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Abstract: Some uncertainty about flipping a biased coin can be resolved from the sequence of coin sides
shown already. We report the exact amounts of predictable and unpredictable information in flipping
a biased coin. Fractional coin flipping does not reflect any physical process, being defined as a binomial
power series of the transition matrix for “integer” flipping. Due to strong coupling between the tossing
outcomes at different times, the side repeating probabilities assumed to be independent for “integer”
flipping get entangled with one another for fractional flipping. The predictable and unpredictable
information components vary smoothly with the fractional order parameter. The destructive interference
between two incompatible hypotheses about the flipping outcome culminates in a fair coin, which stays
fair also for fractional flipping.

Keywords: fractional flipping a biased coin; probability entanglement; destructive interference
of information

“A weaker man might be moved to re-examine his faith, if in nothing else at least in the law of probability.”
Tom Stoppard, “Rosencrantz and Guildenstern Are Dead”, Act 1.

1. Introduction

The vanishing probability of winning in a long enough sequence of coin flips features in the opening
scene of Tom Stoppard’s play “Rosencrantz and Guildenstern Are Dead”, where the protagonists are betting
on coin flips. Rosencrantz, who bets on heads each time, has won 92 flips in a row, leading Guildenstern to
suggest that they are within the range of supernatural forces. Furthermore, he was actually right, as the
king had already sent for them [1].

Although coin-tossing experiments are ubiquitous in courses on elementary probability theory,
and coin tossing is regarded as a prototypical random phenomenon of unpredictable outcome, the exact
amounts of predictable and unpredictable information related to flipping a biased coin was not discussed
in the literature. The discussion on whether the outcome of naturally tossed coins is truly random [2], or if it
can be manipulated (and therefore predicted) [3,4] has been around perhaps for as long as coins existed.
It is worth mentioning that tossing of a real coin obeys the physical laws and is inherently a deterministic
process, with the outcome that, formally speaking, might be determined if the initial state of the coin is
known [5].

All in all, the toss of a coin has been a method used to determine random outcomes for centuries [4].
The practice of flipping a coin was ubiquitous for taking decisions under uncertainty, as a chance outcome
is often interpreted as the expression of divine will [1]. Individuals who are told by the coin toss to make
an important change are reported much more likely to make a change and are happier six months later
than those who were told by the coin to maintain the status quo in their lives [6].
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If the coin is not fair, the outcome of future flipping can be either (i.) anticipated intuitively by
observing the whole sequence of sides shown in the past in search for the possible patterns and repetitions,
or (ii.) guessed instantly from the side just showed up. In our brain, the stored routines and patterns
making up our experience are managed by the basal ganglia, and insula, highly sensitive to any change,
takes care of our present awareness and might feature the guess on the coin toss outcome [7]. Trusting our
gut, we unconsciously look for patterns in sequences of shown sides, a priori perceiving any coin as unfair.

In the present paper, we propose the information theoretic study of the most general models for
“integer” and fractional flipping a biased coin. We show that these stochastic models are singular (along
with many other well-known stochastic models), and therefore their parameters—the side repeating
probabilities—cannot be inferred from assessing frequencies of shown sides (see Sections 2 and 4).
In Section 3, we demonstrate that some uncertainty about the coin flipping outcome can nevertheless
be resolved from the presently shown side and the sequence of sides occurred in the past, so that the
actual level of uncertainty attributed to flipping a biased coin can be lower than assessed by entropy.
We suggest that the entropy function can therefore be decomposed into the predictable and unpredictable
information components (Section 3). Interestingly, the efficacy of the side forecasting strategies (i.) and (ii.)
mentioned above can be quantified by the distinct information theoretic quantities—the excess entropy
and conditional mutual information, respectively (Section 3). The decomposition of entropy into the
predictable and unpredictable information components is justified rigorously at the end of Section 3.

In Section 4, we introduce a backward-shift Markov chain transition matrix generalizing the standard
“integer” coin flipping model for fractional order flipping. Namely, the fractional order Markov chain is
defined as a convergent infinite binomial series in the “integer”-order transition matrix that assumes strong
coupling between the chain states (coin tossing outcomes) at different times. The fractional backward shift
transition operator does not reflect any physical process.

On the one hand, our fractional coin-tossing model is intrinsically similar to the fractional random
walks introduced recently in [8–12] in the context of Markovian processes defined on networks. In contrast
to the normal random walk where the walker can reach in one time-step only immediately connected
nodes, the fractional random walker governed by a fractional Laplacian operator is allowed to reach any
node in one time-step dynamically introducing a small-world property to the network. On the other hand,
our fractional order Markov chain is closely related to the Autoregressive Fractional Integral Moving Average
(ARFIMA) models [13–15], a fractional order signal processing technique generalizing the conventional
integer order models—autoregressive integral moving average (ARIMA) and autoregressive moving
average (ARMA) model [16]. In the context of time series analysis, the proposed fractional coin-flipping
model resolves the fractional order time-backward outcomes (i.e., memories [17–21]) as the moving averages
over all future states of the chain—that explains the title of our paper. We also show that the side repeating
probabilities considered independent of each other in the standard, “integer” coin-tossing model appear
to be entangled with one another as a result of strong coupling between the future states in fractional
flipping. Finally, we study the evolution of the predictable and unpredictable information components of
entropy in the model of fractional flipping a biased coin (Section 5). We conclude in the last section.

2. The Model of a Biased Coin

A biased coin prefers one side over another. If this preference is stationary, and the coin tosses are
independent of each other, we describe coin flipping by a Markov chain defined by the stochastic transition
matrix, viz.,

T (p, q) =

(
p 1− p

1− q q

)
, (1)
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in which the states, ‘heads’ (“0”) or ‘tails’ (“1”), repeat themselves with the probabilities 0 ≤ p ≤ 1 and
0 ≤ q ≤ 1, respectively. The Markov chain Equation (1) generates the stationary sequences of states, viz.,
0, 0, 0, · · · when p = 1, or 1, 1, 1, · · · when q = 1, or 0, 1, 0, 1 · · · when q = p = 0, but describes flipping
a fair coin if q = p = 1

2 .
For a symmetric chain, q = p, the relative frequencies (or densities) of ‘head’ and ‘tail’,

π1 (p, q) =
1− q

2− p− q
and π2 (p, q) =

1− p
2− p− q

, (2)

are equal each other, π1(p, p) = π2(p, p) = 1/2, and therefore the entropy function, expressing the amount
of uncertainty about the coin flip outcome, viz.,

H (p, q) = −
2

∑
k=1

πk (p, q) · log2πk (p, q), (3)

attains the maximum value, H (p, p) = 1 bit, uniformly for all 0 < p < 1. On the contrary, flipping the coin
when p = 1 (or q = 1) generates the stationary sequences of no uncertainty, H (p, q) = 0 (see Figure 1).
In Equation (3) and throughout the paper, we use the following conventions reasonable by a limit argument:
0 · log 0 = log 00 = log 1 = 0. The information difference between the amounts of uncertainty on
a smooth statistical manifold parametrized by the probabilities p and q is calculated using the Fisher
information matrix (FIM) [22–24], viz.,

gp,q =
2

∑
k=1

πk (p, q) · ∂

∂p
log2 πk (p, q) · ∂

∂q
log2πk (p, q) . (4)

However, since H (p, p) = 1 bit, for 0 < p = q < 1, the FIM,

g =
1

(ln 2)2 (2− p− q)2

( 1−q
1−p −1

−1 1−p
1−q

)
, (5)

is degenerate (with eigenvalues λ1 = 0, λ2 = (p2 + q2 + 2(1− p− q))/ ln2(2)(1− p)(1− q)(2− p− q)2),
and therefore the biased coin model Equation (1) is singular, along with many other stochastic models,
such as Bayesian networks, neural networks, hidden Markov models, stochastic context-free grammars,
and Boltzmann machines [25]. The singular FIM (4) assumes that the parameters of the model, p and q,
cannot be inferred from assessing relative frequencies of sides in sequences generated by the Markov
chain Equation (1).



Entropy 2019, 21, 807 4 of 12

Figure 1. The value of entropy Equation (3) attains maximum (of 1 bit) for the symmetric chain, q = p,
but is zero for the stationary sequences, p = 1, or q = 1.

3. Predictable and Unpredictable Information in the Model of Tossing a Biased Coin

Although coin tossing is traditionally regarded as a prototypical random experiment of unpredictable
outcome, some amount of uncertainty in the model Equation (1) can be dispelled before tossing a coin.
Namely, we can consider the entropy function Equation (3) as a sum of the predictable and unpredictable
information components,

H (p, q) = P (p, q) + U (p, q) , (6)

where the predictable part P (p, q) estimates the amount of apparent uncertainty about the future flipping
outcome that might be resolved from the sequence of sides shown already, and U (p, q) estimates the
amount of true uncertainty that cannot be inferred neither from the past, nor from present outcomes
anyway. It is reasonable to assume that both functions, P and U, in Equation (6) should have the same
form as the entropy function in Equation (3), viz.,

P = −
2

∑
k=1

πk · log2 ϕk, U = −
2

∑
k=1

πk · log2ψk, ϕkψk = πk. (7)

Furthermore, as the more frequent the side, the higher the forecast accuracy, we assume that the
partition function ϕk featuring the predicting potential in already shown sequences for forecasting the
side k is obviously proportional to the relative frequency of that side, ϕk ∝ πk. Denoting the relevant
proportionality coefficient as σk in ϕk = πkσk, we obtain ψk = σ−1

k = πk
ϕk

. Given the already shown

sequence of coin sides
←−
S t = St−1, St−2, St−3, . . ., the average amount of uncertainty about the flipping

outcome is assessed by the entropy rate [24] of the Markov chain Equation (1), viz

H
(

St|
←−
S t

)
= H (St|St−1) = −

2

∑
k=1

πk

2

∑
r=1

Tkr log2 Tkr, where T =

(
p 1− p

1− q q

)
, (8)
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and therefore, the excess entropy [25–27], quantifying the apparent uncertainty of the flipping outcome that
can be resolved by discovering the repetition, rhythm, and patterns over the whole (infinite) sequence of
sides shown in the past,

←−
S t , equals

E (p, q) ≡ H (St)− H (St|St−1) = −
2

∑
k=1

πk ·
(

log2 πk −
2

∑
r=1

Tkr log2 Tkr

)
. (9)

The excess entropy E (p, q) attains the maximum value of 1 bit over the stationary sequences but
equals zero for q = 1− p (see Figure 2a).

(a) (b)

Figure 2. (a) E (p, q), the apparent uncertainty of the flipping outcome that can be resolved by discovering
possible patterns and repetitions in the infinite sequence of shown sides; (b) G (p, q), the mutual information
between the present state and the future state conditioned on the past measuring the efficacy of forecast of
the coin toss outcome from the present state alone.

Moreover, the next flipping outcome can be guessed from the present state alone, and the level of
accuracy of such a guess can be assessed by the mutual information between the present state and the future
state conditioned on the past state I (St; St+1|St−1) [25,28], viz.,

G (p, q) ≡ I (St; St+1|St−1)

= H (St+1|St−1)− H (St|St−1) = ∑2
k=1 πk ∑2

r=1
(
Tkr log2 Tkr − T2

kr log2 T2
kr
)
.

(10)

The mutual information (10) is a component of the entropy rate (9) growing as p, q ? 0 and p, q > 1.
For q = 1− p, the rise of destructive interference between two incompatible hypotheses on

(i) alternating the present side at the next tossing (if p, q > 0), or
(ii) repeating the present side at the next tossing (when p, q < 1)

causes the attenuation and cancellation of mutual information (10) (Figure 2b).
By summing (9) and (10), we obtain the amounts of predictable and unpredictable information,

respectively:

P (p, q) = E (p, q) + G (p, q) = H (St)− H (St|St−1) + I (St; St+1|St−1) ,
U(p, q) = H(p, q)− P(p, q) = H (St|St−1)− I (St; St+1|St−1)

= H (St|St+1; St−1) ,
(11)

where H (St|St+1; St−1) is the entropy of the present state conditional on the future and past states
of the chain. The latter conditional entropy is naturally expressed via the entropy of the future state
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conditional on the present H (St+1| St), the entropy of the present state conditional on the past H (St| St−1),
and the entropy of the future state conditional on the past H (St+1|St−1) as following: H (St|St+1; St−1) =

H (St+1| St) + H (St| St−1)− H (St+1| St−1) . The accuracy of the obtained information decomposition
of entropy,

H(p, q) = P(p, q) + U(p, q) = E (p, q) + G (p, q) + U(p, q), (12)

is demonstrated immediately by the following computation involving the conditional entropies:

H (St) = H (St)− H (St+1| St) + H (St+1| St)

= (H(St)− H(St+1|St)) + H (St+1|St) + {H (St|St−1)− H (St|St−1)}
+ {H (St+1|St−1)− H (St+1|St−1)}

= (H(St)− H (St+1|St))︸ ︷︷ ︸
E(p,q)

+ (H (St+1| St−1)− H (St| St−1))︸ ︷︷ ︸
G(p,q)

+ (H (St+1| St) + H (St| St−1)− H (St+1| St−1) )︸ ︷︷ ︸
U(p,q)

.

(13)

The predictable information component P (p, q) amounts to H (p, q) over the stationary sequences
but disappears for q = 1− p (Figure 3a). On the contrary, the share of unpredictable information U (p, q)
attains the maximum value U (p, 1− p) = H (p, 1− p), for q = 1− p (Figure 3b).

(a) (b)

Figure 3. (a) The entropy H (p, q) (transparent) and predictable information P (p, q) (hue colored) in the
model of a biased coin for the different values of p and q; (b) The entropy H (p, q) (transparent) and
unpredictable information U (p, q) (hue colored) for the different values of p and q.

4. The Model of Fractional Flipping a Biased Coin

In our work, we define the model of fractional flipping a biased coin using the fractional differencing
of non-integer order [29,30] for the discrete time stochastic processes [31–33]. The Grunwald-Letnikov
fractional difference ∆α

τ ≡ (1 − T)α of order α with the unit step τ, and the time lag operator T is
defined [18,29,30,34–36] by

∆α
τx(t) ≡ (1− Tτ)

α x(t) =
∞

∑
m=0

(−1)m ·
(

α

m

)
· x(t−m · τ) (14)

where Tτx(t) = x(t− τ) is fixed τ-delay, and

(
α

m

)
is the binomial coefficient that can be written for

integer or non-integer order α using the Gamma function, viz.,
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(
α

m

)
≡ (−1)m−1 α · Γ(m− α)

Γ(1− α)Γ(m + 1)
. (15)

It should be noted that for a Markov chain defined by Equation (1), the Grunwald-Letnikov fractional
difference of a non-integer order 1− ε takes form of the following infinite series of binomial type, viz.,

(1− T)1−ε =
∞

∑
k=0

Γ (k− 1 + ε)

Γ (k + 1) Γ (−1 + ε)
Tk = 1 +

∞

∑
k=1

Γ (k− 1 + ε)

Γ (k + 1) Γ (−1 + ε)
Tk ≡ 1− T1−ε (16)

that converges absolutely, for 0 < ε < 1. In Equation (16), we have used a formal structural similarity
between the fractional order difference operator and the power series of binomial type in order to introduce
a fractional backward-shift transition operator T1−ε for any fractional order 0 < 1− ε < 1 as a convergent
infinite power series of the transition matrix Equation (1), viz.,

T1−ε (p, q) ≡ − ∑∞
k=1

Γ(k−1+ε)
Γ(k+1)Γ(−1+ε)

Tk (p, q)

=

1− 1−p
(2−p−q)ε

1−p
(2−p−q)ε

1−q
(2−p−q)ε 1− 1−q

(2−p−q)ε

 ≡
(

pε 1− pε

1− qε qε

)
.

(17)

The backward-shift fractional transition matrix defined by Equation (17) is a stochastic matrix
preserving the structure of the initial Markov chain Equation (1), for any 0 < 1 − ε < 1. Since the
power series of binomial type in Equation (17) is convergent and summable for any value 0 < 1− ε < 1,
we have also introduced in Equation (17) the fractional probabilities, pε and qε, as the corresponding elements
of the fractional transition matrix. The fractional transition operator Equation (17) describes fractional
flipping a biased coin for 0 < ε < 1 as a moving average over the probabilities of all future outcomes of the
Markov chain Equation (1) described by integer powers Tk, k = 1, . . . , ∞. The fractional Markov chain
Equation (17) is also similar to the fractional random walks introduced recently in [8–12]. In these research
efforts, the fractional Laplace operator describing anomalous transportation in connected networks and
the fractional degree of a node are related to integer powers of the network adjacency matrix Am for
m = 1, . . . , ∞ for which the element (Am)ij is the total number of all possible trajectories connecting nodes
i and j by paths of length m. The fractional characteristics of the graph not only incorporate information
related to the number of nearest neighbors of a node, but also include information of all far away neighbors
of the node in the network, allowing for long-range transitions between the nodes and featuring anomalous
diffusion [10].

In the proposed fractional Markov chain Equation (17), the kernel function (which can be called
memory function following [19–21,37]) establishes strong coupling between the outcome of fractional
coin flipping for the fractional order parameter ε and the probabilities of all future outcomes of the
“integer”-order Markov chain Equation (1). It is worth mentioning that the fractional transition probabilities
in Equation (17) equal those in the “integer”-order flipping model Equation (1) as ε→ 0, viz.,

lim
ε→0

pε = p, lim
ε→0

qε = q, (18)

but coincide with the densities Equation (2) of the ‘head’ and ‘tail’ states, as ε→ 1, viz.,

lim
ε→1

pε =
1− q

2− p− q
= π1, and lim

ε→1
qε =

1− p
2− p− q

= π2. (19)
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Thus, the minimal value of the fractional order parameter (ε = 0) in the model Equation (17)
may be attributed to the “integer”-order coin flipping when no information about the future flipping
outcomes is available, i.e., the very moment of time when the present side of coin is revealed. Furthermore,
the maximum value of the fractional order parameter (ε = 1) corresponds to the maximum available
information about all future coin-tossing outcomes. Averaging over all future states of the chain as ε = 1
recovers the density of states Equation (19) of the Markov chain Equation (1) precisely as expected.

The transformation Equation (17) defines the (pε, qε)—flow of fractional probabilities over the
fractional order parameter ε as shown in Figure 4a. In fractional flipping, 0 < ε ≤ 1, the state repetition
probabilities pε and qε get entangled with one another due to the normalization factor (2− p− q)−ε in
Equation (17). For the integer order coin flipping model ε = 0, the state repetition probabilities p0 and q0

are independent of each other (as shown by flow arrows on to top face of the cube in Figure 4a) but they
are linearly dependent, π1 = p1 = 1− q1 = 1− π2, as ε = 1 (see the bottom face of the cube in Figure 4a).

The degree of entanglement as a function of the fractional order parameter ε can be assessed by the
expected divergence between the fractional model probabilities, pε and qε, in the models Equation (1) and
Equation (17), viz.,

Ent (ε) =
s 1

0 dpdq
(

π1 log2
p
pε
+ π2 log2

q
qε

)
= 2

s 1
0 dpdq

(
π1 log2

p
pε

)
= 2

s 1
0 dpdq

(
π2 log2

q
qε

)
.

(20)

The integrand in Equation (20) turns to zero when the probabilities are independent of one another
(as ε = 0) but equals the doubled Kullback–Leibler divergence (relative entropy) [24] between p and π1

(q and π2) as ε = 1 (due to the obvious p ↔ q symmetry of expressions). The degree of probability
entanglement defined by Equation (20) attains the maximum value at ε = 0.855 (Figure 4b).

Since the vector of ‘head’ and ‘tail’ densities Equation (2) is an eigenvector for all integer powers Tk,
it is also an eigenvector for the fractional transition operator Tε (p, q), for any value of the fractional order
parameter ε. Therefore, the fractional dynamics of transition probabilities does not change the densities of
states in the Markov chain, so that the entropy function Equation (3) is an invariant of fractional dynamics
in the model Equation (17) (Figure 4a). The Fisher information matrix Equation (4) is redefined for the
probabilities pε, qε, viz.,

gpε ,qε =
2

∑
k=1

πk ·
∂

∂pε
log2 πk ·

∂

∂qε
log2πk, (21)

which is also degenerate because the symmetry p ↔ q is preserved in all the expressions for all values
0 < ε < 1. The nontrivial eigenvalue of the FIM Equation (21) turns to zero as well, for the stationary
sequences with p = q = 1. The fractional flipping a biased coin model is singular, as well as the integer
time flipping model Equation (1).
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(a) (b)

Figure 4. (a) The (pε, qε) —flow of the model Equation (17) over fractional order 1− ε; (b) The entanglement
between the probabilities pε and qε defined by Equation (20) attains the maximum value at ε = 0.855.

5. Evolution of Predictable and Unpredictable Information Components over the Fractional
Order Parameter

The predictable and unpredictable information components defined by Equations ((9)–(11)) can be
calculated for the fractional transition matrix Equation (17), for any value of the fractional order parameter
0 < ε ≤ 1. In the present section, without loss of generality, we discuss the case of symmetric chain,
q = p. For a symmetric chain, the densities of both states are equal, π =

[
1
2 , 1

2

]
, so that H (p, p) ≡ H (p) =

−log2
1
2 = 1 bit, uniformly for all 0 < p < 1 (Figure 5a). The excess entropy Equation (9) quantifying

predictable information encoded in the historical sequence of showed sides for a symmetric chain reads as
follows [38]:

E (p, p) ≡ E (p) = 1− H (St|St−1) = −p · log2 p − (1− p) log2 (1− p) . (22)

Forecasting the future state through discovering patterns in sequences of shown sides Equation (22)
loses any predictive power when the coin is fair, p = 1

2 , but E (p) = 1 bit when the series is stationary
(i.e., p = 0, or p = 1). The mutual information Equation (10) measuring the reliability of the guess about
the future state provided the present state is known [38],

G (p) = p · log2 p + (1− p) · log2 (1− p)− 2p (1− p) · log2 2p (1− p)
−

(
p2 + (1− p)2

)
· log2

(
p2 + (1− p)2

)
,

(23)

increases as p ? 0 (p > 1) attaining maximum at p ≈ 0.121 (p ≈ 0.879). The effect of destructive
interference between two incompatible hypotheses about alternating the current state (p ? 0) and repeating
the current state (p > 1) culminates in fading this information component when the coin is fair, p = 1/2
(Figure 5a). The difference between the entropy rate H (St|St−1) and the mutual information G (p) may be
viewed as the “degree of fairness” of the coin that attains maximum (U (p) = 1 bit) for the fair coin p = 1/2
(see Figure 5a).

The entropy decomposition presented in Figure 5a for “integer”-order flipping (ε = 0) evolves
over the fractional order parameter, 0 < ε ≤ 1 as shown in Figure 5b: the decomposition of entropy
shown in Figure 5a corresponds to the outer face of the three dimensional Figure 5b. When p = 1,
the sequence of coin sides shown in integer flipping is stationary, so that there is no uncertainty about
the coin tossing outcome. However, the amount of uncertainty for p = 1 grows to 1 bit, for fractional
flipping as ε → 1. When ε = 1, the repetition probability of coin sides equals its relative frequency,
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p1 = π1 = 1/2, and therefore uncertainty about the future state of the chain cannot be reduced anyway,
H (1/2) = U (1/2) = 1 bit. Interestingly, there is some gain of predictable information component G(p)
for p = 1 as ε > 1 (see Figure 5b). The information component G(p) quantifies the goodness of guess of
the flipping outcome from the present state of the chain, so that the gain observed in Figure 5b might
be interpreted as the reduction of uncertainty in a stationary sequence due to the choice of the present
state, “0” or “1”. Despite the dramatic demise of unpredictable information for fractional flipping as ε→ 0,
the fair coin (p = 1/2) always stays fair.

(a) (b)

Figure 5. (a) The decomposition of entropy into information components for a symmetric unfair coin, q = p,
for “integer”-order coin flipping. The symmetric coin is fair when p = 1/2 : the amount of uncertainty
of the fair coin tossing cannot be reduced anyway, as the amount of unpredictable information equals
U(1/2) = H(p) = 1 bit; (b) The information components for fractional order flipping a biased coin.
The decomposition of entropy at integer time shown in Figure 5a corresponds to the outer face of the three
dimensional diagram in Figure 5b (ε = 0).

6. Conclusions

A simple Markov chain generating binary sequences provides us with an analytically computable and
telling example for studying conditional information quantities that quantify predictable and unpredictable
information about the future states of the chain. The destructive interference between the mutually
incompatible hypotheses about the forthcoming state of the chain results in damping of predictable
information for a completely unpredictable, fair coin.

We have introduced and studied the fractional order generalization of the Markov chain defined
as a convergent binomial series in the “integer”-order transition matrix. The proposed concept of
fractional order Markov chain (fractional coin flipping) is similar to fractional random walks [8–11]
and to the fractional order signal processing techniques generalizing the conventional integer order
models—autoregressive integral moving average [14,15]. The backward-shift fractional order transition
operator averages over all future states of the “integer”—order Markov chain exhibiting properties of
long-time dependence, including the entanglement of state repetition probabilities assumed to be the
independent parameters of the “integer”-order model.
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