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Abstract: The interest in memristors has risen due to their possible application both as memory units
and as computational devices in combination with CMOS. This is in part due to their nonlinear
dynamics, and a strong dependence on the circuit topology. We provide evidence that also purely
memristive circuits can be employed for computational purposes. In the present paper we show
that a polynomial Lyapunov function in the memory parameters exists for the case of DC controlled
memristors. Such a Lyapunov function can be asymptotically approximated with binary variables,
and mapped to quadratic combinatorial optimization problems. This also shows a direct parallel
between memristive circuits and the Hopfield-Little model. In the case of Erdos-Renyi random
circuits, we show numerically that the distribution of the matrix elements of the projectors can be
roughly approximated with a Gaussian distribution, and that it scales with the inverse square root
of the number of elements. This provides an approximated but direct connection with the physics
of disordered system and, in particular, of mean field spin glasses. Using this and the fact that the
interaction is controlled by a projector operator on the loop space of the circuit. We estimate the
number of stationary points of the approximate Lyapunov function and provide a scaling formula as
an upper bound in terms of the circuit topology only.

Keywords: memristive circuits; spin models; disordered systems

1. Introduction

The study of memristors has become recently an area of interest [1–3] for a variety of reasons.
This is not only due to the fact that memristors are considered by many the fourth circuit element,
but also due to their potential applications and their interesting dynamics. In particular, it has been
understood from a purely computational theory perspective that the combination of memristive
and CMOS components leads to universal computing machines, called memcomputers [4]. From a
theoretical perspective, circuits made of memristors have been shown to exhibit non-trivial dynamics
which can in principle serve for computational purposes [5–8]. Memristors are passive components
which can be thought of as a time varying resistance sensitive to the either the current or the voltage,
which in turn depends on a dynamical internal state variable. The main characteristic of a memristor is
a pinched hysteresis loop in the Current-Voltage diagram when controlled in alternate voltage [9–11].
The aim of this paper is characterizing the asymptotic behavior of purely memristive circuits (i.e., only
memristors) for general circuit topology. An open question which has not insofar been answered at a
theoretical level is what is the role of the circuit topology in the relaxation process of memristive circuits.
It is in fact thought that the topology plays a role in the optimization capabilities of these circuits
with memory (also called information overhead by Di Ventra and Traversa [4]). We provide a precise
answer for the simpler class of circuits in which we know the exact role of topology, and show that the
dynamical interactions across the circuit map into a coupling term between the memristors for the
Lyapunov function for the dynamics. Specifically, we show that memristive circuits, if controlled with
constant voltage, can perform naturally a local unconstrained optimization, specifically a Quadratically
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Unconstrained Binary Optimization (QUBO) [12]. In order to gain some theoretical understanding on
the complexity of the asymptotic states we employ the Kac-Rice formula (average number of stationary
points) to provide a rough upper bound on the complexity of the function. In the process of studying
random circuits, we also show the connection between memristor dynamics on random circuits and
the Sherrington-Kirkpatrick model.

Our results not only establish a direct and analytical connection between (local) optimization
and memristors, but potentially introduces a new class of (heuristic) optimization algorithms for
combinatorial problems based on the first order dynamical equation studied in the present paper.
In fact, an interesting byproduct of the present paper is that the Lyapunov function we derived goes
beyond the physically implementable circuits, for example, in principle it applies to cases in which the
projection operator is replaced with (semi-)positive operators. As an application, we map a classical
problem of stock returns optimization (Markowitz) into ours, and test the performance of the found
optimization procedure. We provide an instance of optimization of the Nikkei 225 dataset in the
Markowitz framework, and show that it is competitive at least compared to exponential annealing,
which usually performs poorly on hard combinatorial problems.

2. Memristive Circuits

Before we introduce the dynamics for a generic circuit, we first briefly discuss the type of
memristors under scrutiny [9]. Specifically, we consider memristors whose internal dynamics
(the parameter w) depends on the current only, and in which the resistance depends linearly on an
internal parameter w, and satisfy the linear relation R(w) = Ron(1− w) + Ro f f w, with 0 ≤ w(t) ≤ 1.
We consider in particular the time evolution of a single memristor with diffusive dynamics [13,14] and
for an applied voltage S:

d
dt

w(t) = αw(t)− Ron

β
I = αw(t)− Ron

β

S
R(w)

(1)

which shows that a competition between drift and decay occurs. This type of memristors has been
considered for machine learning applications. With our convention, Ron and Ro f f are the limiting
resistances for w = 0 and w = 1 respectively (Ro f f > Ron > 0), and α and β are constants which set
the timescales for the relaxation and excitation of the memristor respectively. It is worth mentioning
that our model is different from the one introduced in Reference [9] as it has not only opposite polarity,
but also a decay function which is slightly different. In a recent paper [15] it has been observed that
mean field theory and techniques from statistical physics can be applied to study a specific circuit
topology. In that paper, it was also noted that a Lyapunov function exists, and that zero temperature
mean field theory provides a good estimate for the average asymptotic dynamics for a single mesh of
memristors. In the present paper we extend some of these results to a more general class of memristive
circuits, which sheds new light onto this type of nonlinear systems. Specifically, in Reference [5] the
following differential equation was derived for a generic but purely memristive circuit:

d~W
dt

= α~W − 1
β
(I + ξ ΩW)−1Ω~S(t), (2)

where ~S is the vector of voltage sources in series to each memristor, while I is the identity matrix. It is

immediate to observe that the nonlinearity is controlled by the parameter ξ =
Ro f f−Ron

Ron
. It is important

to note that Ω and W are matrices, while I is the identity matrix. W is the diagonal matrix with the
memristor memory values wi(t) on the diagonal, meanwhile Ω = At(AAt)−1 A is a projector operator
on the fundamental loops of the circuit, being A the cycle matrix of the directed graph representing the
circuit flows. Given an orientation of each loop and edge, then Aiβ has dimensionality L× N, where
N is the number of memristors and L the number of fundamental loops. If a memristor β has the same
orientation of a loop i, then Aβi = 1, and −1 if opposite. Aβi = 0 if the memristor β does not belong to
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the loop i. Thus the matrix A has only −1,+1, 0 values (The matrix Ω is not diagonal because edges
of a graph can belong to more than one loop.). The richness of the dynamicsl of this equation has
been characterized in Reference [5], while the locality properties of Ω in Reference [16]. The important
observation that we anticipate is that the dynamical Equation (2) has at least one Lyapunov function
which we have derived analytically. While the derivation is provided in the Appendix A, here we
provide only its functional form:

L(W) = −α

2 ∑
i

W2
i −

αξ

3 ∑
i

ΩiiW3
i

− αξ ∑
i 6=j

ΩijWiW2
j +

1
β ∑

ij
WiΩijSj, (3)

from which a few key facts can be immediately observed. For instance, the role of Ω is the one of a
coupling matrix, as one would expect, and that it is not quadratic in the internal memory variables.
Equation (3) satisfies d

dt L(W) ≤ 0 whenever Mi = −2αξ ∑j 6=i WjΩjiWi is small (thus for very weakly
interacting memristors, as it depends only on the offdiagonal terms) and d

dt L(W) = 0 ↔ d
dt
~W = 0.

One can obtain a more precise bound on the derivative of the Lyapunov function. Let us define
||Ω~S||2 = N2s2(N). We have proved in the Appendix A that if

4ξ2(1 + ξ)Ω̄2 <
s(N)2

α2β2 − 2
s(N)

αβ
, (4)

then d
d L(W) < 0, where Ω̄ = maxij |Ωij|. It is interesting to note that the order parameter s(N)

αβ is a
generalization of the one found in Reference [15] and which controlled the asymptotic state of the
effective mean field circuit. Here again it plays a role. Note that ξ2(1 + ξ)Ω̄2 is what controls the
height of the parabola, and intuitively the larger then nonlinearity the higher the voltage has to be for
the system to relax according to the Lyapunov function. Thus, Equation (4) establishes a dynamical
phase diagram.

We stress that the dynamics is constrained in the hypercube [0, 1]N , where N is the number of
memristors, and thus the Lyapunov function above when a memristor reaches the boundaries of
this domain. However, if we now use the fact that the dynamics is controlled with constant voltage
each memristor will eventually reach the asymptotic value 1 or 0. In this asymptotic limit, we note
that the function above can be interpreted as a spin-like model asymptotically. In Reference [15] this
phenomenon has been partly explained by the emergence of unstable fixed points in the dynamics
(although only in the mean field approximation). For the specific case of the Equation (2) however,
it is necessary to go beyond this approximation, for which each memristors will have (intuitively) a
different fixed point associated to it. This phenomenon, which is circuit dependent, is associated to the
structure of the couplings Ωij, and will be studied elsewhere. Anyhow, for large times the Lyapunov
function can be approximated by (Wn

j ≈Wj)

L(W (t� 1)) ≈ −[α
2 ∑

i
Wi +

αξ

3 ∑
i

ΩiiWi

+ αξ ∑
i 6=j

ΩijWiWj −
1
β ∑

ij
WiΩijSj] (5)

≡ La(W) = −[∑
i

Wi

(
α

2
+

αξ

3
Ωii −

1
β ∑

j
ΩijSj

)
+ αξ ∑

i 6=j
ΩijWiWj],
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where we have used the fact that Wn
i = Wi if Wi = 1, 0. An effective external field hi =

α
2 + αξ

3 Ωii −
1
β ΩijSj emerges in this asymptotic approximation. We also test numerically both the Lyapunov
function of Equations (A1) and (6) in Figure 1. Meanwhile in Figure 1a we plot the evolution of each
memory element, in Figure 1b we plot the evolution of both the Lyapunov function and the asymptotic
approximation of it, which remains close to the exact one. On the other hand, in Figure 2 we show
the difference between the obtained Lyapunov function and the asymptotic one as a function of time.
This mapping is reminiscent of the case of continuous neuronal networks introduced by Little [17] and
then Hopfield in a series of important papers [18,19]. The Little-Hopfield model has sparked interest
from the Statistical Physics community since the very beginning [20]. In the past years this particular
line of study has been subject of scrutiny by many experimental groups [21–23]. The key difference
is that in each case, these were studied in conjunction with ordinary and active (CMOS) electronic
components to build Hopfield learning networks. We argue instead that memristive circuits per se
form a special kind of Hopfield network defined by the Lyapunov function above, without the need of
extra components.
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Figure 1. Dynamics of the memory is shown in Figure (a) and the corresponding evolution of the
Lyapunov function of Equation (A1) ((b), continuous line) for 8750 memristors and for the asymptotic
function of Equation (6) Figure ((b)-dashed line). We considered α = 0.1, β = 1 and ξ = 10, for Ωij

from a random circuit of the Erdos-Renyi type with p = 0.9. The sources ~S’s elements were chosen at
random between [−0.05, 0.05].
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Figure 2. Dynamics of the Energy (a) and corresponding evolution of the Lyapunov function (b) in
Figure 1.

Functional Complexity for Random Circuits

We now study random circuits, in particular for the function complexity of Equation (6). First,
this will allow us to show an interesting connection to the field of disordered systems, and in this
approximation provide estimates of the complexity of the Lyapunov function. In fact, minimizing
quadratic function with discrete variables is in general a hard problem to solve. We are however in
the situation in which the problem at hand is in nature both continuous in time and in the variables
(being these between 0 and 1), but naturally provides an answer for the more complicated case usually
associated to finding the ground state of a frustrated spin systems. Despite the fact that we are not
able in the present paper to provide a complete answer to which optimization class a system of purely
memristive circuits belongs to, we try to provide some answers to the questions above using some
techniques introduced to study random polynomials [24,25]. This will be important in light of the fact
that we have shown that memristors perform a local optimization, rather than a global one, and that
the circuit constraints should enter somehow.

The number of stationary points of a generic multi-varied function L(W) can be estimated by:

# = ∑
{~w=1,0}

det(∂2
∂wi∂wj

L(~w))∏
i

δ (∂wi L(~w)) . (6)

Thus, if we aim to consider the expected number of stationary points #, then it does make sense
to consider the (quenched) average of the quantity in Equation (6) for the distribution for 〈·〉P(Ω)

with respect to the coupling matrix Ω. One important observation is that because Ω is a projector,
det(∂Wi ∂Wj L(W)) can be calculated exactly without knowledge of the elements distribution, but only
using the fact that Ω is a projector (details in the Appendix B). We find that the average number of
stationary points can be split in the form:

〈#〉 = (
√

3αξ)N
(

1− 1√
N

)L
Z(~S, Q) (7)

where L is the number of fundamental loops of the circuit, and where:

Z(~S, P(Ω)) = 〈 ∑
{~w=1,0}

∏
i

δ (∂wi L(~w))〉P(Ω). (8)

depends on the distribution of the elements of the matrix Ω.
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We first need, then, to understand the distribution P(Ω) for random circuits. Since the analytical
calculation of such distribution goes beyond the scope of this paper, we perform such analysis
numerically. We first generate random circuits with Erdos-Renyi graph above the percolation threshold
(p = 0.7). We are interested, in particular, in the scaling with respect to the number of memristors N.
For fixed Ω, the distribution P(Ω) of off-diagonal elements is shown in Figure 3a. We observe that
although this seems to be unimodal, a careful look shows that it is not. We observe in Figure 3b that
there is a non-zero probability of having elements not distributed around zero, but that these are orders
of magnitudes smaller than the central distribution. While it is not surprising that the distribution is
not completely random (thus, there are correlations among elements) since these are constrained by
Ω2 = Ω, it is surprising to note that we can roughly approximate this distribution with a unimodal
one. We are in particular interested in how the width of the distribution scales with the number of
memristors. This can be calculated exactly if we know the scaling of the diagonal elements, as we will
see below. In Figure 4 we show how the diagonal elements of Ω scale with N. We fit first the diagonal
elements, precisely 1−Ωii, showing that it scales as a power law to a good approximation. If we
perform a fit using the functional form Ωii ≈ 1− c

Nα , we obtain the best fit values c = 1.74557 ≈
√

3
and find that α = 0.5043 ≈ 1/2. We will, since now on, consider these values in what follows. It is
important to note that the scaling above is sufficient to obtain a scaling for the off-diagonal elements

as well. We define the matrix of off-diagonal element G, as Ω ≈ (1−
√

3
N )I + G. Since we have that

Ω2 = Ω, it is easy to see that G must satisfy the equation G2 + (1− 2
√

3
N )G +

√
3
N (
√

3
N − 1)I = 0.

For N � 1 this implies that also G satisfies the equation G2 = G as well. We can at this point solve

for an eigenvalue equation for G, and obtain λ = {
√

3
N ,−1 +

√
3
N }. Since this must be a projector

for large values of N, we must have Ω ≈ I +
√

3
N Q, where G =

√
3
N Q, with Q again a projector.

Thus, the scaling approximation obtained for random Erdos-Renyi type circuits, we have Ωii → 1,
meanwhile Ωij ≈

√
3√
N

Qij. This is the scaling we will use in the following.

Figure 3. Distribution of the elements of the matrix Ω in the case of an Erdos-Renyi graph. In (a) we
plot the distribution density, while in (b) the logarithm, which show that the distribution is multimodal.
However, we see that there are roughly 5 orders of magnitudes between the bulk of the probability
distribution and the two smaller values of the density at ±0.01, which shows that the distribution can
be well approximated with an unimodal one.
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Figure 4. Scaling of the components Ωii as a function of the number of memristors for randomly
generated circuits.

While in what follows we show only the intermediate results, all the exact calculations are
provided in the Appendix B. We can in fact a this point calculate Z in Equation (6) for random circuits.

We assume that P(Qij) =
1√

2πσ2 e−
Q2

ij
2σ2 , where σ is an effective width for N = 1. In this case, calculating

Z can be done by means of Gaussian integrals. In this case, we obtain, in the limit αξ � 1:

〈#〉 ≈
(

1− 1√
N

)L
(

√
3√

πσ
)N . (9)

We now use Euler’s relation L = N−V +χ, where V is the number of vertices, χ the Euler characteristic
and use the Erdos-Renyi relation N = p(V)V(V−1)

2 where p(V) is the edge probability. Now we have
that, since χ > 0 and only topological, while L scales linearly for large N in the number of memristors.
We now observe that given ρ =

√
3√

πσ
, we have that in the limit N → ∞, 〈#〉 goes to infinity for ρ > 1,

while it goes to zero for ρ ≤ 1, as limN→∞(1− 1√
N
)N = 0. We thus obtain the result that for σ >

√
3√
π

the
Lyapunov function seems to have a large number of stationary points and thus a hint of the hardness
of the minimization problem.

It is easy at this point to provide an approximate mapping between the asymptotic Lyapunov
function and the Hamiltonian of a mean-field spin glass of the Sherrington-Kirkpatrick type with an
external field:

L(σ) = ∑
i

h̃iσi +
αξ
√

3√
N

∑
i 6=j

Qijσiσj (10)

where we used the mapping Wi =
1
2 σi − 1

2 with σi = ±1 and h̃i =
hi
2 −

1
2 ∑j Qij and disregarded an

unimportant constant which only shifts the function. The result above is a generalization of what has
been found in Reference [26] in the limit ξ � 1, for example, the fact that the dynamics of memristors
follows a constrained gradient descent (Rosen projections). Moreover, it provides a physical system to
test experimentally the physics of mean field spin glasses [27].
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3. Asymptotic State Recollection and Combinatorial Optimization

One important question for memristive circuits is what is the asymptotic state they reach. As we
have argued, this can be answered by looking at the minima of the Lyapunov function for the case
of constant voltages. Although this is a hard problem to solve in its full generality, we can use some
approximate analytical formulae to provide an answer in at least for some region of the parameters.
First, we consider the case α = 0. It is easy to see that we can integrate the equation [26] to obtain:

~W +
ξ

2
Ω~W2 = − 1

β
Ω~S(t− t0) +~c (11)

where c is an integration constant. Equation (12) is a unimodular quadratic vector equation, which is
the special case of vector equations of the form ~x +~b(~x,~x) = ~c. This equation does not have an exact
solution in closed form but several numerical methods have been developed [28]. Here we use a
heuristic method to identify what are the asymptotic values of ~W. Again we use the fact that in
the limit t → ∞, we observe numerically the asymptotic values of W are either 0 or 1. For ξ = 0,

we have ~W(t = ∞) =
1−sign(Ω~S)

2 . For ξ > 0 and in the asymptotic limit, limt→∞ ~W2 ≈ ~W. Using this
approximation, we obtain:

(I +
ξ

2
Ω)~W = − 1

β
Ω~S(t− t0) +~c. (12)

We then can obtain the asymptotic formula:

~W(t = ∞) ≈
1− sign((I + ξ

2 Ω)−1Ω~S)
2

=
1− sign(Ω~S)

2
, (13)

where we note that in the last equation we have used the fact that 1 + ξ/2 > 0 if 0 < Ron < Ro f f .
However, we note that the exactness of the asymptotic behavior depends only on ξ and not on α.
The results on how well Equation (13) predicts the asymptotic behavior of the circuit as a function of ξ

are shown in Figure 5. Despite our heuristic method and approximation, the obtained values are a
good approximation for small values of ξ of the real system. Using the formula above, we now provide
the connection with the state recollection of neural networks. We note that the projection operator Ω
can be written as [16] Ωij = ∑L

l=1 Ãl
i Ãl

j, where Ãl
i is the orthonormalized loop matrix of the circuit.

From the theory of neural networks we are aware that the number of stored patterns equals the number
of independent eigenvectors of the interaction matrix Ω, which is purely topological, as argued in
Reference [26]. In the case of a purely memristive circuit the number of independent memory units
number is constrained by the topology of the circuit and it depends on the number of fundamental
loops [26]. As we have noted before, the asymptotic behavior of the circuit can be approximated by
(where we reinstate α)

~W(t = ∞) ≈
1− sign(((1− α)I + ξ

2 Ω)−1Ω~S)
2

,

where we realize that the source vector ~S can act as the recollection mechanism. If ~S = ∑l ρl Ãl , for a
certain proportionality constant ρ, then (Ω~S)i = ∑l ρl Ãl

i . Thus, the asymptotic configuration of the
memristors will be given by the approximate value:

~W(t = ∞) ≈
1− sign(((1− α)I + ξρ

2 Ãl)−1)

2

=
1− sign

(
(1− α)I + ξρ

2 Ãl
)

2
, (14)

which shows that stored patterns are indeed in the loop basis.
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Figure 5. Percentage of exactly predicted values of memristors according to Equation (13) as a function
of ξ. The error bar are calculate from 100 samples, with approximately 800 memristors (on average)
and ξ = 10, α = 0.1 and β = 1, with the vector S drawn at random between [−0.5, 5].

The analysis above is reminiscent of the asymptotic state recollection in the Hopfield-Little model.
We now ask the converse question of how close are the asymptotic states to minima obtained

from the Lyapunov functional. As we have seen in the previous sections memristors can be used to
provide solutions (possibly sub-optimal) to hard combinatorial problems. This claim should be taken,
if not with skepticism, with some care. First we note that L(W) is not positive definite (although it is
bounded) and thus we have an asymptotically local stable equilibrium rather than a global one. We are
interested in providing some benchmarks on how well memristors find the minimum of the function
La(W) compared to other optimization techniques. Given 100 samples of random circuits based on
Erdos-Renyi random graphs with p = 0.7, in Figure 6 we show the energy attained using memristors
in 60 time steps (red dots), using a Metropolis algorithm with exponential annealing (blue) with over
8000 steps and using the minimum of 100 random configurations as a reference (blue dots). We see that
despite the fact that memristors do not seem to reach the absolute minimum, the energy is closer to the
Metropolis result than to the random configuration one. Although it is easy to see that the dynamical
equations do not reach the Metropolis attained minimum, it did take less than 100 iterations for the
memristive system to converge using a simple Euler-Newton first order integration. This already
shows that, as anticipated, memristors perform a local optimization in this regime. In the next section,
however, we apply the algorithm to a specific dataset, where this optimization has some advantage
over the exponential annealing.
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Figure 6. Obtained minimum energy using the minimum over 100 random binary values (blue crosses),
roghly 8000 steps of exponential annealing (green pluses) and 60 time steps using the memristor
dynamics (red circles). We generated each sample with approximately 800–900 memristors, fixing the
percolation parameter to p = 0.7, with ξ = 10, α = 0.1 and β = 1. The numerical integration was
performed using a simple Euler-Newton integration with integration step dt = 0.1 and total number of
steps T = 1000. We truncated the Metropolis annealing to 10 ∗ N time steps, with N the number of
memristors and with an annealing rate λ = 0.995 and an exponential annealing law for the temperature
given by Temp(k) = 100 ∗ λk.

4. An Application: Minimization of a Quadratic Function

We have argued that memristors’ dynamics can be thought, when these are connected in a circuit,
as reaching an asymptotic state which is among the minima of a certain Lyapunov function. Albeit real
memristors can have a dynamics which is far from ideal, we would like to consider if these could in
principle be used for any sort of purpose which goes beyond electronics. In fact, note that (2) can be
used as a quick meta-heuristic method to search for the minimum of a function, or to be given as input
to other more complicated and efficient optimization techniques. In realistic circuits, the quadratic
form matrix Ω which occurs in the Lyapunov function is a projector on the cycle space of the graph.
Thus, problems for which analog memristive circuits can be used are naturally those that can be
embedded in the cycle basis of a graph [29]. However, in principle we can simulate the system also for
matrices Ω that are not necessarily projectors, as we have shown and as we discuss further below. We
can thus perform a preliminary test of the applicability of analog memristive circuits in a problem of
optimization and see how the circuit performs compared (for instance) to simulated annealing.

We thus consider a simple application of practical importance, for example, studying the problem
of investment in a set of assets. For this purpose, we use the 225 Nikkei dataset which is used for
benchmarking heuristic optimization algorithms [30], available in Reference [31]. We can use in fact a
memristor-inspired optimization scheme, taking advantage of the fact that it works beyond projector
operators Ω. We mention that the proof of the Lyapunov function relies only on the matrix I + ξ ΩW+WΩ

2
being positive definite and thus applies also to any positive matrix and to some non-positive ones
(see Appendix A for details) for ξ small enough. Although we cannot use these in a hardware
circuit, we can solve the differential equation numerically to infer a minimum heuristically. Using this
idea, we ask in which of the assets of portfolio we should invest in (a yes-no answer). The dataset is
composed of 225 assets, including returns and the covariance matrix and can thus use the combinatorial
Markowitz functional [32]. If we use the fact that maximizing a quadratic function is equivalent to
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minimizing the function with a minus sign in front, we can write an equality between the Markowitz
function for binary variables and the memristive one:

M(W) = ∑
i

(
ri −

p
2

Σii

)
Wi −

p
2 ∑

i 6=j
WiΣijWj

−L(W) = ∑
i

Wi

(
α

2
+

αξ

3
Ωii −

1
β ∑

j
ΩijSj

)
(15)

− αξ ∑
i 6=j

ΩijWiWj

where p is a trade-off parameter,~r are the returns and Σ is the covariance matrix. From imposing the
equality between the two functionals, we observe the necessity of imposing Ω = Σ and thus

α

2
+

αξ

3
Ωii −

1
β ∑

j
ΩijSj = ri −

p
2

Σii,
p
2
= αξ. (16)

We can thus obtain the source vector to try to force the system towards the right minimum:

~S = βΣ−1
(

α

2
+ (

p
2
+

αξ

3
)~η −~r

)
(17)

where (η)i = Σii, for example, the variance of each return. We have the freedom to choose arbitrarily β

but either ξ or α would be fixed. We observe that we need to invert the covariance matrix, which is
a slow but polynomial in the number of variables. Moreover, we see that the harder the problem to
solve (the norm of the inverse of Σ), the smaller β has to be chosen, from which we infer the slowness
of the process.

We are now in the position to test the memristive minimizationi against an exponential annealing
process, which is known to perform poorly in the combinatorial setting. The results for the case
of the Nikkei dataset are shown in Figure 7, comparing the Metropolis annealing to the case of
the computational time and in the final value obtained. We performed three different tests. First,
we randomized the initial states and performed 100 Simulated Annealing procedures [33], with initial
temperature T = 100, an exponential annealing rate λ = 0.995 (Tk = λkT0) and a number of time steps
of NT = 500 ∗ N, where N was the number of assets 100. On the Nikkei 225 dataset, the maximum
obtained with the simulated annealing was rmax ≈ 9.15. With the identical initial states, the memristive
optimization has obtained a maximum of rmax ≈ 14.23. We have then used the final state of the
memristive optimization output as an input to an annealing procedure but with a lower initial
temperature T0 = 0.025, thus effectively fast-forwarding the annealing procedure. This combined
optimization obtained the absolute maximum, albeit of only less than a percentage better than the
memristive optimization, of rmax ≈ 14.40.
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Figure 7. Maximization of the return for the Nikkei 225 dataset using a Monte Carlo procedure.
We compare the results between the best of 100 Simulated Annealing procedures (the green line in the
plot≈ 9.15) versus with the memristive optimization proposed in this paper (black lines), with identical
initial conditions. The simulated annealing was conducted with an initial temperature T = 100 and an
exponential annealing rate λ = 0.999 (and effective time steps N = 500). We have then used the final
states of the Memristive Optimization procedure as an input to a simulated annealing procedure with
lower temperature T0 = 0.025 and identical annealing rate, which obtained the absolute maximum of
the return.

5. Concluding Remarks

In the present paper we have analyzed the asymptotic dynamics of memristive circuits, showing
that an approximate Lyapunov function for the dynamics exists for memristors with slow decay.
Because of the properties of memristors, we have argued that asymptotically the Lyapunov function of
a memristive circuit can be written as a quadratic function on spin-like variables and have connected
the coupling matrix to the projector operator on the loop space of the graph [34]. This result shows
a direct connection between purely memristive circuits and Hopfield networks, which we argue
minimize a similar type of Lyapunov function. The internally stored patterns are in this case the cycles
of the graph. This is interesting for various reasons. Insofar it had been argued that a certain degree of
external control was necessary in order to perform computation or use memristors as a memory device,
either via the use of CMOS or the introduction of capacitors into the network. This paper provides
sufficient evidence for the use of memristors in their completely analog regime for computational
purposes. This comes at a cost, which is the embedding of the problem of interest in the cycle basis of
the graph, which can be a rather nontrivial problem when it is solvable.

The Lyapunov function for the dynamics of memristive circuits can then be used for various
purposes. We have first focused on the complexity of these functions in the case of random circuits. We
have provided numerical evidence and argued that the couplings scale as in the case of mean-field spin
glasses, that is, the Sherrington-Kirkpatrick model, although only if neglecting correlations between
matrix elements of lowest order. Using this approximation we have provided approximate formulae
for the number of stationary points, provided some topological considerations. This result explains
the importance of the initial conditions for the asymptotic state of the memristors. In fact, it is known
(for instance in the case of a glassy system) that for a system which has a large set of local minima
there is a large sensitivity to the initial conditions.
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As a test-bed of these ideas, we have used the memristor dynamics to see how well (or bad)
the dynamics leads to the minimization of a certain quadratic functional We have compared the
minimization of a combinatorial problem using both simulated annealing and the memristive dynamics
introduced in this paper. Although the memristor dynamics could not reach a global minimum,
the speed of convergence and the closeness to the Metropolis result suggest the use of these mixed
dynamical-combinatorial algorithm to provide quick answers to combinatorial problems on spin-like
variables (or alternative 0–1 variables, thus a quadratic unconstrained binary optimization). We do not
claim these answers to be optimal but we find nonetheless interesting that a rather simple procedure
like the one we did performed remarkably well compared to simulated annealing.

The main result of this paper however remains the Lyapunov functional for the study of the
dynamics of memristors and to understand the relaxation properties of these circuits (at least when
these are controlled with constant voltage). We have shown a direct connection between optimization
and memristive circuits, as advocated by other authors, for instance [35–37]. It is inspiring to think that
the minimization of the functional depends on the balance between reinforcement-decay properties
of the memristive dynamics, along the lines of other similar algorithms [38] which use collective
dynamics as heuristic optimization methods.

Thus, this paper provides needed background work to understand the dynamics of circuits with
memory, their sensitivity to initial conditions and their use for computational purposes in the fully
analog regime.
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Appendix A. Properties of L(W)

Appendix A.1. Derivation of L(W)

The Lyapunov functional provided in the paper is given by:

L(~W) = −α

2 ∑
i

W2
i −

αξ

3 ∑
i

ΩiiW3
i

− αξ ∑
i 6=j

ΩijWiW2
j +

1
β ∑

ij
WiΩijSj. (A1)

In order to derive the functional above, we use the differential equation for the memristive dynamics:

(I + ξΩW)
d~W
dt

= (I + ξΩW)α~W − 1
β

Ω~S, (A2)

for the case of constant voltages ~S. At this point we can obtain the functional form of the derivative of
the Lyapunov function:
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d
dt

L(~W) = ∂tL(W) + ∑
i

δwi L(W)
d
dt

Wi

= −∑
i

dWi
dt

[(I + ξΩW)α~W − 1
β

Ω~S]i + ~M · d~W
dt

(A3)

= −∑
ij

dWi
dt

(I + ξΩW)ij
dWj

dt
+ ~M · d~W

dt

= −||d
~W

dt
||2(I+ξΩW) +

~M · d~W
dt

where we assumed that ∂tL(W) = 0, as ~S is constant in time. We also introduced the quantity
Mi = −2αξ ∑j 6=i WjΩjiWi. The variation of the functional is provided in the subsection below in detail.
First we prove that I + ξΩW is a positive definite matrix. We use the matrix similarity for eigenvalues,
I + ξΩW ∼ I + ξ

√
WΩ
√

W to show that given a vector~b, its norm is~bt(I + ξ
√

WΩ
√

W)~b = ||~b||2 +
ξ||
√

W~b||Ω. Since Ω is a projector and is semipositive, then we have that for any non-zero vector~b,
~bt(I + ξ

√
WΩ
√

W)~b > 0. We now observe that the first term in Equation (A4) is always negative,
meanwhile the second term is always positive, since the inverse of a positive operator is always
positive. However, meanwhile the first term does not scale with any parameter, we have that the
second term scales roughly as α2ξ2. Also, the min norm of the operator I + ξΩW is of order one, which
implies that the sup norm of its inverse is also of order one, for arbitrary values of ξ. As a comment,
we see that up to this point, this is enough to prove that if Ω is diagonal the second term disappears,
as ~M = 0. This completes the proof that d

dt L(~W) ≤ 0 for the case of Ω diagonal, which is trivial. Also,

note that we have d
dt L(~W) = 0 if and only if d~W

dt = 0. This confirms the fact that L(~W) is a Lyapunov
function in this regime and thus applies also for weakly interacting memristors.

We are interested in the more general case of arbitrary Ω. For this purpose, we consider the
following bounds. We have

− ||d
~W

dt
||2I+ξΩW +

d~W
dt
· ~M ≤ −||d

~W
dt
||2 + ||d

~W
dt
|| · || ~M|| = ||d

~W
dt
||
(
|| ~M|| − ||d

~W
dt
||
)

(A4)

where we used the Cauchy-Schwarz inequality and the conservative lower bound || d~Wdt ||
2
I+ξΩW ≥ ||

d~W
dt ||

2.

We know already that if d
dt
~W = 0, then d

dt L = 0. Let us focus on d
dt
~W 6= 0. Thus, a conservative bound

suggests that we need to bound it via sup~W || ~M|| and min~W ||
d
dt
~W||. We have shown already that if Ωij

is diagonal then the proposed Lyapunov function has negative derivative, so we can make a very loose
upper bound. We now have the following bound on || ~M||:

|| ~M|| = 2αξ

√
∑

i
∑
j 6=i

∑
j 6=k

W2
i ΩijWjΩikWk ≤ 2αξ

√
∑

j 6=i,k 6=i
Ω2

jk ≤ 2αξΩ̄N, (A5)

where Ω̄ = sup|Ωij| is the maximum absolute value of the elements of Ωij. On the other hand, we have

min~W ||
d
dt
~W|| = min~W ||α~W −

1
β (I + ξΩW)−1Ω~S||

= min~W

√
α2||~W||2 + 1

β2 ||(I + ξΩW)−1Ω~S||2 − 2 α
β
~W · (I + ξΩW)−1Ω~S

=
√

α2 min~W ||~W||2 +
1
β2 min~W ||(I + ξΩW)−1Ω~S||2 − 2 α

β max~W
~W · (I + ξΩW)−1Ω~S

=
√

1
β2 ||(I + ξΩ)−1Ω~S||2 − 2 α

β max~W
~W · (I + ξΩW)−1Ω~S.

(A6)

Now, since Ω is a projector, we have (I + ξΩ)−1Ω = ∑∞
j=0(−1)jξ jΩj+1 = ∑∞

j=0(−1)jξ jΩ = 1
1+ξ Ω.

Moreover,

max
~W

~W · (I + ξΩW)−1Ω~S ≤ N
(I + ξ)−1 ||Ω~S|| (A7)
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and thus

min~W ||
d
dt

~W|| = 1√
1 + ξ

√
1
β2 ||Ω~S||2 − 2

α

β
N||Ω~S||. (A8)

We thus find that if

2αξΩ̄N − 1√
1 + ξ

√
1
β2 ||Ω~S||2 − 2

α

β
N||Ω~S|| < 0 (A9)

the Lyapunov function we introduced has negative derivative always. Let us now define ||Ω~S||2 =

N2s2(N). We can rewrite the inequality as

4ξ2(1 + ξ)Ω̄2 <
s(N)2

α2β2 − 2
s(N)

αβ
. (A10)

Because s(N) ∼ O(1) in the physical case (e.g., the single voltage element does not scale with the size
of the system), the bound above gives a meaningful relationship between the nonlinearity parameter
ξ and the mean field dynamical properties of the system, s

αβ , which had been already introduced in
Reference [15] in a mean field toy model of memristive dynamics. It is interesting to note that if we
define s

αβ = q, the equation above forms a parabola and an inequality of the form

− q2 + 2q + c < 0, (A11)

which characterizes the area below the curve. Thus, via the bound we see that below the parabola the
system is going into a minimum of the Lyapunov function.

This shows what we had anticipated, for example, the fact that the Lyapunov function we defined
has a negative derivative and because we have that d

dt L(W) = 0 ↔ d
dt
~W = 0 we have the required

property for ξ small enough. Also, being L(W) defined on a compact and being smooth, we know
it must be bounded from below, which concludes the proof. Clearly, how proof has a main fallacy:
it applies to continuous dynamical systems with continuous derivatives. If certain memristors reach
the boundary values, discontinuities appear in the dynamics. Simulations however show that the
Lyapunov functional we obtained is an upper bound to the one obtained numerically and including
the constraints.

Appendix A.2. Variation

Let us now calculate the variation of the functional of Equation (A4). Again, we consider
the functional:

L(~W) = −α

2 ∑
i

W2
i −

αξ

3 ∑
i

ΩiiW3
i

− αξ ∑
j 6=i

ΩjiWjW2
i +

1
β ∑

ji
WjΩjiSi (A12)

We have that:

δWj L(W) = δWj

(
− α

2 ∑
i

W2
i −

αξ

3 ∑
i

ΩiiW3
i

− αξ ∑
i 6=j

ΩjiWjW2
i +

1
β ∑

ji
WiΩjiSi

)
(A13)

= −αWj − αξΩjjW2
j

− αξ ∑
i(i 6=j)

ΩjiW2
i +

1
β

ΩjiSi − 2αξ ∑
i(i 6=j)

WiΩijWj
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which implies

δ~W L(~W) = −α~W − αξΩ~W2 +
1
β

Ω~S− (I + ξΩW)
d
dt

~W + ~M

= −
(
(I + ξΩW)α~W − 1

β
Ω~S
)
− (I + ξΩW)

d
dt

~W + ~M (A14)

= −(I + ξΩW)
d
dt

~W + ~M

where on the last line we used the equations of motion and defined Mi = −2αξ ∑j(i 6=j) WjΩjiWi.
For random networks, This mapping is reminiscent of the case of continuous neuronal networks
introduced by Little [17] and then Hopfield in a series of important papers [18,19]. The Little-Hopfield
model has sparked interest from the Statistical Physics community since the very beginning [20].
In the past years this particular line of study has been subject of scrutiny by many experimental
groups [21–23]. The key difference is that in each case, these were studied in conjunction with ordinary
and active (CMOS) electronic components to build Hopfield learning networks. We argue instead that
memristive circuits per se form a special kind of Hopfield network defined by the Lyapunov function
above, without the need of extra components.

Appendix B. Complexity of the Lyapunov Functional via Kac-Rice Formula

This section provides the details for the average number of stationary points of the Lyapunov
functional above in the asymptotic regime. Let us now consider the following average:

〈#〉 = 〈 ∑
{~w=1,0}

det(∂2
∂wi∂wj

L(~w))∏
i

δ (∂wi L(~w))〉P(Ω) (A15)

where L(~w) is the asymptotic functional in Equation (A4). We can see that

∂∂wi
L(~w) = −

(
α

2
+

αξ

3
Ωii −

1
β ∑

j
ΩijSj

)
+ αξ ∑

j

(
Ωij −Ωiiδij

)
wj (A16)

and thus
∂2

∂wi∂wj
L(~w) = αξ

(
Ωij −Ωiiδij

)
(A17)

We are interested in an asymptotic upper bound on the number of local minima of the function
L(w). We first proceed by calculating the determinant. If N is the number of memristors, then
det(αξ

(
Ωij −Ωiiδij

)
) = (αξ)Ndet

(
Ωij −Ωiiδij

)
. In the scaling observed above, we have noted

that Ωii ≈ 1 −
√

3√
N

, meanwhile Ωij ≈
√

3√
N

Qij. Using this scaling, we have: det
(
Ωij −Ωiiδij

)
≈

3
N
2

N
N
2

det
(

Qij − (
√

N −
√

3)δij

)
≈N�1 det

(
Qij −

√
Nδij

)
, with Q a projector which can be written as

Qij =
L

∑
l=1

vl
iv

l
j
t
. (A18)

We now use the formula:
det(vl

iv
l
j
t
+ A) = (1 + vl t

A−1v)det(A) (A19)

if A is invertible and write:

det
(

Qij −
√

Nδij

)
= N

N
2

L

∏
l=1

(1 + vl t
A−1

l v) (A20)
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with Al = ∑L
k=l+1 vk

i vk
j

t −
√

Nδij. Since ∑L
k=l+1 vk

i vk
j

t
is also a projector on the subspace, we have:

A−1
l =

1√
N(1−

√
N)

L

∑
k=l+1

vk
i vk

j
t − 1√

N
I. (A21)

It is now easy to see that since vl · vl′ = 0 if l 6= l′, we have that

vl t
A−1

l v = − 1√
N

,

and thus we have the remarkable result that in the limit described above, we have

det
(

Qij −
√

Nδij

)
=

3
N
2

N
N
2

(
1− 1√

N

)L
N

N
2

= 3
N
2

(
1− 1√

N

)L
(A22)

which is independent from the distribution of Ω’s elements but only on the scaling we used. We thus
obtain a rough scaling of the number of minima, given by:

〈#〉 = (
√

3αξ)N
(

1− 1√
N

)L
Z(~S, Ω) (A23)

Up to here no assumption has been made on the distribution of Ωij, if not the scaling
observed numerically.

In order to evaluate Z(~S, Ω), however, assumptions have to be made. We now focus on evaluating
the term:

Z(~S, P(Ω)) = 〈 ∑
{~w=1,0}

∏
i

δ (∂wi L(~w))〉P(Ω) (A24)

which can be written as:

Z(S, P(Ω)) = 1
(2π)N

∫
∏ij dΩij ∑{w}∏i

∫ ∞
−∞ dηie

iηi

(
−
(

α
2 +

αξ
3 Ωii− 1

β ∑j ΩijSj

)
+αξ ∑j(Ωij−Ωiiδij)wj

)
P(Ωij). (A25)

We will now introduce again the scaling Ωii = 1− 1√
N

and Ωij =
√

3√
N

Qij. We now consider the

case in which P(Qij) =
1√

2πσ2 e−
Q2

ij
2σ2 . We can use a this point the formula:

∫ ∞

−∞
dx eiqx− x2

2b2 =
√

2πb2e−
b2q2

2 (A26)

and write:

Z(S, P(Ω)) = 1
(2π)N

∫
∏ij dΩij ∑{w}∏i

∫ ∞
−∞ dηie

iηi

(
−
(

α
2 +

αξ
3 Ωii− 1

β ∑j ΩijSj

)
+αξ ∑j(Ωij−Ωiiδij)wj

)
P(Ωij)

= 1
(2π)N ∑{w}∏i

∫ ∞
−∞ dηie

iηi

(
αξ(1−

√
3√
N
)wj−( α

2 +αξ(1−
√

3√
N
)
)

·
∫ ∞
−∞ ∏ij dQije

i
√

3√
N

ηiQij

(
αξwj+

1
β Sj

)
−

Q2
ij

2σ2 1√
2πσ2

= 1
(2π)N ∑{w}∏i

∫ ∞
−∞ dηie

iηi

(
αξ(1−

√
3√
N
)wj−( α

2 +αξ(1−
√

3√
N
)
)

e−N
η2

i σ2

(
αξwj+

1
β

Sj

)2

3
2
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and if we define a(w) = αξ(1−
√

3√
N
)wj −

(
α
2 + αξ(1−

√
3√
N
)
)

and bi(w) =
(

αξw + 1
β Si

)
, we can write

the integral as:

Z(S, P(Ω)) =

(
1

2π

√
6π√

Nσ2

)N

· ∏
i

 e
− 3a(1)2

2Nσ2bi(1)
2

bi(1)
+

e
− 3a(0)2

2Nσ2bi(0)
2

bi(0)

 (A27)

We now rescale σ2 → σ2/N in order for σ to be physical in the limit N → ∞. We thus obtain, in the
approximation in which Si = S, Z(S) becomes:

Z(S) =

( √
3√

πσ2

)N
 e
− 3a(1)2

2σ2b(1)2

b(1)
+

e
− 3a(0)2

2σ2b(0)2

b(0)


N

. (A28)

In the limit αξ � S� 1, we have e
− 3a(1)2

2σ2b(1)2

b(1) + e
− 3a(0)2

2σ2b(0)2

b(0) ≈ 1
αξ . Thus, we have the final formula:

〈#〉 ≈
(

1− 1√
N

)L
(

√
3√

πσ
)N . (A29)

which shows two regimes. If σ <
√

3/π ≈ 0.977205, the number of stationary points
increases exponentially.
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