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Abstract: The presence of marine ambient noise makes it difficult to extract effective features from
ship-radiated noise. Traditional feature extraction methods based on the Fourier transform or
wavelets are limited in such a complex ocean environment. Recently, entropy-based methods have
been proven to have many advantages compared with traditional methods. In this paper, we
propose a novel feature extraction method for ship-radiated noise based on hierarchical entropy
(HE). Compared with the traditional entropy, namely multiscale sample entropy (MSE), which
only considers information carried in the lower frequency components, HE takes into account both
lower and higher frequency components of signals. We illustrate the different properties of HE and
MSE by testing them on simulation signals. The results show that HE has better performance than
MSE, especially when the difference in signals is mainly focused on higher frequency components.
Furthermore, experiments on real-world data of five types of ship-radiated noise are conducted.
A probabilistic neural network is employed to evaluate the performance of the obtained features.
Results show that HE has a higher classification accuracy for the five types of ship-radiated noise
compared with MSE. This indicates that the HE-based feature extraction method could be used to
identify ships in the field of underwater acoustic signal processing.

Keywords: underwater signal processing; feature extraction; multiscale sample entropy (MSE);
hierarchical entropy (HE); ship-radiated noise

1. Introduction

Identification and classification of marine vehicles are important in the field of underwater signal
processing, as they are of great value in the military and marine economy [1–4]. An important aspect of
the ship classification problem is to extract effective features from received signals. Features extracted
from a signal are the representation of part of the signal’s characteristics. Insufficient characteristic
reflection will lead to low accuracy of classification. Therefore, there is a great need for the development
of feature extraction methods in the field of underwater signal processing.

The traditional feature extraction method is based on the frequency domain. There are many
studies devoted to extracting the spectral characteristics of signals, such as the analysis of the power
spectral density of signals [5]. However, studies show that traditional methods have shortcomings and
limitations in practical applications. For example, the traditional spectrum-based method is based on
the assumption of the linearity of the signals, which means the features extracted using this method
will miss the signal’s nonlinear characteristics [6]. In this paper, we use entropy as a feature extraction
method, which is based on the time domain and quantifies the complexity of the signal as a feature.
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Entropy, as a feature extraction method measuring the system’s complexity in the time domain,
has been maturely applied to fault diagnosis and pathological signal detection [7–11]. Pincus proposed
the concept of approximate entropy (AE) based on the theory of Shannon entropy in 1991 [12]. However,
the AE has self-matching terms in the calculation, which leads to bias of the result. This kind of bias
results in two disadvantages in the calculation of AE. One is that the computation of AE is overly
dependent on the length of data, and the other is the lack of correlation between the AE result and
the signal complexity. Thus, in 2000, Richman and Moorman proposed an improvement of the AE,
which is the sample entropy (SE) [13]. It solved the consistency problem in AE, and in the subsequent
research, the fast sample entropy was proposed, which simplified the SE’s calculation [14]. However,
in pathological research, a single scale cannot illustrate the whole information carried in signals.
To distinguish different kinds of pathological signals and calculate the complexity of interested signals
more accurately, multiscale sample entropy (MSE) based on the coarse-graining process [15–17] and
hierarchical entropy (HE) based on hierarchical decomposition [18,19] have been proposed. HE, as a
method improving MSE, is capable of roller bearing fault diagnosis [20]. Compared with the MSE,
which only considers the lower frequency components of signals in the calculation, HE that retains
both the lower frequency and higher frequency components of signals can better recognize different
pathological signals in practical applications.

The calculation of entropy on a single scale only takes into account the temporal information in
the signal. Although it has many advantages such as simple calculation, sometimes it cannot reflect the
complexity differences between different signals accurately. Many previous research works applied
the coarse-graining process to entropy. This improvement can describe the complexity of signals at
different scales. For example, Li proposed a method of extracting the features of ship-radiated noise
combined with variational mode decomposition (VMD) and multiscale permutation entropy (MPE) in
2017 [21]. Yang combined VMD with fluctuation-based dispersion entropy [22]. Chen proposed a new
method based on permutation entropy and coarse-graining [23]. Shashidhar applied MSE to weak
signal detection problems [24]. All of the above studies have proven that entropy based on multiple
scales has certain applicability in feature extraction of underwater acoustic signals. However, they did
not consider the high-frequency components in the signal. In other words, much useful information
may be missed at a high frequency. Meanwhile, research showed that the lower frequency components
of ambient noise have increased over the past few decades [25]. This makes it more difficult to deal
with the detection and feature extraction of ship-radiated noise. If the lower and higher frequency
components of the signal can be separately analyzed when extracting the features, we may get more
complete information contained in the signal.

In this paper, HE is used as a novel feature extraction method for ship-radiated noise. It has
great advantages compared with methods such as MSE, preserving both the low-frequency and
high-frequency components of the signal while performing multi-scale decomposition and calculating
the complexity of the signals of interest. Hence, HE describes the signal characteristics more accurately.
Several sets of simulation signals were used to compare the difference between HE and MSE in
identifying different types of signals, verifying that the HE has good recognition ability, especially for
signals with similar low-frequency components and different high-frequency components. For those
signals with different low frequency components and similar high frequency components, since HE
also considers the low-frequency components of the signal, the actual results are comparable to those
of MSE. At the end of this paper, five different types of ship-radiated noises are presented, using
SE, MSE, and HE for feature extraction, respectively. In order to compare the performance of the
features extracted by different methods more clearly, we will pass the different features through a
probabilistic neural network and criticize the performance of different features through the accuracy
of classification.

The rest of this paper organized as follows: Section 2 introduces the concept of SE, MSE, and HE.
In Section 3, the proposed method is applied to the simulated signal to show the properties of HE and



Entropy 2019, 21, 793 3 of 20

MSE. In Section 4, five types of ship-radiated noise are given to reflect the difference between the two
feature extraction methods. Finally, Section 5 is the conclusion.

2. Basic Theory

2.1. Sample Entropy

Sample entropy quantifies a system’s degree of regularity by calculating the negative natural
logarithm of conditional probability. It was developed by Richman and Moorman in 2000.
Compared with approximate entropy, sample entropy eliminates the bias caused by self-matching.
Meanwhile, it also reduces the computational time. Given a time series {x(i) : 1 ≤ i ≤ N}, N is the
length of the original time series. {x(i) : 1 ≤ i ≤ N} can be reconstructed into a set of sequences
as follows: X(i) = [x(i), x(i + 1), . . . , x(i + m− 1)] : 1 ≤ i ≤ N −m + 1, where m is the embedding
dimension. According to m and N + m − 1 sequences, which were obtained above, the distance
d[X(i), X(j)] between any two vectors can be defined, abbreviated as Dm(i):

Dm(i) = d[X(i), X(j)] = max[|x(i + k)− x(j + k)|] : 0 ≤ k ≤ m− 1; 1 ≤ i, j ≤ N −m + 1; i 6= j. (1)

Since the time series {x(i) : 1 ≤ i ≤ N} has already been given, the standard deviation (SD) of the
time series can be readily obtained. Set r = 0.1 SD ∼ 0.25 SD to be the threshold, with the distance
d[X(i), X(j)]. The formula of Bm

i (r) is given by:

Bm
i (r) =

1
N −m

{the number of d[X(i), X(j)] ≤ r}. (2)

Equation (2) computes the probability of the distance between X(i) and the remaining sequences
within the threshold r. Moreover, the average of Bm

i (r) can obtained by Equation (3):

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r). (3)

Increasing the embedding dimension m to m + 1, then Bm+1
i (r) can be analogously obtained by

repeating the previous steps. Finally, the sample entropy (SampEn(m, r, N)) is given by the following
equation:

SampEn(m, r, N) = −ln[Bm+1(r)/Bm(r)]. (4)

In order to better understand the calculation process of sample entropy, we briefly describe it
through Figure 1.

x(1)

x(2)

x(3)

x(22)

x(23)

x(29)

x(30)

x(31)

Figure 1. Stimulation signal.

A time series {x(i) : 1 ≤ i ≤ 50} is given to illustrate the process for calculating SampEn(m, r, N).
We specify m = 2 and r = 0.15 SD. The horizontal dashed lines around x(1), x(2), and x(3) represent
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x(1) ± r, x(2) ± r, and x(3) ± r, respectively. If the absolute difference between any two points
is less than r, these two points match each other; also, it can be viewed as “indistinguishable”.
In Figure 1, all of the points that match x(1), x(2), and x(3) are represented with same symbol,
respectively. Let {x(1), x(2)} and {x(1), x(2), x(3)} be a template sequence with two points and
three points, respectively. Throughout {x(i) : 1 ≤ i ≤ 50}, there are two sequences {x(22), x(23)}
and {x(29), x(30)} that match the template sequence {x(1), x(2)}. As for template sequence
{x(1), x(2), x(3)}, there is only one sequence {x(29), x(30), x(31) that matches it. Count the number
of the sequences that match {x(1), x(2)} and {x(1), x(2), x(3)}. Repeat the previous steps for the
next two-point sequence {x(2), x(3)} and three-point sequence {x(2), x(3), x(4)}. Sum the number
of sequences that match two-point and three-point sequence {x(2), x(3)} and {x(2), x(3), x(4)}.
Add them to the previous values that we already obtained. Repeat the same work mentioned above
until all other possible template sequences ({x(1), x(2), x(3)}, . . . , {x(48), x(49), x(50)}) are considered.
The ratio between the sum of two-point template matches and the sum of three-point template matches
can be obtained. Therefore, SampEn(m, r, N) is the natural logarithm of this ratio.

The value of SampEn(m, r, N) is related to the parameters m and r. Therefore, the choices of these
two parameters are also very important. According to Chen’s research [26], m is set to be one or two,
and r = 0.1 SD ∼ 0.25 SD under most circumstances.

2.2. Multiscale Sample Entropy

Although SE has many advantages, in some circumstances, it cannot reflect the complexity
differences between different signals accurately. The structure of signals generated from complex
systems exhibits multiple temporal scale characteristics in the actual ocean environment. SE, as a
single-scale-based method, does not account for the interrelationship between entropy and multiple
scales. In order to overcome this shortage, Costa et al. developed the concept of multiscale sample
entropy [15]. MSE can be viewed as SE with a coarse-graining process for the time series [27].
The coarse-graining process is based on averaging the samples inside moving, but non-overlapping
windows. For a given time series {x(i) : 1 ≤ i ≤ N}, the coarse-graining process is denoted as:

y(n) =
1
n

n

∑
j=1

x(ni− n + j) : 1 ≤ i ≤ Nn, (5)

where N is the length of the time series and Nn = bN
n c stands for the largest integer no greater than N

n .
Hence, MSE at scale n is obtained by calculating the sample entropy of y(n). The MSE focuses on lower
frequency components of a time series. However, it ignores the information contained in the higher
frequency components of the signal. This problem leads to the development of hierarchical entropy.

2.3. Hierarchical Entropy

Hierarchical entropy (HE) is an algorithm quantifies the “complexity” of a time series based on
SE and hierarchical decomposition. Unlike MSE, hierarchical decomposition takes both higher and
lower frequency components of a time series into consideration [18]. Specifically, for a given time
series, x = {x(i) : 1 ≤ i ≤ 2n}. The definition of two operators Q0 and Q1 is as follows:

Q0(x) = (
x(2i− 1) + x(2i)

2
: 1 ≤ i ≤ 2n−1), (6)

Q1(x) = (
x(2i− 1)− x(2i)

2
: 1 ≤ i ≤ 2n−1), (7)

Q0(x) and Q1(x) are respectively the lower and higher frequency component of time series x, and their
scale is two and their length 2n−1. As a matter of fact, x can be reconstructed from Q0(x) and Q1(x).

x = Q0(x)j + Q1(x)j, Q0(x)j −Q1(x)j : 1 ≤ j ≤ 2n−1. (8)
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Q0(x)j and Q1(x)j stand for the jth value in Q0(x) and Q1(x), respectively. Thus, Q0(x) and Q1(x)
constitute the two-scale hierarchical decomposition of the time series x.

After we obtain Q0(x) and Q1(x), each of them can also be decomposed by Q0 and Q1.
Consequently, we can get the hierarchical decomposition of the time series X at a scale of three.
A tree graph can clearly show the relationship between each hierarchical component of the time series
X in Figure 2.

Figure 2. Hierarchical decomposition of the signal with three scales.

After the hierarchical decomposition, several sub-signals x(n,e) can be obtained, where n represents
the scale and e stands for the eth sub-signal at scale n. Calculate the SE for each sub-signal, and the HE
result of X is obtained. It is important to choose the appropriate scales in different circumstances.
On the one hand, high scales usually lead to computational redundancy. On the other hand, low scales
may have insufficient accuracy in SampEn(m, r, N)’s computation.

3. Simulation Analysis of Different Signals Based on Hierarchical Entropy and Multiscale
Sample Entropy

In this section, MSE and HE are compared using different simulation signals in order to illustrate
their different characteristics. Before the simulation analysis, there are some previous steps that need
to be done. In this paper, all the SE calculation’s parameters are the same, which is m = 2, r = 0.15 SD,
and the length of the data is at least 512 points for every SE calculation. In this part, the content is
divided into the following subsections. First, we prove that the parameters chosen when calculating
SE are appropriate. Second, three different orders of AR signals with different complexity are used to
prove that HE is an effective measure of complexity. Third, different simulation signals are constructed,
and their results of HE and MSE are compared. The results show that MSE pays more attention to the
low-frequency components of the signal, and HE not only retains the information of the low-frequency
components of the signal, but also retains the information of the high-frequency components of the
signal. Finally, considering the noise interference in practical applications, this paper compares the
robustness of the two methods to noise.

3.1. Parameter Selection for Sample Entropy

Both HE and MSE are based on SE. When we calculate the SE for a signal, it is important to choose
the appropriate m and r. Since our main purpose is using entropy as a feature extraction method for
ship-radiated noise, the simulation signals in this subsection are set as follows:{

S1(n) = sin(2π ∗ 50n) + N(n),
S2(n) = sin(2π ∗ 13n) + N(n),

(9)

In Equation (9), S1(n) and S2(n) are two sinusoidal signals mixed with Gaussian white noise. We use
the sinusoidal signal in order to simulate the periodic signal produced by the ship engine or propeller.
Meanwhile, Gaussian white noise is used to simulate the ambient noise. Since the composition of the
ship-radiated noise is very complex, including ambient noise, cavitation noise, and signals produced
by propellers and the engine, we simplify the model of ship-radiated noise as Equation (9). The
signal-to-noise ratio (SNR) is set to be 5 dB, m = 2, and r = 0.15 SD. To demonstrate the impact
of different data lengths on the calculation results, we calculated 60 sets of SE results with different



Entropy 2019, 21, 793 6 of 20

lengths of the two signals, each with 30 results. The data length increased from 150 equal intervals to
3150. The result is shown in Figure 3.

0 500 1000 1500 2000 2500 3000 3500

Data Length/point

1.3
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1.5

1.6

1.7
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1.9
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a
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p
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S1
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Figure 3. S1(n) and S2(n)’s SE results with different lengths of data.

In Figure 3, as the length of the calculated sample entropy data increases, the results of the
calculation become gradually stable. When the data length is too short, the SE results are too unstable
to distinguish the sinusoidal signals of two different frequencies very well. Although the result
becomes more stable as the data length increases, due to the consideration of the amount of calculation,
when calculating the sample entropy in the paper, the data length is unified to 512. When we calculate
HE in this paper, since the data length is 8192 points, we decompose the signal into a scale of five and
guarantee that the SE’s calculation that is contained in HE is at least 512 points.

After selecting the appropriate data length, the same simulated signals in Equation (9) are used to
choose the value of m and r. The length of signal is set to be 512 points when calculating SE. The result
is displayed in Figures 4 and 5.
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Figure 4. S1(n)’s and S2(n)’s SE results with different m.
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Figure 5. S1(n)’s and S2(n)’s SE results with different r.

From Figures 4 and 5, the result of SE is too close to distinguish two signals when m = 3, and it
becomes unstable when m is larger than three, so we set m = 2 in this paper. As for r, the value of r has
little effect on the stability of the results, so we set r = 0.15 ∗ SD. The same parameters are discussed
using the real ship-radiated noise employed in this paper [28], further verifying the conclusion in this
section. The results are demonstrated in Figure 6. For some certain types of ship-radiated noise, SE
cannot distinguish them very well according to Figure 6. This is why we need to introduce HE as a
new feature extraction method to help us distinguish different signals.
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Figure 6. SE results for five types of ship-radiated noise with different parameters. (a) SE results with
different data length. (b) SE results with different m. (c) SE results with different r.

3.2. Hierarchical Entropy Analysis for the AR Process

Three autoregressive processes (AR) with different orders will be given to demonstrate that HE is
an effective method for measuring the complexity of different signals. The AR time series are given by:

ARp(t) =
p

∑
i=1

αi AR(t− i) + n(t), (10)

where n(t) is the Gaussian white noise with a standard normal distribution. The length of each AR
process is 213. p indicates the order of the AR process, and αi is the correlation coefficients. The value
of αi in each AR process is given in Table 1 according to [29].

Table 1. The correlation coefficients for generating AR processes.

α1 α2 α3 α4 α5 α6 α7

AR(1) 0.5 - - - - - -
AR(4) 0.5 0.25 0.125 0.0625 - - -
AR(7) 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078

The HE results of three AR time series are illustrated in Figure 7; HE(n, e) stands for the eth

component of hierarchical entropy at scale n, and this abbreviation is used throughout this paper.
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Figure 7. Hierarchical entropy results of AR(1), AR(4), and AR(7). (a) HE results for AR(1). (b) HE
results for AR(4). (c) HE results for AR(7).

The AR process specifies that the output value is linearly dependent on its own previous and
random terms. The dependence of the output value on the previous terms increases as the order p
increases. Furthermore, as the order p increases, the correlation of the signal increases accordingly,
making the model more predictable [23,29]. That is, the complexity of AR(p + 1) is lower than that of
AR(p). Based on this idea, the value of HE should be negatively correlated to order p. Figure 7 depicts
that the sample entropy of lower frequency components decreases while the order p of the AR time
series increases. Hence, HE can be confirmed as an effective method for measuring the complexity of
different time series.

3.3. Properties for Multiscale Sample Entropy

In this section, a set of simulation signals is employed to demonstrate the properties for MSE,
which is focused on the lower frequency components of the signal. This property leads to the result that
MSE performs well in distinguishing the signals with different low-frequency components. In order to
highlight these properties of MSE, a set of signals is given as follows:

f1(n) =

{
sin(2π ∗ 5n) : 1 ≤ n ≤ (213 − 210),
sin(2π ∗ 60n) : (213 − 210) + 1 ≤ n ≤ 213.

(11)

f2(n) =

{
sin(2π ∗ 15n) : 1 ≤ n ≤ (213 − 210),
sin(2π ∗ 60n) : (213 − 210) + 1 ≤ n ≤ 213.

(12)

The lower frequency components of f1(n) and f2(n) are different, while the high-frequency
components are the same. The waveform of f1(n) and f2(n) is shown in Figure 8. According to
the theory of MSE, MSE should be able to distinguish between the two signals very well since the
difference between the two signals is mainly in the lower frequency components. Figure 9 is the MSE
result for f1(n) and f2(n) from a scale of 1–15.
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Figure 8. The waveform of f1(n) and f2(n).
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Figure 9. The MSE result for f1(n) and f2(n) at a scale of 1 ∼ 15.

f1(n) and f2(n) can be distinguished by MSE easily since the two signals’ MSE have a great
difference when the scale is greater than eight. Therefore, MSE performs well when distinguishing
signals with different low-frequency components.

3.4. Properties for Hierarchical Entropy

According to the basic theory of hierarchical entropy, it takes into account higher frequency
components of the signal when calculating, while sample entropy and multiscale sample entropy do
not. Consequently, hierarchical entropy performs better when measuring the complexity of those
signals whose information is stored in both lower and higher frequency components. In order to
illustrate this characteristic, a set of synthetic signals are given as follows:

f3(n) =

{
sin(2π ∗ 5n) : 1 ≤ n ≤ (213 − 210),
sin(2π ∗ 60n) : (213 − 210) + 1 ≤ n ≤ 213.

(13)

f4(n) =

{
sin(2π ∗ 5n) : 1 ≤ n ≤ (213 − 210),
sin(2π ∗ 50n) : (213 − 210) + 1 ≤ n ≤ 213.

(14)

f3(n) and f4(n) are signals that contain both higher and lower frequency components. Part of the
waveform of f3(n) and f4(n) is shown in Figure 10.
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Figure 10. The waveform of f3(n) and f4(n).

It is obvious that the information stored in the lower frequency components is the same, while the
information stored in the higher frequency components is different. Based on the theory of sample
entropy and multiscale sample entropy, only the lower frequency part is considered, which will lead to
lower accuracy in distinguishing different signals while using SE or MSE. However, HE still measures
the complexity of f3(n) and f4(n) very well since it considers the information stored in the higher
frequency component. The HE results of two signals is displayed in Figure 11. The numerical result of
SE, MSE, and HE is also shown in Table 2.

Table 2. Different entropy’s results of f3(n) and f4(n).

SE MSE(2) MSE(4) HE(5,9) HE(5,13)

f3(n) 1.1447 0.2769 0.2419 0.2320 0.1533
f4(n) 1.1442 0.2862 0.2460 0.3102 0.2645

Absolute Difference 0.0005 0.0093 0.0041 0.0782 0.1112

Before the interpretation of the results, first, some abbreviations are explained. MSE(i) stands for
the multiscale entropy of signals at scale i, and HE(n, e) stands for the eth component of the hierarchical
entropy at scale n. These abbreviation are also used in the rest of this paper. According to the results
displayed in Figure 11 and Table 2. The histogram at a scale of one is the sample entropy of the
signal, HE(i, 0) is equivalent to MSE(2i−1). Based on this equivalence relationship between MSE
and HE, the HE results of f3(n) and f4(n) illustrated in Figure 11 also include part of the results of
MSE. From Figure 11c, the HE results of the low frequency components of the two signals are not
much different, but in some of the high-frequency components, the two signals can be successfully
distinguished. That is to say, MSE cannot distinguish between signals that differ only in high-frequency
components. Hence, HE has a better performance than SE or MSE in distinguish different frequency
signals, especially when the information of the signal is mainly stored in higher frequency components.
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Figure 11. Hierarchical entropy results of f3(n) and f4(n). (a) HE results for f3(n). (b) HE results for
f4(n). (c) HE’s absolute difference.

4. Feature Extraction of Ship-Radiated Noise Based on Hierarchical Entropy

4.1. Feature Extraction Method Based on HE

The main steps of the feature extraction method based on HE are shown in Figure 12.

Signals

Hierarchical 
Decomposition

High
Frequency 

Component

Calculate the Sample Entropy of Each Subsignals

Artificial Neural Network

Result

Figure 12. The flowchart of HE the feature extraction method.

• Step 1: Five types of ship-radiated noise are given in this paper; choose the appropriate hierarchical
decomposition order to guarantee that the length of sub-signal is longer than 512.

• Step 2: By doing the hierarchical decomposition n times, 2n sub-signals can be obtained,
representing the lower and higher frequency components of the original signal, respectively.
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• Step 3: Calculate the sample entropy for each sub-signal. Get the HE result.
• Step 4: Flatten the HE matrix into a vector. Pass the vector through an artificial neural network.
• Step 5: Get the classification results.

4.2. Feature Extraction of Ship-Radiated Noise Based on HE

In this section, five types of ship-radiated noise were employed for the feature extraction (the
ship-radiated noise of Ships D and E can be obtained from https://www.nps.gov/glba/learn/nature/
soundclips.htm). The sampling frequency of Ships A, B, and C was 52.7 kHz. As for Ships D and E,
the sampling frequency was 44.1 kHz. Ship A was a cruise ship. The vessel was less than 50 m away
from the hydrophone. The hydrophone depth was 4.8 m. Ship B was an ocean liner. The vessel was
less than 50 m away from the hydrophone. The hydrophone depth was 5.8 m. Ship C was a motorboat.
The distance between the vessel and the hydrophone changed from 50 m–100 m during the recording
of the data approximately.

The hydrophone depth was 5.8 m. Further information for Ships A, B, and C can be found in [30].
Ships D and E were downloaded from a public website [31]. We chose a part of each signal and divided
them into 100 segments separately. The length of each segment was 8192 sample points, namely
0.18 s of real-world data for Ships D and E and 0.15 s of real-world data for Ships A, B, and C. We
can obtain 100 results for each type of ship-radiated noise by calculating the HE and MSE for every
segment. The number of hierarchical decompositions was set as five. The waveform of five types of
ship-radiated noise is demonstrated in Figure 13. Figure 14 gives the power spectrum density analysis
results of the five types of signals.
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Figure 13. The waveform of the five types of ship-radiated noise.

Much useful information can be obtained from the power spectrum density analysis results of the
five types of ship-radiated noise in Figure 14. The narrow-band spectral lines existing in Figure 14b,c
make it easy to distinguish Ship B and Ship C. As for the rest of the types of ship, which are Ships A,
D, and E in Figure 14a,d,e, few spectral lines can be found for us to distinguish different types of ship.
Especially for Ships D and E, the fact that there was no evident distinction existing in their broadband
spectral envelops made it difficult for us to distinguish these two types of ships accurately. Therefore,
classifying these five different ships using the spectrum as a feature is difficult.

https://www.nps.gov/glba/learn/nature/soundclips.htm
https://www.nps.gov/glba/learn/nature/soundclips.htm
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Figure 14. The power spectrum density analysis results of the five types of ship-radiated noise. (a)
Ship A. (b) Ship B. (c) Ship C. (d) Ship D. (e) Ship E.

The HE results of the five types of ship-radiated noise are illustrated in Figure 15. In order to
compare the performance when HE and MSE both calculate the same data length for their sub-signals,
Figure 16 shows the MSE result of the five types of ships from a scale of 1–16. Guarantee that when
calculating the HE at a scale five, the length of the sub-signal was 512 points, the same as MSE at
a scale of 16. Since it is difficult to see the differences between the five types of ship-radiated noise
through Figure 15, part of the HE results are also shown numerically through Table 3. HE(n)represents
the HE result at scale n.
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Figure 15. The HE results for the five types of ship-radiated noise. (a) Ship A. (b) Ship B. (c) Ship C.
(d) Ship D. (e) Ship E.

According to the MSE result demonstrated in Figure 16, we can see that SE can only distinguish
Ship C from other types of ship. Throughout the MSE result from a scale of 1–16, the entropy differences
between Ships A and D and Ships B and E remained small.
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Figure 16. MSE results of the five types of ship-radiated noise.

Table 3. Part of HE results for five types of ship-radiated noise.

Ship Type SE MSE(2) MSE(4) MSE(8) HE(3,3) HE(4,7) HE(5,3) HE(5,13)

Ship A 0.64 1.04 1.72 2.21 2.25 2.19 2.08 2.17
Ship B 0.41 0.83 1.21 1.55 2.41 2.49 2.35 2.45
Ship C 1.92 2.13 2.23 2.37 2.36 2.45 2.41 2.51
Ship D 0.66 1.07 1.65 2.10 2.39 2.36 2.29 2.38
Ship E 0.42 0.75 1.06 1.53 2.37 2.47 2.72 2.61

To evaluate the performance of the above-mentioned feature extraction methods quantitatively,
the results of two methods were separately classified and identified by a probabilistic neural network.
Since the MSE’s results for the five types of ships were vectors of length 16, we fed the probabilistic
neural network with these vectors to get the classification results. As for HE, we flattened the HE’s
results from matrices into vectors of a length of 31, then fed the PNN with these vectors to get the
classification results. The classification results are demonstrated in Tables 4–6. The training set for each
type of ship was 70, and the test set was 30.

Table 4. Probabilistic neural network classification results of SE.

Type Recognized as Sensitivity Specificity
A B C D E

A 28 0 0 2 0 93.3% 90%
B 3 27 0 0 0 90% 75%
C 0 0 30 0 0 100% 100%
D 9 0 0 21 0 70% 96.7%
E 0 30 0 0 0 0% 100%

Accuracy 70.7%

Table 5. Probabilistic neural network classification results of MSE(1)∼(16).

Type Recognized as Sensitivity Specificity
A B C D E

A 21 0 0 9 0 70% 96.7%
B 0 25 0 0 5 83.3% 95.8%
C 0 0 30 0 0 100% 100%
D 4 0 0 26 0 86.7% 92.5%
E 0 5 0 0 25 83.3% 95.8%

Accuracy 84.7%
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Table 6. Probabilistic neural network classification results of HE(1)∼(5).

Type Recognized as Sensitivity Specificity
A B C D E

A 25 0 0 5 0 83.3% 99.2%
B 0 27 0 0 3 90% 100%
C 0 0 30 0 0 100% 100%
D 1 0 0 29 0 96.7% 95.8%
E 0 0 0 0 30 100% 97.5%

Accuracy 94%

Before assessing the performance of the PNN, the definitions of “sensitivity” and “specificity” are
given as follows: {

Sensitivity = TP
TP+FN ,

Speci f icity = TN
TN+FP ,

(15)

where TP, TN, FP, and FN are the abbreviations for “true positive”, “true negative ”, “false positive”,
and “false negative”, respectively. It is important to note that “accuracy” calculates the overall
classification accuracy of neural networks, which is also the average of “sensitivity”.

From Tables 4–6, it is obvious that HE was able to classify five types of ships very well. Even for
those types of ships that SE and MSE could not classify, their sensitivities in HE’s result were very
high. The accuracy of HE increased 9.3% compared with MSE and 23.3% compared with SE. In order
to eliminate the impact of sampling frequency, we reduced the sampling frequency of Ships A, B, and
C from 52.7 kHz to 44.1 kHz, calculated the HE results for five types of ships, and passed the results
through PNN. The classification result is demonstrated in Table 7. Through the table, we can see that
the classification accuracy was 96%, very close to the accuracy of not reducing the sampling frequency.

Table 7. Probabilistic neural network classification results of HE(1)∼(5) after reducing the
sampling frequency.

Type Recognized as Sensitivity Specificity
A B C D E

A 27 0 0 3 0 90% 98.3%
B 0 29 0 0 1 96.7% 100%
C 0 0 30 0 0 100% 100%
D 2 0 0 28 0 93.3% 97.5%
E 0 0 0 0 30 100% 99.1%

Accuracy 96%

Moreover, we mixed five types of ship-radiated noise with Gaussian white noise. The SNR was
set to be 5 dB, and the classification results are illustrated in Tables 8 and 9.

Table 8. (Noise) Probabilistic neural network classification results of HE(1)∼(5).

Type Recognized as Sensitivity Specificity
A B C D E

A 26 0 1 3 0 86.7% 97.5%
B 0 24 0 5 1 80% 97.5%
C 0 0 30 0 0 100% 99.2%
D 3 2 0 25 0 83.3% 92.5%
E 0 30 0 0 0 93.3% 99.2%

Accuracy 88.7%
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Table 9. (Noise) Probabilistic neural network classification results of MSE(1)∼(16).

type Recognized as Sensitivity Specificity
A B C D E

A 15 1 3 11 0 50% 90%
B 2 23 0 0 5 76.7% 93.3%
C 2 0 28 0 0 93.3% 95.8%
D 8 1 2 17 2 56.7% 89.2%
E 0 6 0 2 22 73.3% 94.2%

Accuracy 70%

According to the results shown in Tables 8 and 9, as the noise mixed into the ship-radiated noise,
both HE and MSE were affected. However, even though the accuracy of both methods decreased, HE’s
accuracy remained higher compared with MSE. The accuracy of HE decreased by 5.3% with added
noise, while the accuracy of MSE decreased by 14.7% under the same conditions. Furthermore, even
when the ship-radiated noise was mixed with noise, HE could still distinguish Ship C very well.

5. Conclusions

A new method was proposed for feature extraction of ship-radiated noise based on hierarchical
entropy in this paper. The simulation analysis indicated that HE had better performance compared with
MSE when the differences between signals were mainly focused on their high-frequency components.
Applying two feature extraction methods to ship-radiated noise could help distinguish some signals
that were not very different in the frequency domain. Moreover, in order to compare the performance
of HE and MSE, we passed the extracted features through a neural network, and the classification
results showed that the classification accuracy of HE was higher than MSE. In summary, since HE
considered more information, as a new feature extraction method in the field of underwater acoustic
signal processing, HE can better distinguish different signals in most circumstances than traditional
entropy-based methods such as MSE.
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