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Abstract: Model construction is a very fundamental and important issue in the field of complex
dynamical networks. With the state-coupling complex dynamical network model proposed,
many kinds of complex dynamical network models were introduced by considering various practical
situations. In this paper, aiming at the data loss which may take place in the communication between
any pair of directly connected nodes in a complex dynamical network, we propose a new discrete-time
complex dynamical network model by constructing an auxiliary observer and choosing the observer
states to compensate for the lost states in the coupling term. By employing Lyapunov stability theory
and stochastic analysis, a sufficient condition is derived to guarantee the compensation values finally
equal to the lost values, namely, the influence of data loss is finally eliminated in the proposed model.
Moreover, we generalize the modeling method to output-coupling complex dynamical networks.
Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed model.

Keywords: complex dynamical network; random data loss; Lyapunov stability theory; stochastic
analysis method

1. Introduction

Complex networks exist in different fields such as Internet, power grids, food web, etc., and have
received a great deal attention over the past decades. Researchers have tried to build mathematical
models for various types of networks in the real world, some of which focused on the network topology.
These complex network models have been studied by graph theory, which are represented by nodes
connected by edges. Some classic models, such as the E-R random-graph model [1], the WS small-world
model [2], and the BA scale-free model [3], have led research hotspots in complex networks and made
outstanding contributions to the development of complex networks.

Subsequently, some researchers realized that they should not only focus on the network’s
topological connectivity, but should also consider the dynamics of network nodes in order to better
understand the dynamical behaviors of various complex networks. Pecora and Carroll [4] constructed
a state-coupling model by introducing coupling coefficients and a matrix to link the node connectivity
and the node dynamics together. Wang et al. [5] considered a scale-free dynamical network consisting of
identical linearly coupled nodes and studied its robustness and fragility of synchronization. Lü et al. [6]
introduced a time-varying state-coupling complex dynamical network model, with time-varying
coupling configuration matrix and inner-coupling matrix. Differing from the previous studies,
Li et al. [7] restricted the inner-coupling matrix as the identity matrix, which means that two coupled
nodes are diagonally linked through their corresponding components. These state-coupling complex
dynamical network models have been adopted by many follow-up studies.

Many practical complex networks, covering different fields such as communication networks
and social networks [8,9], all undertake the objective of information transmission. Especially for
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communication networks, information is the most fundamental element. Some application areas
(e.g., cell phones and aerospace) make great demands on the reliability of the data transmission.
Therefore, a number of studies have considered the actual situation involving unreliable factors such
as noise [10–12], time delay [13–16], and data loss [17–22], and investigated the influence of these
unreliable factors on the complex networks.

Due to network congestion or node failures, data loss is a common phenomenon in data
transmission in complex dynamical networks. Yang et al. [23] developed a model for complex
dynamical networks with random packet losses which occur in the communication links between
every two neighbor nodes. In their paper, the packet losses are described by a set of Bernoulli
random variables multiplied by coupling coefficients, and the exponential mean-square stability and
synchronization problems are investigated by defining the packet loss probability matrix (PLPM) [23].
However, there is no treatment of the random packet loss in the interaction topology. Even using for
reference the previous data compensation methods that are applied in different research areas such as
filtering and stability in networked systems [24–27], estimation in complex dynamical networks [28,29],
etc., there are still some differences between the compensation values and the actual values (except for
stationary systems)—that is, the influence of data loss still exists in the network.

Based on the above, it is clear that complex dynamical network models considering random data
loss in the interaction topology require further investigation. Therefore, in this paper, we consider a
discrete-time state-coupling complex dynamical network with random data loss on the interactions
between the neighbor nodes, and a new complex dynamical network model is presented by introducing
an auxiliary observer. When the data loss takes place in a communication channel from one node to
another at one moment, the corresponding data in the observer will be used to compensate for the lost
data in the coupling term. Applying Lyapunov stability theory and stochastic analysis, we derive a
sufficient condition in the form of LMIs to guarantee that the compensation values finally equal to the
lost values—namely, the influence of random data loss will be eliminated in the proposed model.The
output-coupling complex dynamical network [30] is another model which is recognized and studied
by researchers. Here, we generalize the proposed modeling method to output-coupling complex
dynamical networks.

The remainder of this paper is organized as follows. A model for discrete-time complex dynamical
networks with random data loss is formulated in Section 2 . In Section 3, the model analysis is presented.
Some numerical examples are provided to demonstrate the effectiveness of the proposed model in
Section 4. Conclusions are given in Section 5.

Notation 1. Unless specified otherwise, throughout this paper we let ‖x‖ denote the Euclidean norm of a vector
x. I is an identity matrix of suitable dimensions and O, is a zero matrix of suitable dimensions. XT represents
the transpose of a matrix X, and X > 0, X < 0, and X ≤ 0 mean that X is positive-definite, negative-definite,
and negative-semidefinite, respectively. [X]N×N is a N × N block matrix whose every block is X. E [·] denotes
the operator of the mathematical expectation. ⊗ denotes the Kronecker product, and ◦ denotes the Hadamard
product. ∗ denotes the transpose of symmetric term and diag (· · ·) denotes a block-diagonal matrix.

2. Network Modeling and Preliminaries

The typical discrete-time complex dynamical network is as follows:

xi,k+1 = Axi,k + f (xi,k) + d
N

∑
j=1

cijΓxj,k, (1)

where i = 1, 2, . . . , N denotes the ith node, xi,k = (xi1,k, xi2,k, . . . , xin,k)
T ∈ Rn denotes the state vector

of the ith node at time k, A ∈ Rn×n is a constant matrix, f (·) : Rn → Rn is the known nonlinear
function, d is the coupling strength, and matrix C =

(
cij
)

N×N is the coupling configuration matrix.
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If there is a link from node j to node i (i 6= j), then cij = 1; otherwise, cij = 0. Assume that matrix C
satisfies cii = −∑N

j=1,j 6=i cij. Γ ∈ Rn×n is the inner connecting matrix between two connected nodes.
The complex dynamical network model (1) is established in an ideal situation without the

consideration of random data loss. Yang et al. [23] considered the data loss taking place in the
communication between neighbor nodes, and established the corresponding complex dynamical
network model as follows:

xi,k+1 = Axi,k + f (xi,k) + d
N

∑
j=1

bij,kcijΓxj,k, (2)

where bij,k ∈ R are independent identically distributed Bernoulli random variables. If there is data loss
in the link from node j to node i (i 6= j) at time k, then bij,k = 0; otherwise, bij,k = 1. bii,k = 1 always
holds. bij,k takes 0 or 1 with the probabilities:

Pr
{

bij,k = 1
}
= E

{
bij,k

}
= b̄ij,

Pr
{

bij,k = 0
}
= 1− b̄ij = b̂ij.

B̄ =
(
b̄ij
)

N×N and B̂ =
(
b̂ij
)

N×N .
However, the influence of data loss still exists in the network, and may give rise to adverse effects

such as low transmission efficiency or transmission failure. Therefore, we model a complex dynamical
network with data loss by introducing an auxiliary observer and compensating for the lost states with
the corresponding observer states in the coupling term. The corresponding state-coupling complex
dynamical network model is presented as follows:

xi,k+1 = Axi,k + f (xi,k) + d
N

∑
j=1

[
bij,kcijΓxj,k +

(
1− bij,k

)
cijΓx̂j,k

]
,

yi,k = Hixi,k,

x̂i,k+1 = Ax̂i,k + f (x̂i,k) + d
N

∑
j=1

cijΓx̂j,k + Ki (ŷi,k − yi,k) ,

ŷi,k = Hi x̂i,k,

(3)

where yi,k ∈ Rm are the outputs of the ith node in the network, Hi ∈ Rm×n denote the output matrices
of the ith node, x̂i,k = (x̂i1,k, x̂i2,k, . . . , x̂in,k)

T ∈ Rn denote the observation values of xi,k, ŷi,k ∈ Rm are
the outputs of the observer, and Ki ∈ Rn×m are the observer gains to be determined. Here, we assume
the data loss processes on all the interactions between the neighbor nodes are mutually independent.

Remark 1. The random data losses bring uncertainty to the network, which can be measured by the
entropy in information theory [31,32]. In this paper, the random data losses are described by a set of
random variables satisfying the Bernoulli distribution, so the entropy of each Bernoulli random process
is H

(
bij
)

= −Pr
{

bij = 1
}

logPr
{

bij = 1
}
− Pr

{
bij = 0

}
logPr

{
bij = 0

}
= −b̄ijlogb̄ij − b̂ijlogb̂ij.

Since all the Bernoulli random processes are mutually independent, the joint entropy is ∑N
i,j=1 cijH

(
bij
)
.

Remark 2. The model (3) is constructed under the assumption that the transmission time between the network
and the observer can be neglected. Namely, the transmission time from yi,k to the observer and x̂j,k to the network
is neglectable.

Remark 3. In order to eliminate the influence of random data loss, we tried to find a kind of compensation
method whose compensation value could finally equal to the lost data. Because of the favorable performance on
observation, we chose the observer state values as the compensation values and propose the complex dynamical
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network model (3). Note that the aim of the proposed model (3) is to compensate the lost network states with
the observer states after the error convergence is achieved in an unbiased fashion in real-time. The data loss
existing before convergence cannot be compensated without bias. We will study the finite-time and the fixed-time
asymptotic convergence in future work to speed up convergence.

Remark 4. In the actual data transmission process, there generally exists a detecting mechanism to judge
whether the data are transmitted successfully or not. For example, in the Internet, TCP (Transmission Control
Protocol) uses the ACK (acknowledgment character) to acknowledge receipt of a packet. Therefore, we can judge
whether bij,k = 1 or not via a certain detection mechanism and realize the construction of the proposed model.

For the purpose of analyzing the proposed complex dynamical network model (3), an assumption
and a lemma are given as follows.

Assumption 1. There exists a positive constant α such that

‖ f (u)− f (v)‖ ≤ α ‖u− v‖ ∀u, v ∈ Rn. (4)

Lemma 1 ([33]). Given real matrices Ω1, Ω2, and Ω3 of appropriate dimensions, let Ω1 = ΩT
1 , and Ω2 =

ΩT
2 > 0. Then, the linear matrix inequality Ω1 + ΩT

3 Ω−1
2 Ω3 < 0 holds if and only if the following

condition holds: [
Ω1 ΩT

3
Ω3 −Ω2

]
< 0.

3. Model Analysis

In this section, we analyze the complex dynamical network model (3) proposed in Section 2.
An auxiliary observer is introduced in the proposed model (3). Once the data loss happens in a

data transmission channel, the corresponding data in the observer will be used to compensate for the
lost data. If appropriate observer gains Ki are chosen to make the observation states x̂i,k approach the
network states xi,k, then the observer outputs ŷi,k will approach the network outputs yi,k, the coupling

term ∑N
j=1

[
bij,kcijΓxj,k +

(
1− bij,k

)
cijΓx̂j,k

]
will approach ∑N

j=1 cijΓxj,k, and the output feedback term
Ki (ŷi,k − yi,k) will approach the zero matrix. Thus the proposed complex dynamical network
model (3) will approach the ideal complex dynamical network model (1), that is, the influence of the
random data loss can be eliminated when state observation is achieved.

In the following, we derive a method to determine feasible observer gains Ki.
Defining ei,k = x̂i,k − xi,k (i = 1, 2, . . . , N) as the observation errors in the complex dynamical

network model (3), one can obtain the following error system:

ei,k+1 = Ax̂i,k − Axi,k + f (x̂i,k)− f (xi,k) + Ki (ŷi,k − yi,k) + d
N

∑
j=1

cijΓx̂j,k

− d
N

∑
j=1

[
bij,kcijΓxj,k +

(
1− bij,k

)
cijΓx̂j,k

]
= Aei,k + f (x̂i,k)− f (xi,k) + Ki Hiei,k + d

N

∑
j=1

[
bij,kcijΓx̂j,k +

(
1− bij,k

)
cijΓx̂j,k

]
− d

N

∑
j=1

[
bij,kcijΓxj,k +

(
1− bij,k

)
cijΓx̂j,k

]
= f̃i,k + (A + Ki Hi) ei,k + d

N

∑
j=1

bij,kcijΓej,k,

(5)
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where f̃i,k = f (x̂i,k)− f (xi,k).

Theorem 1. Suppose that Assumption 1 holds. The error system (5) is asymptotically stable and the error
states converge to zero if there exist matrices Pi = PT

i > 0, Si (i = 1, 2, . . . , N) and a scalar τ > 0 satisfying
the following inequality: Ψ + τα2 IN·n M + dGTΛ Q

MT + dΛG Λ− τ IN·n O
QT O −Λ

 < 0, (6)

where
Ψ = ĀTΛĀ + QĀ + ĀTQT + dMG + dGT MT + d2Φ−Λ,
Si = PiKi, Ā = IN ⊗ A, Λ = diag (P1, . . . , PN),
Q = diag

(
HT

1 ST
1 , . . . , HT

NST
N
)
, M = ĀTΛ + Q,

G = ((B̄ ◦ C)⊗ In) [Γ]N×N ,

Φ =


∑N

i=1 b̄i1c2
i1ΓTPiΓ ∑N

i=1 b̄i1ci1ΓT Pi b̄i2ci2Γ · · · ∑N
i=1 b̄i1ci1ΓT Pi b̄iNciNΓ

∗ ∑N
i=1 b̄i2c2

i2ΓT PiΓ · · · ∑N
i=1 b̄i2ci2ΓT Pi b̄iNciNΓ

...
...

. . .
...

∗ ∗ · · · ∑N
i=1 b̄iNc2

iNΓT PiΓ

.

Then, the observer gains can be determined by Ki = P−1
i Si.

Proof of Theorem 1. Choose the following Lyapunov function:

V (k) =
N

∑
i=1

eT
i,kPiei,k. (7)

Deriving the difference of V (k), one obtains:

∆V (k)

=
N

∑
i=1

(
eT

i,k+1Piei,k+1 − eT
i,kPiei,k

)
=

N

∑
i=1

{[
f̃i,k + (A + Ki Hi) ei,k + d

N

∑
j=1

bij,kcijΓej,k

]T
Pi

[
f̃i,k + (A + Ki Hi) ei,k + d

N

∑
j=1

bij,kcijΓej,k

]
− eT

i,kPiei,k

}
=

N

∑
i=1

{
f̃ T
i,kPi f̃i,k + f̃ T

i,kPi (A + Ki Hi) ei,k + eT
i,k (A + Ki Hi)

T Pi f̃i,k + f̃ T
i,kPid

N

∑
j=1

bij,kcijΓej,k

+ d
[ N

∑
j=1

bij,kcijΓej,k

]T
Pi f̃i,k + eT

i,k (A + Ki Hi)
T Pi (A + Ki Hi) ei,k

+ eT
i,k (A + Ki Hi)

T Pid
N

∑
j=1

bij,kcijΓej,k + d
[ N

∑
j=1

bij,kcijΓej,k

]T
Pi (A + Ki Hi) ei,k

+ d2
[ N

∑
j=1

bij,kcijΓej,k

]T
Pi

N

∑
j=1

bij,kcijΓej,k − eT
i,kPiei,k

}
.

(8)
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Let Π = diag
(

HT
1 ST

1 P−1
1 S1H1, . . . , HT

NST
N P−1

N SN HN

)
, ek =

[
eT

1,k . . . eT
N,k
]T , f̃k =

[
f̃ T
1,k . . . f̃ T

N,k
]T ,

and ηk =
[
eT

k f̃ T
k
]T . Taking the mathematical expectation of ∆V (k), one has:

E [∆V (k)] = f̃ T
k Λ f̃k + f̃ T

k MTek + eT
k M f̃k + f̃ T

k dΛGek

+ eT
k dGTΛ f̃k + eT

k

(
Π + ĀTΛĀ + QĀ + ĀTQT

)
ek

+ eT
k

(
dMG + dGT MT

)
ek + eT

k d2Φek − eT
k Λek

= ηT
k

[
Π + Ψ M + dGTΛ

MT + dΛG Λ

]
ηk.

(9)

Then, from the Lipschitz condition (Assumption 1), we can get that f̃ T
k f̃k ≤ α2eT

k ek, which is
equivalent to

Tk = ηT
k

[
−α2 IN·n O

O IN·n

]
ηk ≤ 0. (10)

As the Tk is non-positive, (9) is negative definite if and only if there exists a scalar τ > 0 such that
E [∆V (k)] < τTk. Hence, the following inequality can be obtained:[

Π + Ψ + τα2 IN·n M + dGTΛ
MT + dΛG Λ− τ IN·n

]
< 0. (11)

Using Lemma 1, we can see that (11) is equivalent to (6).
According to the Lyapunov stability theory and stochastic analysis, the error system (5) is

asymptotically stable (i.e., the error variables will converge to zero), and the observer gains can
be obtained by Ki = P−1

i Si. The proof is completed.

We can calculate the observer gains Ki by solving the LMI (6) and complete the construction of
the proposed complex dynamical network model (3).

Remark 5. Many works [5–7,34–38] have assumed state-coupling (usually diagonal coupling) among the
nodes in a network, implying that a node communicates with its connected neighbors by all its state variables.
In addition, there exists the output-coupling pattern that each node communicates with neighbors only by its
outputs. Here, we generalize the proposed modeling method to a output-coupling complex dynamical network
with random data loss:

xi,k+1=Axi,k + f (xi,k) + d
N

∑
j=1

[
bij,kcijLyj,k +

(
1− bij,k

)
cijLŷj,k

]
,

yi,k =Hixi,k,

x̂i,k+1=Ax̂i,k + f (x̂i,k) + d
N

∑
j=1

cijLŷj,k + Ki (ŷi,k − yi,k) ,

ŷi,k =Hi x̂i,k,

(12)

where L ∈ Rn×m denotes the inner coupling matrix.
The analysis concept of the output-coupling complex dynamical network (12) is similar to that of the

proposed model (3), so the detailed analysis is omitted here.

4. Numerical Simulation

In this section, we give two numerical examples to demonstrate the validity of the proposed
discrete-time complex dynamical network model with random data loss. Here, we consider complex
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dynamical networks generated from the WS small-world network model and the BA scale-free
network model due to the universality of the “small-world” and “scale-free” characteristics in most
real networks.

Example 1. A state-coupling WS small-world network.

Consider the state-coupling WS small-world network with 10 nodes shown in Figure 1.
The corresponding network coupling configuration matrix is:

C =



−4 1 1 0 0 0 0 0 1 1
1 −3 1 0 0 0 0 0 1 0
1 1 −4 1 1 0 0 0 0 0
0 0 1 −3 1 1 0 0 0 0
0 0 1 1 −5 1 1 0 0 1
0 0 0 1 1 −4 1 1 0 0
0 0 0 0 1 1 −4 0 1 1
0 0 0 0 0 1 0 −3 1 1
1 1 0 0 0 0 1 1 −5 1
1 0 0 0 1 0 1 1 1 −5


.

Figure 1. Topology structure of the WS small-world network (the size of node depends on its degree).

The node dynamic is the following nonlinear system:
xk+1 = −yk + 0.02e−x2

k ,

yk+1 = xk + 0.199yk,

zk+1 = xk − 5.7− 0.02e−z2
k .

(13)

This satisfies Assumption 1 by α = 0.4. From Figure 2, we know this node dynamic is a
non-stationary system.
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Figure 2. Phase diagram of the isolated node.

The simulation parameters are as follows:

d = 0.01, τ = 1, A =

0 −1 0
1 0.199 0
1 0 0

, Γ =

1 0 0
0 1 0
0 0 1

,

H1 =
[
0.9 0 0

]
, H2 =

[
0.5 0 0

]
, H3 =

[
0.8 0 0

]
, H4 =

[
0.7 0 0

]
, H5 =

[
0.9 0 0

]
,

H6 =
[
0.6 0 0

]
, H7 =

[
0.7 0 0

]
, H8 =

[
0.8 0 0

]
, H9 =

[
0.9 0 0

]
, H10 =

[
0.5 0 0

]
,

B̄ =



1 0.8 0.7 0.6 0.8 0.8 0.7 0.6 0.6 0.8
0.6 1 0.7 0.8 0.6 0.8 0.6 0.7 0.8 0.6
0.6 0.7 1 0.6 0.6 0.7 0.8 0.8 0.7 0.8
0.8 0.6 0.7 1 0.7 0.6 0.8 0.8 0.6 0.6
0.6 0.7 0.8 0.6 1 0.6 0.7 0.7 0.7 0.8
0.8 0.7 0.7 0.8 0.6 1 0.7 0.7 0.7 0.6
0.8 0.8 0.8 0.6 0.6 0.7 1 0.7 0.6 0.7
0.7 0.6 0.8 0.7 0.6 0.7 0.7 1 0.6 0.8
0.6 0.6 0.8 0.6 0.7 0.8 0.7 0.6 1 0.7
0.7 0.7 0.8 0.8 0.6 0.8 0.7 0.8 0.6 1


.

The initial conditions of xi,k, x̂i,k (i = 1, 2, . . . , 10) are respectively taken as the random numbers
in the intervals [−2, 2] and [−3, 3]. Then, according to Theorem 1 and using the YALMIP toolbox in
Matlab, we can get the Pi and the corresponding observer gains Ki as follows:

P1 =

 0.2811 0.0813 −0.0066
0.0813 0.7521 −0.0302
−0.0066 −0.0302 0.6318

, P2 =

 0.2816 0.0821 −0.0067
0.0821 0.7525 −0.0302
−0.0067 −0.0302 0.6320

,

P3 =

 0.2804 0.0795 −0.0065
0.0795 0.7510 −0.0301
−0.0065 −0.0301 0.6309

, P4 =

 0.2814 0.0817 −0.0066
0.0817 0.7523 −0.0302
−0.0066 −0.0302 0.6319

,

P5 =

 0.2802 0.0796 −0.0065
0.0796 0.7510 −0.0301
−0.0065 −0.0301 0.6310

, P6 =

 0.2810 0.0808 −0.0066
0.0808 0.7519 −0.0302
−0.0066 −0.0302 0.6316

,

P7 =

 0.2806 0.0800 −0.0065
0.0800 0.7513 −0.0302
−0.0065 −0.0302 0.6312

, P8 =

 0.2816 0.0821 −0.0067
0.0821 0.7525 −0.0302
−0.0067 −0.0302 0.6320

,
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P9 =

 0.2796 0.0783 −0.0064
0.0783 0.7499 −0.0301
−0.0064 −0.0301 0.6302

, P10 =

 0.2800 0.0791 −0.0064
0.0791 0.7507 −0.0301
−0.0064 −0.0301 0.6308

,

K1 =

−0.1208
−1.0299
−1.0316

, K2 =

−0.2235
−1.8531
−1.8564

, K3 =

−0.1280
−1.1595
−1.1608

, K4 =

−0.1574
−1.3238
−1.3261

, K5 =

−0.1139
−1.0307
−1.0319

,

K6 =

−0.1785
−1.5451
−1.5474

, K7 =

−0.1485
−1.3249
−1.3265

, K8 =

−0.1397
−1.1582
−1.1603

, K9 =

−0.1087
−1.0313
−1.0322

, K10 =

−0.2019
−1.8557
−1.8577

.

Three data transmission channels c12, c101, and c35 were chosen to show the process of
random data loss, as shown in Figure 3. Figure 4 shows the trajectories of observation errors
ein,k (i = 1, 2, . . . , 10; n = 1, 2, 3) in Example 1. It can be observed that all of the observation errors
converged to zero after the step k = 4, that is, the observer states x̂i,k approached the network states
xi,k, which implies the lost data was compensated without bias. Along with Figure 3, it can be said
that the influence of random data loss was eliminated, even if there were still data losses after k = 4.

Figure 3. Evolutions of the random process b12,k, b101,k, and b35,k in Example 1. b̂12 = 0.2, b̂101 = 0.3,
and b̂35 = 0.4.
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Figure 4. Trajectories of observation errors in Example 1.

Example 2. A state-coupling BA scale-free network.

Consider a state-coupling BA scale-free network with 10 nodes shown in Figure 5.
The corresponding network coupling configuration matrix is

C =



−6 1 1 1 1 1 0 1 0 0
1 −5 1 1 0 0 1 1 0 0
1 1 −5 0 1 0 1 0 0 1
1 1 0 −2 0 0 0 0 0 0
1 0 1 0 −4 1 0 0 1 0
1 0 0 0 1 −3 0 0 1 0
0 1 1 0 0 0 −2 0 0 0
1 1 0 0 0 0 0 −3 0 1
0 0 0 0 1 1 0 0 −2 0
0 0 1 0 0 0 0 1 0 −2


.
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Figure 5. Topology structure of the BA scale-free small-world network (the size of node depends on its degree).

The output matrices are as follows:
H1 =

[
0.7 0.5 0.4

]
, H2 =

[
0.5 0.6 0.8

]
, H3 =

[
0.6 0.3 0.7

]
, H4 =

[
0.8 0.7 0.8

]
,

H5 =
[
0.7 0.6 0.9

]
, H6 =

[
0.8 0.5 0.6

]
, H7 =

[
0.7 0.3 0.4

]
, H8 =

[
0.4 0.7 0.6

]
,

H9 =
[
0.7 0.8 0.5

]
, H10 =

[
0.9 0.7 0.7

]
.

The node dynamic and other parameters are consistent with Example 1, and the initial conditions
of xi,k, x̂i,k are respectively taken as the random numbers in the intervals [−2, 2] and [−5, 5]. Then, Pi
and the corresponding observer gains Ki are obtained as follows:

P1 =

 0.4464 −0.0838 −0.1230
−0.0838 0.6130 −0.2751
−0.1230 −0.2751 0.5101

, P2 =

 0.4969 −0.0283 −0.0976
−0.0283 0.5941 −0.3758
−0.0976 −0.3758 0.5415

,

P3 =

 0.4003 −0.0292 −0.1258
−0.0292 0.6153 −0.3620
−0.1258 −0.3620 0.5533

, P4 =

 0.4801 −0.0515 −0.1353
−0.0515 0.6071 −0.3338
−0.1353 −0.3338 0.5503

,

P5 =

 0.4632 −0.0350 −0.1150
−0.0350 0.6042 −0.3641
−0.1150 −0.3641 0.5441

, P6 =

 0.4313 −0.0604 −0.1420
−0.0604 0.6237 −0.3018
−0.1420 −0.3018 0.5479

,

P7 =

 0.3794 −0.0580 −0.1588
−0.0580 0.6603 −0.2462
−0.1588 −0.2462 0.5998

, P8 =

 0.5676 −0.0362 −0.0920
−0.0362 0.5813 −0.3573
−0.0920 −0.3573 0.5331

,

P9 =

 0.5581 −0.0876 −0.1422
−0.0876 0.6048 −0.2932
−0.1422 −0.2932 0.5456

, P10 =

 0.4707 −0.0677 −0.1525
−0.0677 0.6188 −0.3005
−0.1525 −0.3005 0.5629

,

K1 =

 0.5998
−0.6775
−0.5570

, K2 =

 0.5882
−0.3431
−0.2201

, K3 =

 0.6326
−0.5889
−0.4611

, K4 =

 0.4555
−0.4020
−0.3082

, K5 =

 0.4927
−0.3635
−0.2615

,
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K6 =

 0.4888
−0.5764
−0.4776

, K7 =

 0.4757
−0.9462
−0.8544

, K8 =

 0.6635
−0.3466
−0.2053

, K9 =

 0.5371
−0.4788
−0.3681

, K10 =

 0.4237
−0.4685
−0.3825

.

Three data transmission channels c24, c59, and c82 were chosen to show the process of random data
loss in Figure 6. Along with the trajectories of observation errors ein,k (i = 1, 2, . . . , 10; n = 1, 2, 3) in
Example 2, which are shown in Figure 7, it can be observed that the observation errors all converged to
zero after step k = 4, that is, the observer states x̂i,k approached the network states xi,k, which implies
the lost data was compensated without bias and the influence of random data loss was eliminated,
even if there were still data losses after k = 4.

The simulation examples above cover the networks of the WS small-world and the BA scale-free
topology structures, indicating that the proposed modeling method is effective in eliminating the
influence of random data loss in complex dynamical networks.

Figure 6. Evolutions of the random process b24,k, b59,k, and b82,k in Example 2. b̂24 = 0.2, b̂59 = 0.3,
and b̂82 = 0.4.
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Figure 7. Trajectories of observation errors in Example 2.

5. Conclusions

In this paper, we proposed a new model for discrete-time complex dynamical networks with
random data losses which may occur in the links between every two neighbor nodes. The data losses
are described as a set of random variables satisfying a Bernoulli distribution. To construct the proposed
model, an auxiliary observer was introduced, and we chose the observer states to compensate for
the lost states in the coupling term. According to the analysis, we derived a sufficient condition to
guarantee the compensation values finally equal to the lost values, thus the proposed model finally
succeeded in eliminating the influence of data loss. From the simulation results, the proposed model
was demonstrated to be effective.

In this paper, we consider only the internal data loss happening on the interaction topology in
complex dynamical networks. However, it is possible to have data loss in the transmission of output
variables from the observed network to the controller in the observer simultaneously. Further study
could focus on ways to solve this problem. It is also interesting to mention that a number of systems
and networks possess multiple time scales [39–42], where the data loss could happen on different
time scales. To extend our model to complex dynamical networks where different node systems
have different time scales is thus an interesting research topic. In addition, we only focused on the
asymptotic convergence of the error system, and we will study the finite-time and the fixed-time
asymptotic convergence in future work.
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