate time window seems to be between the quarter and half of
the mean orbital period, if the period can be approximated by examining the oscillatory patterns in
the data.

However, data can be broadband and lacking any indication of periodicity. Then, what we can do,
is to follow some proper invariant that is expected to reach an extremum for a suitable combination
of τ and m. For example, the predictability or percentage of false nearest neighbors can be evaluated
for several combinations of dimensions and delays to reveal the combination that leads to the best
achievable results [15]. In this way, the most appropriate τ and m are found in one step. Finally, recall
that finding a suitable time window does not mean that much larger than necessary m (with an
appropriately reduced τ) can be used equally well for the analysis of the underlying dynamics. With a
limited amount of data, the points become sparse in too large embedding space, which spoils the results.
Consequently, using the selected embedding window, but with a preference for lower dimensions,
leads to the best results.
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After finding a suitable embedding window and reconstructing the state portraits, we can move
on to the D2 estimating and then proceed with the detection of causal links.

2.2. Correlation Dimension Estimation

Fractal dimension is an important geometrical quantity characterizing the degree of complexity
and possible fractal nature of the attractor of the studied dynamical process. There are many ways to
define and estimate the fractal dimension. However, since 1983, the most commonly used one is the
computationally efficient approach of Grassberger and Procaccia [16]. The method involves estimating
the correlation sum

C(r) =
2

N(N − 1)

N

∑
i=1

N

∑
j=i+1

Θ
(
r− ||xi − xj||

)
,

where N is the number of points on the attractor, and Θ is the Heaviside function (1 for non-negative
argument, 0 for negative argument). C(r) can be understood as the probability that the distance of two
points xi, xj, randomly selected on the attractor, is less than r.

One then inspects the scaling relation

C(r) ∝ rD2 for r → 0,

leading to correlation dimension

D2 = lim
r→0

∂ ln(C(r))
∂ ln(r)

.

In practice, this means that to find the correlation dimension, we have to plot ln C(r) as a function
of ln r and follow the slope of the obtained curve. This slope is called correlation exponent, and its
limit for decreasing r corresponds to the correlation dimension.

However, recall that detection of the limit for decreasing r is impossible for a small amount of
data [17]. Therefore, we will emphasize repeatedly the need for long time series, meaning at least 10m

data points to estimate D2 in m-dimensional state space.

2.3. Causality Detection Based on Correlation Dimension

As mentioned in the introduction, we have used the correlation dimension in causal analysis
already in [8], with inspiration coming from [7]. We have also used D2 in 2015 in nine tested examples
of coupled chaotic systems to identify the level of coupling strength leading to synchronization [18].
In this subsection, we present a completed method of using D2 to detect causal relationships in
interconnected dynamical systems.

The method builds on strong theoretical foundations discussed above—on the Takens’ theorem,
which allows reconstructing the state portrait of underlying dynamics from a single observable [10],
the work of Sauer et al., which tells us more about the fractal dimensions of reconstructed attractors [12],
and the work of Cummins et al. setting limits on what can be revealed about causal relationships in
dynamical systems [6].

Suppose in the following that we have two dynamical systems X and Y and each one is represented
by one time series, x, and y, respectively. First of all, we find suitable embedding parameters m
and τ for each system to make reconstructions of the manifolds MX and MY. The next step is to
estimate the correlation dimension of the reconstructed objects. It is obvious that the dimension of the
unidirectionally driven dynamical system cannot be lower than the dimension of the driving system.
However, comparing these two dimensions would not be enough to draw conclusions about causal
relationships. We need to join the reconstructions MX and MY into M[XY], where the pair of square
brackets is the concatenation operator. Here we concatenate matrices horizontally, which means
that they must have the same number of rows and the resulting matrix has mX + mY columns.
The correlation dimension computed for M[XY] is a good approximation of the active degrees of
freedom of the combination of the two systems.
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Then, the next causal relations between X and Y with corresponding options for the correlation
dimensions D2(X), D2(Y) and D2([XY]) are possible:

2.3.1. X → Y or Y → X

As a first example let us have a unidirectional link from driving system X to response Y. Then the
equations describing the dynamics of the driven Y include the equations for the separate X and the
equations for the interconnection of both systems. Consequently, according to Takens’s theorem,
reconstruction of the entire driven system Y from any y-coordinate includes information about the X
dynamics and also information about the interconnection of the two systems. Therefore, D2(Y) cannot
be lower than D2(X) and the correlation dimension estimated from M[XY] is the same as the estimate
from MY: D2([XY]) = D2(Y) > D2(X).

In the opposite case of Y → X the D2 estimate from M[XY] equals the estimate from MX and they
are higher than the dimension of the driver Y.

2.3.2. X and Y Are Independent

For uncoupled, mutually independent X and Y the correlation dimension of the combined system
is expected to be equal to the sum of the dimensions of X and Y.

2.3.3. Uncoupled X and Y with a Hidden Common Driver

In the third option, similarly as in the previous one, the time series x and y come from systems X
and Y that are mutually independent. In this case, however, both X and Y are controlled by a common
hidden driver Z for which we have no information. Some causal methods falsely identify such
processes as being causally linked (see e.g., [3]).

We expect the active degrees of freedom of M[XY] reduced compared to the previous test example.
This is because the complexity of the hidden driver Z contributes twice to the sum D2(X) + D2(Y),
but only once to D2([XY]). Consequently, the presence of a hidden common cause without a direct
causal effect between the two systems is indicated by the joint dimension less than the sum of the
single dimensions but higher than either of them.

Note that the common driver is only detectable in the case of uncoupled processes. If the common
cause coexists with a unidirectional or bidirectional link between X and Y, then the coupling will ensure
the transfer of the common driver information and, as a result, the driving links will be detectable,
while the common driver remains hidden.

2.3.4. X ↔ Y

The last option refers to the situation with a cyclic flow of information when X and Y are
bidirectionally linked. In such cases, the causes and effects are entangled and, based on the Takens’
theorem, the whole underlying dynamics is reconstructable from any measured x or y observable [10].
The reconstructed manifolds are equivalent, having equal dimensions and the same dimension applies
to the joint reconstruction, i.e., D2([XY]) = D2(X) = D2(Y).

The rules for inferring causal relations from D2 are summarized in Table 1.

Table 1. Rules for deriving causal relationships between systems X and Y based on dimensions D2(X),
D2(Y) and D2([XY]).

Causal Relation Relations between Correlation Dimensions

X → Y D2([XY]) = D2(Y) > D2(X)
Y → X D2([XY]) = D2(X) > D2(Y)

X independent of Y D2([XY]) = D2(X) + D2(Y)
X and Y uncoupled, with a common driver D2([XY]) < D2(X) + D2(Y), D2(X) < D2([XY]) > D2(Y)

X ↔ Y D2([XY]) = D2(X) = D2(Y)
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If, thanks to a large number of data, we can afford the luxury of repeated D2 estimates, then
non-parametric statistical tests can be used to evaluate the significance of the results. However, even
if we have only one estimate of D2(X), D2(Y), and D2([XY]), we know that the expected integer
gap between the degrees of freedom of cause and effect in unidirectional connection represents
a significant difference. This is also reflected in a substantial distance between the dimensions,
and therefore occurrences of false conclusions are unlikely. However, only future tests and extensive
experience with real data can assess the true reliability and robustness of the method.

3. Results

The D2-based causality detection applies to any pair of time series that originate from dynamical
systems and are long and clean enough to allow reasonably accurate estimates of the correlation
dimensions of systems.

To demonstrate the ability of D2 to detect causal relations we decided to use selected pairs of time
series produced by the well-known chaotic Hénon maps.

First of all, from the time series, we made reconstructions of the state portraits. To do so,
we explored a suitable invariant (number of false nearest neighbors or the predictability) for several
combinations of parameters m and τ and selected the one that led to the best result (minimum of false
neighbors or the lowest prediction error) [15].

Then we estimated D2(X), D2(Y), and D2([XY]) for the reconstructed state portraits and derived
the corresponding causal relation between X and Y.

This section presents the individual test examples, the outputs obtained for each test case, and the
visualization of the results.

3.1. X → Y

Equation (1) represents our first test example—unidirectional driving of system Y by X.
The first two lines correspond to the driving Hénon map X, and the following two equations describe
the response Y:

x1(t + 1) = 1.4− x2
1(t) + 0.3x2(t)

x2(t + 1) = x1(t) (1)

y1(t + 1) = 1.4−
(

Cx1(t)y1(t) + (1− C)y2
1(t)

)
+ 0.3y2(t)

y2(t + 1) = y1(t)

C controls the strength of the coupling, with C = 0 for uncoupled systems. Plots of
conditional Lyapunov exponents in [19], similarly as correlation dimension estimates in [18], show
that synchronization takes place at about C = 0.7.

Before we start with a causal analysis of this example, let us remember some of the limits we
are encountering here. The so-called interaction graph (see the left part of Figure 1), which is easy to
interpret from Equation (1), shows how X and Y are coupled through a one-way driving relationship
between variables x1 and y1. In an interaction graph, the nodes representing the variables are connected
by directed edges whenever one variable directly drives another.

Now imagine that we have the time evolution of all four variables, but we do not know how they
are linked. According to Cummins et al. [6], complete pair-wise causal testing should reveal all five
links in the left graph of Figure 1. In addition to these, since we cannot distinguish between direct
and indirect driving, we would also see x1 driving y2 and x2 driving both y1 and y2 (see the right
graph of Figure 1). In summary, we would correctly find that x1 and x2 form one subsystem X, y1 and
y2 form the second subsystem Y, and X → Y. However, the exact position of the direct driving link
(x1 → y1) cannot be determined.
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x1 y1

x2 y2

x1 y1

x2 y2

Figure 1. Interaction graph for unidirectional coupling of two Hénon systems described by Equation (1)
(on the left) and the connections detected by causal analysis in reconstructed state spaces (on the right).

The test example given by Equation (1) for increasing coupling strengths has been recently analyzed
with six different causal methods [3]. The methods included the Granger VAR test, the extended Granger
test, the kernel Granger test, cross-mapping techniques, conditional mutual information, and assessment
of the predictability improvement. Detailed results can be found in the extensive supplemental material
of the article [3]. The study has shown, among other things, that the Granger test does not apply to data
from dynamical systems and even some of the popular methods, supposedly suitable for analysis of
dynamical systems, have extremely low specificity—–they produce a large number of false detections
of causality.

To test for the presence of unidirectional driving by the D2-based method we used time series x1

and y1 generated by Equation (1). First, we used C = 0.48, which is well below the synchronization value.
The starting point was [0.5, 0.1, 0.7, 0.3]. The first 1000 data points were discarded and the next 100, 000
were saved and used for D2 estimations. We started with the reconstruction of MX and MY using
embedding parameters mX = 2, τX = 1, mY = 4, and τY = 1. Then we estimated D2 for MX and got
a value of about 1.22. The estimate of the correlation dimension for MY, as well as the estimate for
M[XY] resulted in a value of about 2. Such an outcome correctly indicates that system X causes system Y.
This test example is presented in the first row of Figure 2.

Recall, however, that we could identify the one-way causal link equally well for any other coupling
value below the synchronization threshold. This is evident from Figure 3, where the D2 estimates
for increasing coupling strength C (see Equation (1)) are shown. D2(X) of about 1.22 was estimated
for the driving system represented by MX and values of D2 markedly higher for MY and M[XY].
Figure 3 also clearly reveals the onset of synchronization by a drop of D2(Y) to the level given by the
driving system for the coupling of about 0.7. For the coupling value C = 0 the result depends on the
starting points of the two time series. Since we started here from different points, [0.5, 0.1] and [0.7, 0.3]
respectively, we got two independent time series. As a result, D2([XY]) = D2(X) + D2(Y) = 2.44.
If the maps X and Y were started from the same point, we would get two identical time series
and D2(X) = D2(Y) = D2([XY]) = 1.22. The same applies for C > 0.7, that is, after an identical
synchronization, when the time series are no longer distinguishable.

Note also that it does not matter whether the data comes from maps or continuous
dynamical systems. We used observables from Hénon maps here, but we could have equally well
demonstrated the effectiveness of the method on data from flow systems. In [18] six different examples
of linked Rössler and Lorenz systems have been presented, together with graphs of D2 values for
increasing coupling strength. The graphs have suggested that testing these examples would lead to
equally clear results as those presented here.



Entropy 2019, 21, 818 8 of 12

0 5 10 15 20 25 30
−2

0

2

4

 

 
X → Y x

y

−2 0 2
−2

−1

0

1

2
X

−2 0 2

−2

−1

0

1

2 Y

−5 −4 −3 −2 −1 0
0

1

2

3

4

5

 

 
D

2
(X)

D
2
(Y)

D
2
[X Y]

0 5 10 15 20 25 30
−2

0

2

4

 

 
X and Y independent x

y

−2 0 2
−2

−1

0

1

2
X

−2 0 2

−2

−1

0

1

2 Y

−5 −4 −3 −2 −1 0
0

1

2

3

4

5

 

 
D

2
(X)

D
2
(Y)

D
2
[X Y]

0 5 10 15 20 25 30
−2

0

2

4

 

 
X and Y
    with common driver

x
y

−2 0 2

−2

−1

0

1

2 X

−1 0 1 2

−1

0

1

2
Y

−5 −4 −3 −2 −1 0
0

1

2

3

4

5

 

 
D

2
(X)

D
2
(Y)

D
2
[X Y]

0 5 10 15 20 25 30
−2

0

2

4

 

 
X ↔ Y x

y

−2 0 2

−2

−1

0

1

2 X

−2 0 2

−2

−1

0

1

2 Y

−5 −4 −3 −2 −1 0
0

1

2

3

4

5

 

 
D

2
(X)

D
2
(Y)

D
2
[X Y]

Figure 2. Four examples of detectable types of causal relations between time series. Each row contains
plots of 30 points of investigated time series x and y, two-dimensional projections of the reconstructed
state portraits of systems X and Y, and the plateaus of the correlation exponents used to estimate
D2(X), D2(Y), and D2([XY]).
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Figure 3. Estimates of D2(X) (red), D2(Y) (blue) and D2([XY]) (green) of state portraits reconstructed
from time series x1 and y1 generated by Equation (1) for 21 different values of coupling C. The plus
signs are for the sums D2(X) + D2(Y).

3.2. X and Y Are Independent

As the second test example, we took observables x1 and y1 of Hénon maps (Equations (1) with
C = 0.48), generated with different starting points to get two independent time series. We determined
mX = 2, τX = 1, mY = 4, and τY = 1 as the suitable embedding parameters for reconstructions of



Entropy 2019, 21, 818 9 of 12

manifolds MX and MY. The correlation dimension of MX computed for 100, 000 data points was
found about D2(X) = 1.22. The estimate of D2(Y) from the more complex MY was about 2.08.
Then we concatenated MX and MY to combine state vectors of both manifolds. The two dynamics
were independent, each with its own degree of freedom, and for the dimension of the M[XY] we got
an estimate of about 3.3, equal to the sum of the individual dimensions. This test case is shown in the
second row of Figure 2.

3.3. Uncoupled X and Y with a Hidden Common Driver

In the next example, we used two different Hénon maps to generate independent time series
unidirectionally driven by a hidden common driver. The systems X and Y only differ in one parameter,
which is set to 0.3 for the X case and 0.1 for the Y case. The first two lines correspond to the system Z
driving both X and Y, while the systems X and Y are independent of each other (also see Figure 4 for
the interaction graph):

z1(t + 1) = 1.4− z2
1(t) + 0.3z2(t)

z2(t + 1) = z1(t)

x1(t + 1) = 1.4−
(

Cz1(t)x1(t) + (1− C)x2
1(t)

)
+ 0.3x2(t)

x2(t + 1) = x1(t) (2)

y1(t + 1) = 1.4−
(

Cz1(t)y1(t) + (1− C)y2
1(t)

)
+ 0.1y2(t)

y2(t + 1) = y1(t)

z1 y1

z2 y2

x1

x2

Figure 4. Interaction graph for two independent systems X and Y with a common driver Z described
by Equation (2).

Although, like in the second example, the systems are uncoupled, the signals x1, y1 might seem
correlated or causally linked because they are controlled by a common hidden driver. We determined
mX = 4, τX = 1, mY = 4, and τY = 1 as the suitable embedding parameters for reconstructions of
MX and MY. Correlation dimensions computed for 100, 000 data points were found to be about 2
and 2.1 for D2(X) and D2(Y), respectively. Then we combined the state vectors of both manifolds
into 8-dimensional state space. Since the two dynamics were partly generated by a common driver,
the estimated joint dimension of about 2.7 was, as expected, higher than the individual dimensions but
less than the sum (4.1) of the two: D2([XY]) < D2(X) + D2(Y). This example, for the hidden system
driving with a strength of C = 0.48, is presented in the third row of Figure 2.

Figure 5, on the other hand, illustrates how sensitive the causality detection is to the driving
strength of the hidden common driver. For this purpose, we generated and saved time series x1,
y1, driven by Z using the coupling strength values C from 0 to 1 with the step of 0.05. In each case,
the first 1000 data points were discarded and the next 100, 000 were saved and used for D2 estimations.
For zero coupling (see Equation (1)) we have two unrelated systems of Hénon type: X with attractor of
the complexity of about D2(X) = 1.22 and Y with attractor of the complexity of about D2(X) = 1.02.
For increasing coupling strength the D2 estimates indicate presence of a hidden common driver
until C reaches the synchronization threshold at about 0.7. For higher couplings X is identically
synchronized with the hidden driver Z, while Y remains driven but not synchronized [18]. X and Z
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become indistinguishable and the relations D2([XY]) = D2(Y) > D2(X) suggest unidirectional link
from X to Y.
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Figure 5. Estimates of D2(X) (red), D2(Y) (blue) and D2([XY]) (green) of state portraits reconstructed
from time series x1 and y1 generated by Equation (2) for different driving strength C of the hidden
common driver. The plus signs are for the sums D2(X) + D2(Y).

3.4. X ↔ Y

As an example of bidirectional coupling, we used variables y1 and y2 generated by Equation (1),
with C = 0.48 and starting point of [0.5, 0.1, 0.7, 0.3]. Let us denote x = y1 and y = y2. First of all,
we made reconstructions of the state portraits. Both MX and MY were reconstructed with embedding
dimension m = 4 and delay τ = 1. Then the joined state space M[XY] was 8-dimensional. If X and Y
interact bidirectionally, then, in theory, the cyclic flow of information ensures that any x or y variable
contains information about the dynamics of both systems. Exactly in line with our expectations,
all three estimates of dimensions reached the same value. See the shared plateau at about 2 in the last
graph of the bottom row of Figure 2.

4. Discussion

In this study, we were facing an interesting problem of causality detection in cases, where the
valid working hypothesis is that the investigated long time series x and y are manifestations of some
dynamical systems X and Y, respectively.

If we analyzed autoregressive processes, we could use the Granger method as a tool for
causal analysis. For dynamical systems, however, we must look for different approaches. Differences in
causal analysis of dynamical systems as compared to autoregressive models have also emerged in
connection with the first principle of Granger causality that the cause precedes the effect. Based on
this principle one expects a change in the direction of causality from X → Y to Y → X when causally
linked time series and their time-reversals are analyzed. It might even look like a good idea to use
this turning test routinely to confirm the conclusion about the direction of the causal link. Indeed, this
applies to autoregressive processes. However, Paluš et al. have pointed out that the expected change
of the direction of causality did not happen after the time reversing of the tested chaotic signals [20].
The authors have suggested that the observed paradox is probably related to the dynamic memory of
the systems. The lesson, among other things, is that in case of data from dynamical systems we should
not try to confirm the direction of the causal link by analyzing the time-reversals.

Can correlation dimensions somehow contribute to this debate? D2 as a geometrical characteristic
is the same regardless of whether the points of the attractor are taken forward or backward in time.
We only know that the dimension of the driving dynamical system (cause) is always lower than the
dimension of the driven dynamical system (effect). Then, if the causal link is unidirectional, we can
say that the direction of the coupling can only go from a system with a lower D2 to the system with
higher D2.
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To conclude, we must say that we consider the use of the correlation dimension in causal analysis
to be a very promising approach, with a wide range of potential application areas. Many real
data can be modeled by dynamical systems—usually through differential equations or discrete-time
difference equations. The best-known examples include planetary motion, climate models, electric
circuits, ecosystem and population dynamics modeling, cardio-respiratory interactions and other
biomedical applications. The only requirement for the investigated time series is that they are generated
by dynamics that can be modeled by dynamical systems and they are long and clean enough to enable
estimating D2 for the reconstructed systems.

However, many unanswered questions remain to be addressed. For example, the impact of noise
needs to be examined. It is known that for noisy data the plateau for D2 estimation is lifted and thus
hardly evaluable. When applied to causality analysis, however, D2 is interesting in terms of relative
comparisons. In that case, if we expect noise to affect each time series evenly, meaningful results might
still be obtained. We also need to be careful when the signals being investigated belong to the so-called
1/ f processes. In such cases, D2 estimates can easily be misinterpreted as a sign of low-dimensional
dynamics [21]. It is one of the topics we would like to focus on soon because 1/ f noise seems to be
a ubiquitous feature of data from various areas including solids, condensed matter, electronic devices,
music, economy, heart or brain signals.

Moving from pairwise causality detection to a multivariate approach is another issue that would
be worth considering in future theoretical or computational studies.

What we know, for now, is that the D2-based method offers unquestionable advantages in causal
analysis of dynamical systems. If sufficiently long time series are available, then the detection of the
causal relations is straightforward, fast, and reliable. It will be interesting to explore its possibilities
and limitations in situations where deterministic dynamics do not play a dominant role in data.
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