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Abstract: In conventional textbook thermodynamics, entropy is a quantity that may be calculated by
different methods, for example experimentally from heat capacities (following Clausius) or statistically
from numbers of microscopic quantum states (following Boltzmann and Planck). It had turned out
that these methods do not necessarily provide mutually consistent results, and for equilibrium systems
their difference was explained by introducing a residual zero-point entropy (following Pauling),
apparently violating the Nernst theorem. At finite temperatures, associated statistical entropies which
count microstates that do not contribute to a body’s heat capacity, differ systematically from Clausius
entropy, and are of particular relevance as measures for metastable, frozen-in non-equilibrium
structures and for symbolic information processing (following Shannon). In this paper, it is suggested
to consider Clausius, Boltzmann, Pauling and Shannon entropies as distinct, though related, physical
quantities with different key properties, in order to avoid confusion by loosely speaking about just
“entropy” while actually referring to different kinds of it. For instance, zero-point entropy exclusively
belongs to Boltzmann rather than Clausius entropy, while the Nernst theorem holds rigorously for
Clausius rather than Boltzmann entropy. The discussion of those terms is underpinned by a brief
historical review of the emergence of corresponding fundamental thermodynamic concepts.

Keywords: empirical entropy; statistical entropy; residual entropy; Nernst theorem; Pauling entropy;
metastable states; non-equilibrium; frozen states; symbolic information; Shannon entropy

Entropy is the most important quantity in the physics of heat.

Charles Kittel [1]

John von Neumann mentioned that ‘nobody knows what entropy really is’.

Jürn W. P. Schmelzer, Timur V. Tropin [2]

1. Introduction

In 2019, the Rostock University is celebrating the 600th anniversary of its foundation, as the oldest
such institution in the Baltic Sea region. On this occasion, a special silver medal has been issued recently
(Figure 1). A century ago, on the occasion of the 500th jubilee, Einstein had visited the university when
receiving the academic title of Dr. h.c. (Grambow [3]) which, by the way, was never formally rescinded
later on, in contrast to most other German universities. Apparently, at that time Einstein [4] had been
the first scientist who seriously considered the possible existence of a residual zero-point entropy of
certain crystals at equilibrium (Gutzow and Schmelzer [5–7], see Appendix B).

It is clear that at given temperature and pressure, the mass of a metallic coin has a certain entropy,
or let us better say, “bulk” entropy. To find a numerical value for this entropy, the coin may be heated
up over a certain temperature range and the required energy may be measured. Then, a temperature
integral over the recorded heat capacity results in the coin’s Clausius entropy, SC, as discussed in
Section 2. Another method is by analysing the crystal lattice of the metal and estimating the number of
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quantum states the atoms may occupy. From this figure we obtain the coin’s Boltzmann entropy, SB,
as discussed in Section 3. The two entropies turned out to be mutually consistent and may only differ,
within the uncertainties of the methods applied, by a “trivial additive constant” (Planck [8]). Suitably
adjusting this constant may lead to a vanishing zero-point entropy, commonly known as the 3rd law of
thermodynamics, or the Nernst theorem, that had actually been formulated by Planck [9] in 1911 in
going beyond the original hypothesis of Nernst [10] in 1906, see Appendix A. It was discovered later
that, apparently violating the 3rd law, there may also exist a non-zero residual entropy at 0 K, termed
the zero-point entropy, as introduced by Pauling [11] in 1935, see Appendix B.
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point entropy, Appendix B, which cannot be measured empirically, i.e., without assuming a 
molecular microstructure. For non-equilibrium states, this difference is enhanced by the super-
additivity of the Boltzmann entropy, giving rise to the generalized Pauling entropy.  

In this paper, considerations are restricted to non-equilibrium systems that are in a state of local 
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However, the essential feature of a minted coin may not only be the material it is made of, rather,
the shape of its surface and the symbolic information carried by this structure may be even more
important. None of the methods mentioned above covers in an explicit way this fundamental aspect of
certain thermodynamic systems, namely, of frozen, metastable non-equilibrium states. In this paper,
therefore, the Pauling entropy, SP, will be defined for non-equilibrium states in a more general way
than being just the zero-point entropy, S0

P, see Section 4. This definition refers to the fundamental
non-equilibrium gap between the statistical entropy, which is super-additive with respect to the
subsystems (Section 3), and the empirical entropy, which in contrast is additive (Section 2). Due to
the 2nd law, this gap will asymptotically be filled by irreversible processes, but if the related Onsager
fluxes are sufficiently slow, such as at frozen states, the gap may persist over a given observation time.
For more details, an explicit, tutorial example for the calculation of this Pauling entropy of a metastable
spatial configuration at a finite temperature is presented in Appendix C.

In his detailed review, Gujrati ([12], pp. 714, 716) also carefully distinguishes between two kinds
of entropies, the “thermodynamic entropy” and the “statistical entropy”, explaining that “there is at
present no consensus about their equivalence when the system is out of equilibrium”. A statistical
entropy formulation is introduced in that article that is shown to be equivalent to the thermodynamic
non-equilibrium entropy under relatively general conditions. This paper, in contrast, discusses the
difference between the statistical micro-canonical Boltzmann entropy and the empirical Clausius
entropy as a useful quantitative measure of frozen structures in non-equilibrium systems which are in
a state of local equilibrium. These two entropies may differ already at equilibrium by the zero-point
entropy, Appendix B, which cannot be measured empirically, i.e., without assuming a molecular
microstructure. For non-equilibrium states, this difference is enhanced by the super-additivity of the
Boltzmann entropy, giving rise to the generalized Pauling entropy.

In this paper, considerations are restricted to non-equilibrium systems that are in a state of
local equilibrium. This means that the system’s volume may be divided into spatial cells that are
sufficiently small (but still macroscopic) so that each cell can reasonably be assumed to be in internal
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equilibrium, while not necessarily being in mutual equilibria with adjacent cells. For non-equilibrium
systems in local equilibrium, such as a solid exhibiting a temperature gradient, thermodynamic
properties remain well-defined and measurable locally (Glansdorff and Prigogine [13], Falkenhagen
and Ebeling [14], Subarew [15], Ebeling and Feistel [16], De Groot and Mazur [17], Feistel [18]).
Restrictions to local equilibrium permit the easy use of temperature and entropy as thermodynamic
properties. For other system, one cannot refer to textbook equilibrium definitions of those quantities,
and novel definitions are indispensable, valid for those systems without local-equilibrium properties.
As a simple counterexample to local equilibrium, an ideal-gas volume expanding freely into vacuum
will lose its local equilibrium as its particles separate spatially by their velocities into spherical
layers. Another important counterexample may be glasses if their local entropies—as far as those
are well-defined at all—do not possess the properties of equilibrium entropies. Below a certain
glass-transition temperature, typical glasses are frozen-in non-equilibrium systems (Gutzow and
Schmelzer [5]), globally as well as locally. Therefore, care must be taken when thermal quantities and
their mutual relations defined in irreversible local-equilibrium thermodynamics are borrowed for the
description of other, frozen-in non-equilibrium systems.

In the limit of zero temperature, local-equilibrium systems described in this paper are generally
assumed to be in equilibrium also globally. Otherwise, thermodynamically paradoxical situations may
be encountered in which Clausius entropy apparently violates the 2nd law, see Section 2.

It is a fraction of the Pauling entropy that may reasonably be used for quantifying the information
capacity of frozen states in the sense of the Shannon entropy, SS (Shannon [19], Feistel [20]), see Section 5.
In addition to the long list of available other publications on information entropy, this paper includes a
discussion of appropriate relations between the different entropy definitions with respect to information.
For this reason, those entropies will carry different subscripts here, in contrast to their otherwise
conventional common symbol S.

As it was emphasized especially in the context of Synergetics, observers and modelers of physical
systems are typically confronted with widely varying timescales of related processes (Hahn [21],
Haken [22], Feistel and Ebeling [23]). Relaxation times of some modes (the “slaved” ones) may be
much shorter than resolved by observation, others (the “control parameters”) may be too slow to watch
them changing during the observation time, while those of most interest (the “order parameters”)
range in between those extremes. This scenario applies as well to thermodynamic systems during
their approach to equilibrium (Feistel [20], Gujrati [12]). Typically, the microscopic particle velocities
adjust quickly to a Maxwell distribution, and the substance accordingly to a local equilibrium state.
Irreversible processes such as Onsager fluxes of, say, thermal conduction or diffusion produce entropy
and converge toward equilibrium (Glansdorff and Prigogine [13], De Groot and Mazur [17], Feistel
and Ebeling [23]). Certain macroscopic structures, however, in particular of solids, see Figure 1,
or spatially extended solutions like density-stratified oceans, remain virtually unchanged for extremely
long periods of time, such as do mountain rocks or printed books, furniture or ceramics (Gutzow and
Schmelzer [5,7]). In this paper, virtually stable states away from thermodynamic equilibrium which do
not undergo any spontaneous processes (except insignificant fluctuations) within the given observation
period are denoted as metastable states. Evidently, metastability in this subjective sense depends on the
particular observers and their intentions. Such metastable systems are considered here as being trapped
in frozen non-equilibrium states. Somewhat paradoxically, in this context, supercooled liquid water may
also be regarded as “frozen”, contrary to its proper equilibrium state, namely ice (Handle et al. [24]).
As well, chemical reactions may remain virtually locked in metastable states sometimes called “frozen
equilibria” (Guggenheim, [25] (§1.48)). Note, however, that there exist alternative definitions for the
terms ‘metastability’ and ‘frozen state’ that may qualitatively classify the physical details of different
mechanisms hampering a quick relaxation to equilibrium (Gutzow and Schmelzer [7], Schmelzer and
Tropin [26]).

Proper equilibrium states are unique; at given energy and volume, they are the ultimate asymptotic
target state for systems isolated from environmental influences, and do neither undergo spontaneous,
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natural changes nor do they preserve traces of the states they had taken in the past (Feistel and
Ebeling [23]). There exist, however, energetically degenerate equilibrium states with certain degrees
of freedom which are not uniquely dictated by the entropy maximum or some energy minimum.
For example, of a liquid-vapour equilibrium in the absence of gravity, the two phases may occupy
different configurations in space, depending on the system’s past. Similarly, frozen non-equilibrium
states are not necessarily unique and may constitute a petrified record of the time history of their
formation processes (Figure 2). Such structures are information carriers, and the question arises to
what extent the entropy of their states may serve as a measure of their information content.
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There are two qualitatively different kinds of information potentially stored or transferred
by metastable systems, namely, structural and symbolic information (Feistel and Ebeling [23,27],
Feistel [28], Burgin and Feistel [29]). An example for structural information are the layers of different
rocks in the Earth’s crust that Darwin [30] (p. 321) had regarded “as a history of the world imperfectly
kept and written in a changing dialect”. On the other hand, symbolic information is coded arbitrarily
in physical structures (Pattee [31]) such as the letters or numbers that shape the surface of metallic coins
(Figure 1) or tombstones (Figure 4). Both kinds of information ultimately disappear by “weathering”
from a frozen non-equilibrium system in the course of its relaxation to equilibrium.

2. Clausius Entropy

In 1854, when studying cyclic thermal processes, Rudolf Clausius discovered that the integral over
the exchanged heat, dQ, of a given body must always vanish for reversible processes, independently of
the way the cycle is conducted ([32], p. 93): ∮

dQ
T

= 0 (1)

He concluded that there exists a new state quantity, SC, which he termed entropy, defined by its
differential dSC = dQ/T. The subscript “C” at S has been attached here indicating “Clausius”. This
quantity can be calculated at given volume or pressure, respectively, from the related measurable
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isochoric or isobaric heat capacities, Cv or Cp, respectively, by the following expressions (Clausius [32],
pp. 214–215):

SC(T, V) =

∫ T

Tref

Cv(T′, V)

T′
dT′ or SC(T, p) =

∫ T

Tref

Cp(T′, p)
T′

dT′. (2)

Here, Tref is an unspecified reference temperature that gives rise to an arbitrary integration
constant in the definition of Clausius entropy. It was assumed in 1906 by Planck ([8], p. 137) that
this additive constant “has no physical meaning and may be omitted at will”. Also in 1906, however,
Walther Nernst published his theorem, expressing in the words of Planck ([9], p. 268) in 1911 that
“at the zero point of the absolute temperature, the entropy of any chemically homogeneous solid or
liquid body possesses a certain value which is independent of its phase and its particular chemical
modification”, see Appendix A. Planck ([9], p. 270) concluded that without loss of generality, entropy
can be defined by:

SC(T, p) ≡
∫ T

0

Cp(T′, p)
T′

dT′ (3)

Of the two possible choices, Equation (2), Planck preferred pressure as the second variable for
its ease of measurement and its equality across phase boundaries. Equivalently, however, one may
exploit the alternative isochoric option instead:

SC(T, V) =

∫ T

0

Cv(T′, V)

T′
dT′ (4)

for its comparability with the independent variables of the canonical statistical ensemble.
Equation (4) serves as the definition of Clausius entropy in this paper. Note that definitions

formally deviating from Equation (4) may be considered elsewhere for certain reasons, such as
specifying Tref in Equation (2) by the triple point of water in order to reduce the uncertainty of empirical
equations (Feistel [18]), or by the melting temperature of metastable, glass-like solids. Such arbitrary
definitions, if deviating from Equation (4) by merely a numerical constant, do neither affect any
measurable thermodynamic properties nor the physical description of natural processes.

For the existence of the integrals (3), (4) it is necessary that both Cp and Cv vanish at T = 0. This
is evidently not the case, however, for ideal gases with constant heat capacities, for which entropy
diverges logarithmically at the zero point (Fermi [33] (p. 147)). Gases may be cooled down to very low
temperatures without condensation as long as the lowered pressure does not exceed the saturation or
sublimation pressure. For water vapour, for example, the sublimation pressure at 23 K amounts to
10−100 Pa, and the resulting (theoretical) ideal-gas density is as low as a single molecule in the entire
universe (Feistel and Wagner [34]). It is clear that such a dilute gas cannot exist in any lab, and that icy
comets far from the sun cannot evaporate, even in the emptiest cosmic void.

For the entropy of metastable states it must be emphasized that Equation (1) is formulated for
reversible processes, and that the entropy definitions (3) and (4) are valid only for equilibrium states and
frozen metastable states. This restriction becomes evident if Equation (4) is written in differential form:

dSC(T, V) = Cv dT/T (5)

which implies that under reversible conditions, Clausius entropy can only grow along with rising
temperature. Experiments show, however, that there exist systems that cool down spontaneously
while they relax to equilibrium, producing entropy. Especially electrolyte solutions (Falkenhagen and
Ebeling [14], chapter 8.6) may possess negative dilution enthalpies, see Figure 3, so that the irreversible
mixing of two solutions with different concentrations may result in a mixture with lower temperature
but higher entropy. As another example, when liquid water is brought in contact with sub-saturated
vapour, some water will evaporate and the absorbed latent heat will result in a colder final state, such
as when sweating in dry, hot air.
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Heat capacity is primarily quantifying a relation between temperature and energy, rather than
entropy. Under the weak assumptions that a given system is confined to a certain fixed volume V and
possesses a well-defined temperature T, the system’s heat capacity can be determined empirically from
the power supplied to an electrical heater, dU, and the resulting temperature rise, dT:

dU = CV dT. (6)

No special knowledge of the system’s internal details is needed for conducting such a measurement.
In turn, energy conservation relates CV to the entropy via the Gibbs fundamental equation:

dU = T deSC (7)

In contrast to Equation (5), the total change of entropy related to an irreversible transition, however,
includes an additional term, P, of entropy production (Guggenheim [25], equation 1.17.1):

dSC = deSC + diSC =
dU
T

+ Pdt (8)

For the general, irreversible case, therefore, the Planck definition (4) of the Clausius entropy
may be generalised by including additional terms that describe entropy production (De Groot and
Mazur [17]):

P =
∑

Xk Jk =

(
∂SC

∂ξ

)
U,V

dξ
dt

. (9)

Here, ξ is a set of internal parameters that describe the system’s non-equilibrium structures and
approach ξ = 0 at equilibrium, along with disappearance of the related Onsager forces Xk and fluxes
Jk. For equilibrium states, P vanishes by definition, and for frozen metastable states, the observation
period t is short enough for reasonably neglecting the entropy production term, so that Equation (8)
reduces to Equation (4) in these special cases.

The [Clausius] entropy of a system of bodies in different states is the sum of the entropies of each
of the bodies (Maxwell [37] (p. 163)). Similarly, Planck ([9], p. 100) also defined the total (Clausius)
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entropy of a composed system as additive: “Endlich bezeichnen wir die Summe der Entropien
mehrerer Körper kurz als die Entropie des Systems aller Körper.” Following Planck, this statement
holds for any decomposition as long as the parts possess well-defined homogeneous, while possibly
mutually different, temperatures and densities, regardless of their barycentric velocities. Such a
local-equilibrium approach is consistent with modern conventional irreversible thermodynamics
(Glansdorff and Prigogine [13], Falkenhagen and Ebeling [14], De Groot and Mazur [17], Feistel
and Ebeling [23]). Also, entropy production of non-equilibrium, local-equilibrium states is additive
(De Groot and Mazur [17], equation III.8).

Imagine a set of subsystems at T = 0, each separately being in internal equilibrium and possessing
zero Clausius entropy according Planck’s definition (4) of a universal absolute entropy at the zero point.
The additivity of Clausius entropy with respect to the body’s subsystems, as expressed by Maxwell,
Planck and also by the common local-equilibrium thermodynamics, then results in a total entropy of
SC = 0. This value remains unchanged regardless of whether or not those subsystems are in mutual
equilibria. Consequently, local-equilibrium systems at T = 0 possess the same total Clausius entropy
for global equilibrium and non-equilibrium states, a conclusion which apparently violates the 2nd law.
To circumvent such paradoxical properties, at T = 0 the Clausius entropy definition of this paper may
not be applied to systems that are in non-equilibrium configurations.

The fundamental additivity of Clausius entropy may be expressed by a formal definition:
For any two parts of a thermodynamic system with additive volumes, V(1 + 2) = V(1) + V(2), and additive

internal energies, U(1 + 2) = U(1) + U(2), the Clausius entropy is additive:

SC(1 + 2) = SC(1) + SC(2) (10)

To prevent possible misunderstandings, it cannot be concluded from Equation (4) that additivity
of SC might imply additivity of CV. As a counterexample, while the entropy of sea ice or of wet air is
additive, the heat capacities of those composites include additional contributions of latent heat due
to compositional changes with temperature (Feistel et al. [38]). The total heat capacity, in addition to
the sum of the heat capacities of the system’s constituents, may also include latent contributions from
phase transitions and mass transfers between those parts, even during reversible processes.

For thermodynamic stability, heat capacities are nonnegative. For the 2nd law, entropy production
is nonnegative. So, Clausius entropy, Equation (9), is nonnegative:

SC ≥ 0 (11)

For the 2nd law, Clausius entropy of a closed system cannot decrease during relaxation
to equilibrium:

dSC

dt
= P ≥ 0 (12)

Clausius entropy may also be termed “thermal entropy”, or simply “entropy” as done by its mental
father himself, or “thermodynamic entropy” as done by Simon [39], “caloric entropy” (Ebeling [40]),
or “Clausius-Nernst-Planck entropy” for appreciating the definition (3).

3. Boltzmann Entropy

Occasionally, just by concentrated contemplation, exceptional theoretical physicists have been
able to establish surprisingly close but completely unforeseen mathematical links between previously
unrelated quantities, such as Einstein with his famous equation E = mc2, or Planck’s invention of
quantum mechanics with E = hν. At Boltzmann’s grave in Vienna, a similar, as fundamental as simple
relation between (Boltzmann) entropy, SB, and number of microstates (also dubbed “thermodynamic
probability” such as done by Planck in the quotation below), W, is encarved, see Figure 4:

SB ≡ kB ln W (13)
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This equation is the fundamental relation of the micro-canonical statistical ensemble that permits
the calculation of entropy as a thermodynamic potential function in terms of the natural variables
energy and volume from the number of quantum states possible at those given values. Actually,
this equation was derived by Planck [8], including the Boltzmann constant, kB, with appreciation
politely given to Boltzmann [41]. Later, Planck ([42], p. 119) explained the relation between his and
Boltzmann’s works, which may be quoted here literally at length for elucidating the important question
of the very authorship of the famous Equation (13): “Der logarithmische Zusammenhang zwischen
Entropie und Wahrscheinlichkeit ist von L. Boltzmann aufgedeckt worden, in seiner kinetischen
Gastheorie (Boltzmann [41], §6). Doch unterscheidet sich unsere Gleichung [8] ihrer Bedeutung nach
in zwei wesentlichen Punkten von der Boltzmannschen. Erstens fehlt bei Boltzmann der Faktor [kB],
was damit zusammenhängt, daß Boltzmann nicht mit den wirklichen Molekülen, sondern immer nur
mit gr-Molekülen rechnete. Zweitens aber, was noch viel tiefgehendender ist, bleibt bei Boltzmann,
wie überhaupt in der gesamten klassischen Thermodynamik, die Entropie [SB] hinsichtlich einer
additiven Konstante unbestimmt und dementsprechend bleibt in dem Werte der Wahrscheinlichkeit W
ein Proportionalitätsfaktor unbestimmt. Im Gegensatz dazu schreiben wir der Entropie [SB] eine ganz
bestimmte absolute Größe zu. Das ist ein Schritt von prinzipieller Tragweite Er führt mit Notwendigkeit
zur Quantenhypothese und dadurch einerseits zu einem bestimmten Energieverteilungsgesetz der
schwarzen Strahlung, andererseits zum Nernstschen Wärmetheorem.“ Here, Planck had put particular
emphasis to the fact that the formerly arbitrary absolute value of the empirical entropy becomes
well-defined statistically, as a consequence of his Equation (13).
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Chapter 6 of Boltzmann [41], as referred to by Planck [8] in this context, presents on its p. 38
the famous H theorem, expressed in terms of the single-particle distribution function, similar to
Boltzmann’s [43] (equation 65) ideal-gas entropy formula. However, this preliminary “Boltzmann
entropy” is valid only for ideal gases rather than for the general case (Subarew [15], p. 26).
Therefore, Einstein [4] (p. 826) characterized Equation (13) as “das Boltzmannsche Prinzip in der
Boltzmann-Planckschen Fassung“. Concluding, it was Planck who first published Equation (13) in its
common very general form, although inspired by Boltzmann. In most modern textbooks, Equation
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(13) is taken for granted: “Die Entropie ist der Logarithmus der Anzahl der Zustände, die dem System
möglich sind“ (Kittel [1], p. 61). For frozen non-equilibrium states, Boltzmann entropy is more
relevant than Clausius entropy in the sense that statistical thermodynamics is richer than empirical
thermodynamics by including also molecular information. “The entropy that such systems exhibit has,
of course, a statistical meaning, but not a thermodynamic one” (Simon [39], p. 1094).

In a non-equilibrium situation of a body with given total values for energy U, volume V and
particle number N, its initial entropy will be lower than at equilibrium, according to the 2nd law.
However, those conditions given, the number W(U, V, N) of quantum states is uniquely fixed, and so
the body’s Boltzmann entropy (13) will take its equilibrium value from the very beginning and is
evidently incapable of increasing any further. What is changing, however, during irreversible relaxation
is the occupation density of the available states, but this density does not enter the Boltzmann entropy
formula (13). When considering two systems, both individually at equilibrium but not mutually, it is
clear that entropy will be produced as soon as the two system come into contact. That is, new quantum
states in addition to those existing initially will emerge immediately just by permitting interaction
between the parts of the composite system, while the occupation of those initially empty microstates
happens only gradually and delayed by irreversibly spreading into the newly opened pristine void.
This means that Boltzmann entropy is super-additive for adhering the 2nd law. A rigorous proof of
this super-additivity was given by Kittel ([1], p. 85).

If a system 1 with W1 microstates gets in contact with a system 2 with W2 microstates, the combined
system possesses W = W1 W2 W12 microstates, where the newly emerging microstates, W12 ≥ 1, result
from the additionally possible exchange of particles and energy between the systems 1 and 2, and give
rise to the super-additive excess entropy, SB(1 + 2) − SB(1) − SB(2) = kB ln W12. Initially, when the
two parts get in contact, those new microstates are not occupied and do neither contribute to the
heat capacity nor, in turn, to the Clausius entropy of the combined system; they need irreversible
exchange fluxes between parts 1 and 2 in order to gradually become visible experimentally as entropy
production and increase of SC. In general, for local-equilibrium systems without zero-point entropy,
the local Boltzmann entropies equal the local Clausius entropies. However, for such non-equilibrium
states, the total Boltzmann entropy exceeds the particular sum of those local values, while the total
Clausius entropy equals that sum.

The fundamental super-additivity of Boltzmann entropy may be expressed by a formal definition:
For any two parts of a thermodynamic system with additive volumes, V(1 + 2) = V(1) + V(2), and additive

internal energies, U(1 + 2) = U(1) + U(2), the Boltzmann entropy is super-additive:

SB(1 + 2) ≥ SB(1) + SB(2) (14)

According to the Jensen [44] inequality, this implies that Boltzmann entropy is a convex function
of the extensive state variables (Alberti and Uhlmann [45], equation 12, Lieb and Yngvason [46],
equation 2.21).

By its definition, Boltzmann entropy is nonnegative, and Clausius entropy cannot exceed it:

SB ≥ SC ≥ 0 (15)

Boltzmann entropy of a closed system does not increase during relaxation to equilibrium:

dSB

dt
= 0 (16)

From the perspective of this paper, there is another qualitative difference between the statistical
entropy definition of Planck [8], Equation (13), and the preliminary Boltzmann [41] entropy. Planck’s
definition, Equation (13), which is termed the Boltzmann entropy SB here, counts the number of
microstates regardless of their occupation dynamics and is, consequently, unrelated to the 2nd Law.
Boltzmann’s [41] preliminary entropy, however, relies on the dynamics of microstate occupation,
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and obeys the 2nd law in the form of the famous H-theorem. The latter entropy is, accordingly,
a statistical expression for the Clausius entropy, SC.

Boltzmann entropy may also be termed “statistical entropy”, as done by Simon [39],
or “Boltzmann-Planck entropy” in the sense of Einstein [4] and appreciating Planck’s formulation (13).

4. Pauling Entropy

There are good physical reasons for the vanishing heat capacities of condensed bodies at T = 0,
and consequently for the 3rd law to hold, SC = 0. On the contrary, as already suspected by Einstein [4],
rigorous physical reasons are lacking for an inevitable existence of a unique single quantum state,
W = 1, at the zero point, and accordingly, for SB = 0. Beginning with Boltzmann, Planck and Einstein,
the traditional physical understanding is that entropy is one and the same physical quantity that
may be calculated with different methods and formulas, such as Equations (3) and (13). Accordingly,
it is often argued that the Nernst theorem is not applicable to frozen non-equilibrium systems which
possess quantum states that count to the number W but do not contribute to the body’s heat capacity
(Landau and Lifschitz [47], §61). “Der Satz von Nernst ist nicht . . . [anwendbar auf] ‘eingefrorene’
metastabile Zustände” (Subarew [15], p. 107)). Similarly, Gutzow and Schmelzer ([7], p. 63) conclude
that “the Third law of thermodynamics and some of its consequences, as they are known for equilibrium
systems, fail for the vitreous state“. This traditional view classifies systems with residual entropies
as somewhat exceptional or irregular with respect to the Nernst theorem, such as glasses or other
amorphous or metastable states.

In contrast to this common view, it is suggested here that Clausius und Boltzmann entropies may
be considered as two different physical quantities that may coincide under certain circumstances but
do not always need to. Regarded as the 3rd law of thermodynamics, the Nernst theorem naturally
applies to SC of local-equilibrium systems, but not necessarily to SB, as intentionally contrasted here to
the zero-point entropy which may exist only for SB but never for SC, according to the definition (4).

The difference between SB and SC:

SP ≡ SB − SC ≡ kB ln
W
Ω

(17)

is generalized here to be valid for arbitrary temperatures, this way defining the Pauling entropy,
originally defined only at the zero point, SP(T = 0) ≡ S0

P, see Appendix B. Here, Ω denotes the number
of quantum states responsible for the body’s measurable heat capacity, as defined by the Clausius
entropy, SC = kB ln Ω. Conversely to Ω, the property SP is a measure of the fraction of quantum states
that do not contribute to its heat capacity. Irreversible processes convert Pauling entropy into Clausius
entropy at constant Boltzmann entropy.

At equilibrium, the relation between heat capacity Cv and microscopic quantum energy states En

is given by the canonical statistical Equation (Schrödinger [48], equation 5.10, Kittel [1], equation 6.63),
Subarew [15], equation 13.8), Klimontovich [49], equation 6.4.4):

Cv =

(
∂
∂T

)
V
〈E〉 =

1
kBT2 〈

(E− 〈E〉)2
〉. (18)

Here, the average < . . . > is weighted by Boltzmann factors of the canonical ensemble:

〈E〉 =

∑
n En exp

(
−

En
kBT

)
∑

n exp
(
−

En
kBT

) = U(T, V) (19)

The energy levels En depend on the volume V but not on the temperature. Quantum states
that contribute to the Boltzmann entropy but do not contribute to the heat capacity, especially of
local-equilibrium configurations, possess energy levels that may be removed from the corresponding
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sums (19) without affecting the total sum of local dispersions (18) of the energy distributions. It is
expected that among those states are, in particular, terms with sufficiently high, thermally inaccessible
“frozen” levels, En � kBT.

If SB equals the maximum Clausius entropy at equilibrium, i.e., if S0
P = 0, while the actual value of

SC describes that of a certain non-equilibrium state, Pauling entropy SP equals the “entropy lowering”
introduced by Klimontovich [49], describing the distance from equilibrium at the same energy and
volume (Feistel and Ebeling [23]):

SP(U, V, t) = Seq(U, V) − S(U, V, t) = SB(U, V) − SC(U, V, t) (20)

A similar term for this Pauling entropy is “negentropy” (Brillouin [50], Ebeling and Feistel [51]).
In the general case with arbitrary S0

P, integration of Equation (8) with dU = 0 results in a formula for
estimating the Pauling entropy (see Appendix C):

SP(U, V, t) = SC(U, V,∞) + S0
P − SC(U, V, t) =

∫
∞

t
Pdt + S0

P (21)

By the definition (17), Pauling entropy is suggested to advance conceptionally from some previous
“exceptional statistical correction term” at the zero point, S0

P, to a regular thermodynamic measure
for frozen and other non-equilibrium states at finite temperatures, Equation (21). It is a measure of
structure, organization and information contained in a non-equilibrium system (Klimontovich [49,52])
and expresses the difference between the “valoric” and “caloric” interpretations of entropy (Schöpf [53],
Ebeling [40], Feistel and Ebeling [23]). An explicit tutorial example for this quantity, the amount of
“potential” entropy that is possibly producible by future dissipation, Equation (21), is discussed in
Appendix C.

Consistently with Equation (20) and the Gibbs [54] fundamental equation, the definition (17) is
understood to be taken at fixed given values of U, V, N:

SP(U, V, N, ξ) = SB(U, V, N) − SC(U, V, N, ξ) ≡ kB ln Q (22)

Here, ξ is a set of macroscopic properties that characterise the non-equilibrium state such that
ξ = 0 holds at equilibrium (Gutzow and Schmelzer [7], Gujrati [55]), see Equation (9), and N are
suitably defined particle numbers of the constituents. The quantity Q(U, V, N, ξ) is a measure for the
number of configurations possible at fixed (U, V, N, ξ) that do not affect the system’s heat capacity,
CV. For example, in the case of a coin as shown in Figure 1, one may think of the number of spatial
deformations and surface shapes that the same amount of metal may undergo. Typically, Q may be a
relatively small number, that is, Q << W.

The physical interpretation of the quantity Ω = W/Q is subject to ongoing scientific discussion.
For non-equilibrium states, in addition to energy and volume, Ω depends on further macroscopic state
variables, ξ. Onsager [56] used this dependence to demonstrate the symmetry of transport coefficients
in linear irreversible thermodynamics (Landau and Lifschitz [57], §58). ”Ein makroskopischer Zustand
umfaßt immer eine große Anzahl mikroskopischer Zustände, die [der thermodynamische Beobachter]
zu einem Mittelwert zusammenfaßt” (Planck [42], p. 121). Accordingly, the quantity Ω(t) may be
understood as an effective number of microstates that the system had visited within a reasonable
observation period ∆t at the time t, or as a currently occupied part of the Boltzmann energy shell
(Ebeling [40], Ebeling and Feistel [58], Feistel and Ebeling [23,27], Feistel [20]). Note that, according to
Liouville’s theorem, the instantaneous phase volume, Ωinst, occupied by each successively taken single
microstate is time-invariant even during irreversible processes (Gibbs [59] (equation 22), Planck [42]
(§129), Subarew [15], §2.1, Klimontovich [49], p. 30). Therefore, the growing value of Ω(t), Equation (12),
cannot be associated with either of the two quantities, W or Ωinst, rather, it is likely related to an average
microstate number visited during the observation period, controlled by the magnitude of fast thermal
and quantum fluctuations. However, physical arguments may be raised against a simple mechanical
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interpretation of Ω(t) being a number of visited microstates, or being a time average over visiting
frequencies (Ishioka and Fuchikami [60], Goldstein [61]). In fact, microscopically, thermodynamic
systems are quantum systems (Schrödinger [48]), and the question of whether or not a system is “really”
in a certain microstate at some sharp instance of time may not make definite physical sense unless
that state has actually been measured and its wave function has collapsed. While the existence and
definition of Ω(t) is not in question here, obstreperous problems arise with the attempt of painting a
simple, mechanical, common-sense picture of it. Bearing this precaution in mind, one may think of
Ω(t) for simplicity as some average number of occupied microstates (Ufflink [62]).

From the definitions given for SP, SB and SC, super-additivity auf Pauling entropy can be concluded:
For any two parts of a thermodynamic system with additive volumes, V(1 + 2) = V(1) + V(2), and additive

internal energies, U(1 + 2) = U(1) + U(2), the Pauling entropy is super-additive:

SP(1 + 2) ≥ SP(1) + SP(2) (23)

Pauling entropy is nonnegative and cannot exceed Boltzmann entropy:

SB ≥ SP ≥ 0 (24)

There is no general inequality valid between Pauling and Clausius entropies.
Expressing the devaluation of energy by dissipation, Pauling entropy of a closed system cannot

increase during relaxation to equilibrium:

dSP

dt
= −P ≤ 0 (25)

The definition SB = SC + SP suggests, in analogy to mechanical energy, a simple interpretation of
Boltzmann entropy as a “total entropy”, Clausius entropy as a “kinetic entropy” and Pauling entropy
as a “potential entropy”. Then, the relaxation to equilibrium can be read as a - possibly incomplete -
transformation of potential entropy into kinetic entropy.

Assumingly, Pauling entropy as defined here (Feistel [20]) is closely related to the “configurational
entropy” discussed recently in conjunction with various additional entropy measures relevant for
glassy states (Berthier et al. [63]). A detailed analysis of different approaches to the determination
of the configurational entropy in glass transitions is given by Schmelzer and Tropin [2]. Pauling
entropy may also be termed “residual entropy”, “valoric entropy” (Ebeling [40]), “entropy lowering”
or “Klimontovich entropy”.

5. Shannon Entropy

“In 1948, Shannon . . . . called his measure, as allegedly suggested by von Neumann: ‘entropy’.
This proved to be a grievous mistake which had caused great confusion in both information theory
and thermodynamics” (Ben-Naim [64], p. 1). This accusation sounds even more severe when
taking into account that even “John von Neumann mentioned that ‘nobody knows what entropy
really is’” (Schmelzer and Tropin [2], p. 1, referring to Petz [65]). In fact, the relation between
Shannon’s information entropy and thermodynamic entropy is still subject to controversial opinions
and discussions in the scientific literature (Ebeling and Feistel [51]).

Imagine you give your memory stick to a colleague who copies a file onto it and returns it to you.
How much energy or entropy must inevitably be exchanged together with the desired information?
A fictitious, conceptional model for such a symbolic information transfer, Figure 5, may illustrate the
relation between the Shannon [19] entropy, SS, and other entropies. The information source is turning
a coin in either a 0◦ position (indicating 0) or a 90◦ position (indicating 1). The coin is placed on a
conveyor belt, along with additional copies of the coin, each turned appropriately to form the message,
and transported to a receiver. There, the information bit carried by the coin is read and erased by
turning the coin in a neutral 45◦ position, and conveying the coin back to the sender, replenishing
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the raw material stock. The coin’s energy is degenerate with respect to different turning angles; such
neutral or Goldstone modes (Obukhov [66], Pruessner [67]) are characteristic for symbolic information
carriers (Feistel and Ebeling [23], Feistel [20]). There is no serious doubt that such a technical machine
is capable of transferring messages from the transmitter to the receiver. Regardless of that, the model
exhibits some rigorous thermodynamic properties:

(i) Across the interface, there is no net energy flux sustained by the conveyor belt. Each coin is carried
back and forth with the same internal energy and the same potential energy in the gravity field.

(ii) Across the interface, there is no net Clausius entropy flux sustained by the conveyor belt. Each
coin is carried back and forth with the same Clausius entropy, which is additive to form the
Clausius entropy of the message.

(iii) Across the interface, there is no net single-coin Boltzmann entropy flux sustained by the conveyor
belt. Each coin separately is carried back and forth with the same Boltzmann entropy, despite its
actual orientation. The super-additive Boltzmann entropy of the sequence of coins applies to
both transport directions independently of the actually transferred message.

(iv) Across the interface, there is no net single-coin Pauling entropy flux sustained by the conveyor
belt. Each coin separately is carried back and forth with the same Pauling entropy, despite its
actual orientation. Also the Pauling entropy of the set of coins does not depend on their actual
individual turning angles.

In addition to the other entropies, also the Shannon entropy (in the sense of information capacity)
is the same for the messages communicated forward and backward; the only difference is that the one
message is meaningful and read by the receiver while the latter one is meaningless and ignored upon
return to the sender. Evidently, this difference is of technical rather than thermodynamic nature. While
information exchange between two systems necessarily requires a physical carrier facilitating at least
two alternative symbols, the net flux of information is not necessarily accompanied by net fluxes of
entropy or energy.
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The Pauling entropy of the coin is a measure for the number of possible spatial configurations
of the coin’s material at constant total energy and volume, and possibly additional macroscopic
non-equilibrium properties, see Sections 3 and 4. Rotating the anisotropically formed coin by a certain
angle such as shown in Figure 5 results in a “modified” coin which also belongs to the set of alternative
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configurations that count to the Pauling entropy of the metastable, frozen-in solid. Correspondingly,
different turning angles displayed by a set of coins belong to the Pauling entropy of that set, that
is, to the total Pauling entropy of the message. Of those angles and configurations, by sender and
receiver only a certain subset is jointly understood as the set of supported symbols, the “alphabet”,
for information transfer. The number M of differently defined, conventional symbols is therefore
bound from above by the number Q that specifies the Pauling entropy. The Shannon entropy defined
in thermodynamic units rather than in bits:

SS ≡ kB ln M (26)

cannot exceed the Pauling entropy of thermodynamic structures used as symbols, that is:

SB ≥ SP ≥ SS ≥ 0 (27)

In other words, Pauling entropy is the physical upper bound for the information capacity expressed
in terms of Shannon entropy. For example, the maximum memory of ice Ih, given by its Pauling
entropy expressed in bits, is 2 × 1025 bits per kilogram, or two terabytes per nanogram (Feistel and
Ebeling [23]), see Appendix B, whether or not technical facilities may exist which permit this use.

Pauling and Shannon entropies are very similar physical quantities, they differ, however, in that
Pauling entropy is given by the physical properties of a thermodynamic system while Shannon entropy
is specified externally by the information-processing context, subject to technical criteria. Shannon
entropy typically arises from arbitrarily declaring a certain set of physical states of the information
carrier to be alternative, redundant manifestations of one and the same symbol. Shannon entropies
may exist also for systems such as abstract automata, single chain molecules or laser pulses which do
not necessarily possess any reasonable thermodynamic entropies.

Shannon entropy may also be termed “information entropy”, “information capacity”, “storage
capacity” or “Shannon-von-Neumann entropy”.

6. Conclusions

Deviating from common practice in thermodynamic textbooks which consider entropy as a unique
quantity that may be estimated by different methods, it is suggested here to consider the entropy
formulas of Clausius, Boltzmann, Planck or Pauling as describing distinct but related properties,
namely, a thermal, empirical Clausius entropy, a statistical Boltzmann entropy, and their difference,
the “frozen” Pauling entropy. While similarities of those quantities are particularly striking for
equilibrium states, they differ qualitatively and quantitatively for non-equilibrium states, as described
by rigorous inequalities. It appears tutorially more reasonable, therefore, to introduce those entropies
as different entities that coincide only under special circumstances. Pauling entropy of microstates
as a kind of “potential entropy” that does not contribute to the system’s heat capacity and hence
being distinct from Clausius entropy, is closely related to information capacity and forms a physical
upper bound to technical Shannon entropy. Boltzmann entropy is a “total entropy” that in turn
forms an upper bound to both Pauling and Clausius entropies. For equilibrium as well as for frozen
non-equilibrium states, the Nernst theorem, equivalent to the 3rd law, applies to Clausius entropy of
local-equilibrium systems, while equilibrium zero-point entropy, in contrast, belongs to Boltzmann
and Pauling entropies. The suggested differentiation between traditional entropy concepts may be
helpful for elucidating the intricate relations between entropy and information.
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Appendix A : On the History of the 3rd Law of Thermodynamics

Based on graphical extrapolation of observed data to T = 0, already in 1888 J. Clerk Maxwell ([37],
p. 162) had intuitively argued that “the proper zero of entropy is that of the body when entirely
deprived from heat”. More rigorously, the Nernst Theorem was first presented orally in 1905 at Berlin
(Strehlow [68]) and originally published in 1906. It was formulated by Nernst ([10], p. 39) as “eine neue
Hypothese . . . , nach welcher die Kurven der freien und der gesamten Energie chemischer Reaktionen
zwischen lauter festen und flüssigen Körpern sich beim absoluten Nullpunkt der Temperatur tangieren”.

The paper’s argumentation starts from the Helmholtz [69] differential equation, written by
Nernst ([10], p. 2) in the form:

A−U = T
dA
dT

(A1)

where A is “die maximale Arbeit” (likely, Helmholtz energy F) and U is “die gesamte Energie”
(likely, internal energy). Generally, F and A are considered synonymous thermodynamic symbols
for the “work function” or the “free energy” (Guggenheim [25], §1.32). Nernst left open the question
of whether the differential in Equation (A1) is describing an isobaric or isochoric or any other
process. Helmholtz ([69], p. 29) mentioned the condition “dass keine neue Wärme auf Kosten anderer
Energieformen erzeugt werden dürfe”, so that isochoric rather than isobaric conditions may be assumed
(Kluge and Neugebauer [70], p. 110). Additionally, Helmholtz ([69], p. 31) explained that ∂U/∂T
represents the system’s heat capacity, which is correct for isochoric rather than isobaric changes. There
is also a remark of Nernst ([10], p. 5) that he has in mind a container in which a chemical reaction takes
place isothermally and reversibly at equilibrium while the ingredients and products of the reaction are
added and removed isothermally and reversibly. This picture as well suggests an isochoric conduction
of the process (A1), consistent with Equation (A2).

In more recent notation (Landau and Lifschitz [47], equation 15.5, Kluge and Neugebauer [70],
equation 8.1), the Helmholtz differential equation is, similar to Helmholtz’ original formula
(Helmholtz [69], p. 31, Planck [71], p. 169):

F−U = T
(
∂F
∂T

)
V
= −TS (A2)

where S is the entropy. The maximum work produced by a thermodynamic process is given by the
change of the Helmholtz energy F if the process is isochoric, V = const, but by that of the Gibbs energy
G = F + pV in the isobaric case, p = const (Landau and Lifschitz [47], equations 20.5, 20.6). As an aside,
an isobaric interpretation of Equation (A1) was given by Gutzow and Schmelzer ([5], Figure 2.25),
by Strehlow [68] and by Marquet [72] who identified A with G and U with the enthalpy H = G + TS.

Mathematically, Nernst ([10], p. 7) explained his fundamental hypothesis in a way that his
equations will “nicht nur die Konvergenz von dA/dT und dU/dT zum Werte Null für T = 0 zum
Ausdruck bringen, sondern gleichzeitig auch auf einen symmetrischen Verlauf von A und U in nächster
Nähe des absoluten Nullpunkts hindeuten”. In Equation (A2), rigorous symmetry of F and U would
imply TS = 0. It is worth being emphasised at this point that Nernst’s theorem refers to observations of
thermal properties rather than to statistical considerations, as occasionally suggested in more recent
textbooks (Pauling and Pauling [73], chapter 10). Also Fermi ([33], p. 142) interpreted Nernst’s theorem
statistically when concluding that “the only circumstances under which Nernst’s theorem might be in
error are those for which there exist many dynamical states of lowest energy. . . . Although it is not
theoretically impossible to conceive of such a system, it seems extremely unlikely that such systems
actually exist in nature. We may therefore assume that Nernst’s theorem is generally valid”.
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In modern notation, under the assumptions made before, for T→ 0 the Nernst hypothesis
predicts that: (

∂F
∂T

)
V
= −S→ 0 (A3)

and: (
∂U
∂T

)
V
= Cv → 0 (A4)

Using quantum mechanics, Debye [74] was able to show that for crystalline solids, entropy (A3)
and isochoric heat capacity (A4) follow a cubic T3 law in the vicinity of the zero point (Landau and
Lifschitz [47], equations 61.7, 61.9), well consistently with Nernst’s observation of a symmetrical
approach to zero of both quantities (Kluge and Neugebauer [70]). There, the difference between
isochoric and isobaric heat capacities disappears even faster with falling temperature:

Cp −Cv ∼ T7 (A5)

The physical reason for the cubic law is that vibrational modes (phonons) have statistical properties
very similar to Planck’s thermal radiation (Landau and Lifschitz [47], equation 61.6). “Bei Temperaturen,
die niedrig genug sind, wird der Inhalt eines Festkörpers an Schwingungsenergie proportional zu T4

sein, ganz analog zum Stefan-Boltzmannschen Strahlungsgesetz” (Debye, quotation from Kittel [1],
p. 295). Because the energy of both is proportional to T4, entropy and heat capacity, Equations (A3)
and (A4), are both proportional to T3, a law that is fairly independent of the body’s microscopic
structural details, except for metals (Kittel [1], equation 14.37). At low temperatures, typically about
10 K, thermal energy falls below the finite excitation energy of other quantum states, and the cubic
law starts dominating the heat capacity. For example, the reference equation of state for hexagonal ice
(Feistel and Wagner [75–78], Feistel [18]) obeys those Debye [74] and Grüneisen [79] laws, consistently
with experimental data. For amorphous solids, the transition temperature may be even lower (Gutzow
and Schmelzer [5], p. 209).

Note that despite Equation (A3), Nernst [10] did not draw any explicit conclusion regarding
the value of entropy at the zero point. This task was eventually taken over by Planck ([9], p. 268),
as intentionally quoted here literally at greater length: “Ein Theorem, welches W. Nernst im Jahre 1906
aufgestellt hat . . . , läßt sich dahin formulieren, daß beim Nullpunkt der absoluten Temperatur die
Entropie eines jeden chemisch homogenen festen oder flüssigen Körpers einen bestimmten, von dem
Aggregatzustand und von der speziellen chemischen Modifikation unabhängigen Wert besitzt. [Diese
Fassung des Theorems ist inhaltlich etwas weitergehend als die von Nernst a.a.O. selber gegebene,
nach welcher für T = 0 die Differenz der Entropien eines solchen Körpers in zwei Modifikationen
gleich Null ist.] . . . Zunächst ist leicht einzusehen, daß man, da der Wert der Entropie eine willkürliche
additive Konstante enthält, jenen für T = 0 eintretenden Wert unbeschadet der Allgemeinheit gleich
Null setzen kann, so daß das Nernstsche Wärmetheorem nun lautet:

Beim Nullpunkt der absoluten Temperatur besitzt die Entropie eines jeden chemisch homogenen festen
oder flüssigen Körpers den Wert Null.

Damit ist über die additive Konstante a der Entropie aller chemisch homogenen Substanzen in
allen Zuständen eindeutig verfügt, insofern jede Substanz im festen oder flüssigen Aggregatzustand
bei der Temperatur Null existenzfähig (wenn auch nicht stabil) ist, und man kann von nun an in diesem
Sinne von einem absoluten Wert der Entropie sprechen.“

[English translation: “A theorem that was stated by W. Nernst in the year 1906 . . . may be
formulated in a way that at the zero point of the absolute temperature, the entropy of any chemically
homogeneous, solid or liquid body possesses a certain value that is independent of the phase and the
particular chemical modification. (From its contents, this formulation of the theorem goes slightly
beyond that given elsewhere by Nernst himself, after which at T = 0 the difference between the
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entropies of such a body in two modifications is zero.) . . . Because the entropy value includes an
arbitrary additive constant, it is easily recognized that without loss of generality, the value at T = 0
may be set to zero, so that Nernst’s heat theorem then reads:

At the zero point of the absolute temperature, the entropy of any chemically homogeneous solid or
liquid body possesses the value of zero.

This way, the additive constant a of the entropy of all chemically homogeneous substances in any
states is uniquely determined, as far as that substance is able to exist (even if not stably) in solid or
liquid phase at zero temperature, and in this sense one may then speak about an absolute value of
the entropy.”]

It should be mentioned here that in one point the modern perspective deviates from Planck’s
visionary statement. Most specialists agree that both solid H2O phases ice Ih and ice XI can exist
at T = 0 under ambient pressure, but they possess different zero-point entropies (see Appendix B).
If this counterexample is correct, the invariance of zero-point entropy with respect to changes of
density or pressure is not valid across phase transitions (Feistel and Ebeling [23], p. 376), in contrast to
what Planck had assumed originally by saying that at the zero point the entropy of any chemically
homogeneous, solid or liquid body possesses a certain value that is independent of the phase.

Note, however, that the actual value of the absolute entropy is irrelevant for the description
of natural processes, as emphasized already by Planck [9,71], because only differences of energies,
entropies etc. appear in the related equations. For this reason, international standard equations
for thermodynamic properties of water, seawater, ice or humid air are expressed in entropies that
formally vanish at experimentally convenient reference points at which the measurement uncertainty
is sufficiently small, such as the triple point of water, rather than at T = 0 (Feistel [18]). The convenient
technical setting of the value for the zero-point entropy is consistent with all available reliable
thermodynamic measurements and is in no way related to the fact that “the general theoretical proof
of the fact that the state of a system with the smallest energy is at the same time one of zero entropy
has not yet been given” (Simon [39]). In Appendix B, the reasons will be considered more closely.

For clarity it should be emphasized finally again that in this paper, the Nernst theorem is
identified with the 3rd law, both valid, without any known exceptions among local-equilibrium
systems, for empirical thermodynamics and thermal processes, and for the Clausius entropy. On the
contrary, residual or zero-point entropy are considered here as quantities that belong to statistical
thermodynamics, or Boltzmann and Pauling entropies, and do not contribute to measurable heat
capacities. In the literature, however, the 3rd law, the Nernst theorem and the residual entropy are often
set in mutual relations other than here. For example, Kittel [1], p. 144) writes that “Der dritte Hauptsatz
. . . stellt eine Annahme über die Invarianz der Entartung des Grundzustandsniveaus . . . dar“, thus
associating the 3rd law with statistical thermodynamics, in contrast to Nernst’s original hypothesis.
Similarly, the “third principle” as formulated by Guggenheim ([25], p. 47) may be mentioned whose
applicability is restricted to statistical thermodynamics only. Empirically measurable violations of
Nernst’s theorem such as those described by Gutzow and Schmelzer ([5], Figure 2.25) are not related to
the degeneracy of the quantum ground state but rather to non-equilibrium microstate populations
trapped in excited quantum states. Such systems are not considered in this paper.

When discussing the validity of the “Nernst theorem”, or synonymously, of the “3rd law” for
certain systems, it is important to distinguish two different formulations which coincide at equilibrium
but may fall apart otherwise. The original Nernst theorem, see above, is about the symmetry of two
energy curves, A and U, Equation (A1), in the vicinity of T = 0. Their shapes can be investigated
experimentally in the framework of empirical thermodynamics, and breaking this symmetry by some
systems such as glasses had been measured extensively (Gutzow and Schmelzer [5], Figure 2.25). On the
other hand, Planck’s formulation of the Nernst theorem, or the 3rd law, saying that entropy vanishes
at T = 0, can be verified for local-equilibrium metastable states only statistically by investigating the
quantum ground-state degeneracy.
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Appendix B : On the History of the Zero-Point Entropy

While the Clausius entropy can relatively easily be computed from measured heat capacities of
available substances, estimating the Boltzmann entropy requires complicated mathematics of statistical
thermodynamics, a task which in general poses a serious challenge. For the special case of ideal
gases, Boltzmann [43] and Planck [8] were very successful in statistically deriving thermodynamic
equations of state that fit the experimental data. At the time Einstein [4] suspected the possibility of
inconsistencies between the empirical and statistical approaches, there was no reliable experimental
evidence for definitely deciding this question. Later it became possible, however, to count quantum
states from spectroscopic data in the infrared range and to compare this way the independently derived
experimental values of SC and SB. At 298.1 K and normal pressure, Giauque and Ashley [80] found the
molar Boltzmann entropy of water vapour to be 47.92 cal deg−1 mol−1, corresponding to a specific
Boltzmann entropy of sV

B = 11 131 J kg−1 K−1. This value was later recalculated more precisely by
Gordon [81] to be 45.101 cal deg−1 mol−1, or sV

B = 10 476 J kg−1 K−1. A related modern CODATA value
for the specific Boltzmann entropy of liquid water at 298.15 K and 0.1 MPa is 69.95(3) J mol−1 K−1,
or sL

B = 3883(2) J kg−1 K−1, as reported by Cox et al. [82].
On the other hand, computed from the 3rd law and the latent heat and the temperature integral

over the heat capacity of ice as well as the ideal-gas Sackur-Tetrode equation for water vapour, Giauque
and Stout [83] obtained for the molar Clausius entropy of water vapour a value of 44.28 cal deg−1 mol−1,
or sV

C = 10 285 J kg−1 K−1 (for a quantitative example of such a calculation, see Guggenheim ([25], §4.04),
or Marquet ([72], equation 3). Being about 2 % lower than that of Gordon [81], this result represents a
significant difference exceeding the experimental uncertainty. This discovery was finally awarded with
the Nobel Prize in Chemistry 1949 to William F. Giauque. The unexpectedly inconsistent results found
experimentally for the Boltzmann and Clausius entropies of water were subsequently explained by
Pauling [73], allegedly quickly calculated by him on a beer mat, taking into account the degeneracy of
the ground state of the molecular structure of ice Ih (Fletcher [84]), see Figure A1. Pauling’s first estimate
was mathematically improved by Nagle [85] to result in a theoretical specific zero-point entropy of
s0,Ih

P = 189.13 ± 0.05 J kg−1 K−1, a value that became known as the Pauling residual entropy of ice
Ih. In excellent agreement with the statistical result, the latest, improved experimental value for the
zero-point entropy is s0,Ih

P = 189.3± 10.6 J kg−1 K−1 (Haida et al. [86], Petrenko and Whitworth [87]).
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Figure A1. The hexagonal elementary crystal of ice Ih (Penny [88], Schulson [89], Feistel and Wagner [77])
consists of 27 oxygen (O) atoms (spheres) and 28 hydrogen (H) bonds between them (bars). Of the four
H-atoms adjacent to each O-atom, two are placed closer than the other pair, thus retaining the structure
of individual H2O molecules within the crystal lattice (Bjerrum [90]). The number of such different
configurations of H-atoms possible in the crystal gives rise to the residual Pauling entropy.
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Implementing the Pauling-Nagle residual entropy in the international standard equations of
state for ice Ih and fluid water (Wagner and Pruß [91], Feistel and Wagner [78], Feistel [18]) results
in a value for the specific Boltzmann entropy of liquid water at 298.15 K and 0.1 MPa of sL

C +

s0,Ih
P = 3883.7 J kg−1 K−1, being perfectly consistent with the experimental CODATA figure of sL

B =

3883(2) J kg−1 K−1 (Cox et al. [82]).
There exists the hypothesis that ice Ih is metastable at temperatures below about 100 K (Johari and

Jones [92]). The stable phase of ice at the zero point is assumed to be ice XI, a proton-ordered
crystal without residual entropy (Singer et al. [93]). Note that such an assumed phase transition is
inconsistent with formulations of the 3rd law that claim the zero-point entropy to be not only invariant
with respect to changes of density or pressure, but also against phase transitions, modifications or
different states of aggregation, including metastable condensed phases if those states may exist at
least (Planck [9], Gutzow and Schmelzer [5,7]), see Appendix A. Again, by contrasting the distinct
entropies, the invariance of the zero-point entropy with respect to alternative molecular configurations
is assumed to be obeyed by the Clausius entropy but may be violated by the Boltzmann entropy.
Various zero-point entropies for substances other than water have meanwhile be determined (Gutzow
and Schmelzer [5,7]).

Appendix C

A theoretical method for estimating the Pauling entropy, Equation (21), is by constructing an
arbitrary fictitious future process, possibly involving suitable catalysts, that leads from the given
frozen non-equilibrium state to the associated final equilibrium state, consistent with the boundary
conditions, and then summing up the entropy production along the path. As entropy is a state function
of local-equilibrium systems such as the initial and the final state, the value of the resulting integral
will not depend on the specifics of the transition process.

Clouds constitute a key element of the terrestrial climate system (Lamb and Verlinde [94], Pelkowski
and Frisius [95], Randall [96], Feistel et al. [97]). Suspended water droplets in the atmosphere represent
a metastable non-equilibrium state that slowly relaxes toward equilibrium by Ostwald ripening
(Ostwald [98], Schmelzer [99,100], Mahnke and Feistel [101], Schmelzer and Ulbricht [102]). In this
irreversible process, the liquid of smaller droplets evaporates faster than it does condense out of the
vapour, but vice versa for larger droplets, so that an overall coarse graining takes place among the
droplets, accompanied by a gradual reduction of the total droplet surface area.

Here we study a simplified model of that process with a single droplet immersed in saturated
vapour, the latter being in equilibrium with a liquid bulk phase across a planar interface, like fog over
a lake. The droplet mass is much smaller than the model’s remaining total mass. During the slow
relaxation process, the system is assumed to remain thermally homogeneous and the liquid to be
incompressible. The evaporation from the droplet is compensated by an equal rate of precipitation to
the buffer liquid. Assumingly, the total amounts of liquid and vapour remain the same throughout
the ripening.

The chemical potential of a liquid in a droplet with the radius r is approximately (Thomson [103],
Gutzow and Schmelzer [5], Lamb and Verlinde [94]):

µ
(r)
L (r, T, p) = gL(T, p) +

2σv
r

(A6)

where σ is the surface tension, v is the specific volume and gL the specific Gibbs energy of the liquid,
for example that of water (Wagner and Pruß [91], Feistel [18]).
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The Onsager force driving evaporation from the droplet to the surrounding vapour can be
assumed to be proportional to the chemical potential difference between droplet, µ(r)L , and vapour, µV

(DeGroot and Mazur [17], Feistel and Ebeling [23], equations 3.87, 3.97):

X =
µ
(r)
L

T
−
µV

T
=

1
T

2σv
r

(A7)

Here, the chemical potential µV equals the specific Gibbs energy of the saturated vapour, gV:

µV = gV = gL (A8)

The related evaporation mass-flux density, j(r), is:

j(r) = κX =
κ
T

2σv
r

(A9)

For instance, the Onsager coefficient κ for the evaporation of water can be estimated to a
climatological mean value of κ ≈ 0.4·10−6 kg2 K J−1 m−2 s−1 in the terrestrial hydrological cycle
(Feistel and Ebeling [23]).

Entropy production, P, is a bilinear expression in terms of Onsager forces and fluxes (DeGroot
and Mazur [17], Pelkowski [104], Gassmann and Herzog [105]), see Equation (9). Integrated over
the droplet surface, A, the entropy production of the mass flow across the difference of chemical
potentials is:

P = j(r)AX = κAX2 = κ 4πr2
( 1

T
2σv

r

)2
= 16πκ

(
σv
T

)2
(A10)

This entropy production appears to be independent of the droplet’s size and age.
For the computation of the Pauling entropy, Equation (21), we omit for simplicity any possible

zero-point entropy, S0
P = 0. Because P is time-independent, the droplet’s lifetime ∆t is expected to

be finite:

SP(t) =
∫
∞

t
Pdt = (∆t− t)P (A11)

To find ∆t, the mass balance of the droplet is considered. The mass of the droplet is m = 4
3πr3/v,

and the related mass loss by evaporation is:

dm
dt

=
4π
v

r2 dr
dt

= − j(r)A = −
κ
T

2σv
r

4πr2 (A12)

This differential equation for r(t) is easily integrated to provide the decay law of the radius:

r(t) =

√
r2

0 −
4κv2σ

T
t = r0

√
1−

t
∆t

(A13)

or similarly, for the shrinking surface area:

A(t) = A0

(
1−

t
∆t

)
(A14)

where r0, A0, respectively, are the initial radius and surface. The droplet disappears after the finite
lifetime of:

∆t =
r2

0T

4κv2σ
(A15)

Equation (A13) is known as the R2 law (or D2 law) of Maxwell and Langmuir (Sobac and
Brutin [106], p. 106). “The apparent linearity of r2(t) is retained even for relatively small droplets and
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relatively fast evaporation/condensation, since the r2(t) form is not very sensitive to kinetic effects”
(Jakubczyk et al. [107], p. 715).

Finally, from Equations (A10)–(A15), the Pauling entropy of the droplet results to be proportional
to its instantaneous surface area:

SP(t) = P∆t
(
1−

t
∆t

)
=
σA0

T

(
1−

t
∆t

)
=
σ
T

A(t). (A16)

It is remarkable, see Figure A2, that at the critical point, t = ∆t, the model approaches equilibrium
abruptly rather than asymptotically by exponential relaxation. The threshold has properties of a kinetic
phase transition of the 2nd kind; the transition occurs in a continuous manner but is accompanied by
the symmetry-breaking disappearance of the droplet.
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It follows from Equation (A16) that the entropy production, Equation (A10), may be written in
compact form:

TP = −σ
dA
dt

=
σA0

∆t
if t < ∆t, TP = 0 otherwise (A17)

The result (A16) is consistent with the entropy formula of Schmelzer and Ulbricht ([108],
equation 2.5) obtained by different methods, in which the term σA/T proves to be the dominant
contribution (Schmelzer [109]). Estimating the Pauling entropy of a non-equilibrium spatial
configuration by the surface area may, in a first approximation, also be a suitable measure for
other frozen structures such as coins (Figure 1). It is expected that the droplet entropy formula is
independent of the relaxation route to equilibrium, in particular, of special evaporation rate laws.
The Pauling entropy σA/T depends only on surface properties but neither on those of the droplet
interior nor on rate coefficients of the relaxation process. In this respect, interestingly, the Pauling
entropy of a droplet has some similarity to the Bekenstein [110] entropy of a black hole.
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