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Abstract: Solving the constraint satisfaction problem (CSP) is to find an assignment of values to variables
that satisfies a set of constraints. Ant colony optimization (ACO) is an efficient algorithm for solving
CSPs. However, the existing ACO-based algorithms suffer from the constructed assignment with high
cost. To improve the solution quality of ACO for solving CSPs, an ant colony optimization based on
information entropy (ACOE) is proposed in this paper. The proposed algorithm can automatically call
a crossover-based local search according to real-time information entropy. We first describe ACOE
for solving CSPs and show how it constructs assignments. Then, we use a ranking-based strategy to
update the pheromone, which weights the pheromone according to the rank of these ants. Furthermore,
we introduce the crossover-based local search that uses a crossover operation to optimize the current
best assignment. Finally, we compare ACOE with seven algorithms on binary CSPs. The experimental
results revealed that our method outperformed the other compared algorithms in terms of the cost
comparison, data distribution, convergence performance, and hypothesis test.
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1. Introduction

The constraint satisfaction problem (CSP) is an assignment that consists of a set of variables that
satisfy some constraints [1–4]. CSP can be solved by assigning specific values to variables in accordance
with the constraint conditions [5–8]. The problem has been applied in a multitude of domains in real
life, such as scheduling [9,10], task planning [11,12], gate assignment [13,14], and the reserve design
problem [15,16].

To solve the CSP, complete methods based on the backtracking mechanism [17,18] explore all
possible solutions until they find a feasible solution or prove the non-existence of any solution at all.
These complete methods are often integrated with filtering technologies, which are effective in the
reduction of the domains. Although the completeness appears to be an ideal property, it is difficult to
solve high complex CSPs.

As a result, incomplete methods that include pure random walk (PRW) algorithms [5,19] and
evolutionary optimization algorithms [20] have been proposed to find the approximately optimal
solution in an opportunistic way. The incomplete methods tend to randomly explore the space and
follow heuristic means to search for the most promising domains. The efficiency of the PRW algorithms
has been already proved by the in-depth studies on some applications of CSPs. However, they could
not ensure the quality of solutions as usual. On the premise of guaranteeing the quality of solutions,
evolutionary optimization algorithms can greatly improve the search speed.

In recent years, evolutionary optimization algorithms have attracted attention for solving the CSP.
EEMDE is a hybrid meta-heuristic differential evolution (DE) algorithm with an element exchange
mechanism, and the mechanism uses the individual differential direction of moving length to maintain
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the population diversity [21]. PS is a discrete particle swarm optimization (PSO) algorithm that
uses information about the conflicts between the variables to calculate the velocity of the individual
particles [22]. GSABC is a hybrid algorithm combining artificial bee colony (ABC) and greedy local
search technology [23]. ACOS [24], ACOD [24], ACON [25] and ACOU [26] are ACO-based algorithms
for tackling the problem. ACOS makes use of the smallest-domain-first strategy to reinforce the
search process, whereas ACOD applies the dynamic-random strategy to achieve that. ACON takes
advantage of a negative-feedback mechanism to make the ant swarm explore the unknown space in
the optimization process. ACOU uses a strengthened pheromone updating mechanism to enhance
the pheromone on the edge that has never appeared before according to the dynamic information in
the optimization process. Among these evolutionary algorithms, the performance of the ACO-based
algorithms is superior.

When using the ACO-based algorithms to solve the CSP, the main task is to construct a feasible
assignment that does not violate any constraints. Due to a large number of constraints, the feasible
assignment is very hard to find in most test cases. Thus, the ACO-based algorithms try to find
an assignment with a low cost value as much as possible. Although some ACO-based algorithms
have been proven to be able to solve the CSP, they are still easily trapped in a locally optimal state.
In this paper, an incomplete method based on ACO is proposed to solve CSPs. The new algorithm is
abbreviated as ACOE, which stands for ant colony optimization based on information entropy. The idea
of ACOE is that a crossover-based local search (CLS) is automatically called according to the feedback
of information entropy.

The contributions of the paper are listed as follows. (1) A ranking-based pheromone updating
strategy is incorporated into the ACOE algorithm to strengthen the exploratory ability of ants. (2) An
automatic adjustment mechanism based on information entropy is proposed. By using the mechanism,
the proposed algorithm can perform a local search when the algorithm falls into the local optimal
state. (3) A crossover-based local search is used in the ACOE algorithm. Through automatically calling
the CLS, ACOE is capable of maintaining the diversity of constructed assignments, and accordingly,
improve the quality of the assignments.

The remaining parts of this paper are structured as follows. Section 2 gives the definition of CSP
and describes the proposed ACOE algorithm for solving the CSP. Section 3 reports and discusses the
experimental results. Section 4 draws the conclusion.

2. Methods

2.1. Problem Definition

We defined a CSP to be a triple (X, D, C), where X is a finite set of variables, D is a function
that associates each variable with its domain, and C is a set of constraints that restrict the values
that the variables can assign at the same time. A label <xi, vp> associates variable xi with a value vp

from the domain D(xi). An assignment A is a set of labels where no variables appear more than once.
To solve a CSP more conveniently, we represent the CSP (X, D, C) as an undirected graph G = (V, E),
where V is the vertex and E is the edge. In the constructed graph, a possible label is represented by a
vertex. A path containing <xi, vp> cannot contain another label for variable xi, otherwise a constraint
is violated. The cost function of an assignment A, represented by cost(A), is the number of violated
constraints in the assignment A. The cost is 0 if the assignment does not violate any constraints.

Let us give an example of the CSP. Suppose X = {x1, x2, x3, x4}, D = {v1, v2, v3}, and C = {c12, c23, c34}
where c12 = {(v1, v2), (v2, v3)}, c23 = {(v3, v2), (v2, v1)}, and c34 = (v1, v3). As shown in Figure 1a, the
assignment does not violate any constraints is {<x1, v1>, <x2, v2>, <x3, v1>, <x4, v3>}, and the cost
value of the assignment is 0. As shown in Figure 1b, the assignment {<x1, v1>, <x2, v2>, <x3, v1>,
<x4, v1>} that violates one constraint because <x3, v1> and <x4, v1> can not be connected, hence the
cost value of the assignment is 1.
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Figure 1. (a) An assignment does not violate any constraints; and (b) an assignment that violates a 
constraint. 
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of real ants finding the shortest path between the nest and the food source. The ACO algorithm has 
the characteristics of distributed computing, information positive feedback, and heuristic search. At 
present, the algorithm has achieved good results in CSPs. 

In ACO, artificial ants live in a discrete world, and their movement is essentially a transition 
from one discrete state to another. Each artificial ant releases the pheromone after constructing an 
assignment, and the amount of pheromone released is directly proportional to the quality of the 
assignment. The probability that the assignment is selected is determined by a probability 
distribution formula, which is updated by pheromones, heuristic information, and weights. As the 
probability distribution function is updated, the better assignment will be selected by subsequent 
ants with a higher probability. At the same time, a small portion of the pheromone is released on each 
assignment, allowing the ants to try to find assignments that have not been selected before. 

2.3. Ant Colony Optimization Based on Information Entropy (ACOE) 

ACOE follows the basic ACO algorithm for solving CSPs, and the process is shown in Algorithm 
1. At each iteration, ant k constructs an assignment Ak. If the cost of Ak is lower than that of the current 
best assignment bestA, bestA is replaced by Ak; otherwise, bestA is unchanged. Then, the pheromone 
value on each vertex is updated. The optimization process is repeated until a solution is found by an 
ant or the maximum number of iterations Nmax is reached. In the following, we first described the 
assignment construction and the ranking-based pheromone updating. Then, we introduced the 
automatic adjustment mechanism based on information entropy and the crossover-based local search. 
Finally, we discussed parameter settings. 

Algorithm 1 ACOE 
Input: a CSP (X, D, C), maximum number of iterations Nmax, number of ants Nant 
Output: bestA 
1: Initialization 
2: repeat 
3:   for k=1 to Nant do 
4:     Construct a complete assignment Ak 
5:     if cost(Ak) < cost(bestA) then 
6:       bestA ← Ak 
7:     end if 
8:     if the condition is satisfied then 
9:       bestA ← CLS(bestA)  
10:    end if 
11:  end for  
12:  Update pheromone on each vertex  
13: until cost(bestA) = 0 ∨ Nmax is reached  

Figure 1. (a) An assignment does not violate any constraints; and (b) an assignment that violates a constraint.

2.2. Original Ant Colony Optimization (ACO)

ACO, proposed by Dorigo et al. [27], solves the optimization problem by simulating the behavior
of real ants finding the shortest path between the nest and the food source. The ACO algorithm
has the characteristics of distributed computing, information positive feedback, and heuristic search.
At present, the algorithm has achieved good results in CSPs.

In ACO, artificial ants live in a discrete world, and their movement is essentially a transition
from one discrete state to another. Each artificial ant releases the pheromone after constructing an
assignment, and the amount of pheromone released is directly proportional to the quality of the
assignment. The probability that the assignment is selected is determined by a probability distribution
formula, which is updated by pheromones, heuristic information, and weights. As the probability
distribution function is updated, the better assignment will be selected by subsequent ants with a
higher probability. At the same time, a small portion of the pheromone is released on each assignment,
allowing the ants to try to find assignments that have not been selected before.

2.3. Ant Colony Optimization Based on Information Entropy (ACOE)

ACOE follows the basic ACO algorithm for solving CSPs, and the process is shown in Algorithm 1.
At each iteration, ant k constructs an assignment Ak. If the cost of Ak is lower than that of the current
best assignment bestA, bestA is replaced by Ak; otherwise, bestA is unchanged. Then, the pheromone
value on each vertex is updated. The optimization process is repeated until a solution is found by
an ant or the maximum number of iterations Nmax is reached. In the following, we first described
the assignment construction and the ranking-based pheromone updating. Then, we introduced the
automatic adjustment mechanism based on information entropy and the crossover-based local search.
Finally, we discussed parameter settings.

Algorithm 1 ACOE

Input: a CSP (X, D, C), maximum number of iterations Nmax, number of ants Nant

Output: bestA
1: Initialization
2: repeat
3: for k = 1 to Nant do
4: Construct a complete assignment Ak
5: if cost(Ak) < cost(bestA) then
6: bestA← Ak
7: end if
8: if the condition is satisfied then
9: bestA← CLS(bestA)
10: end if
11: end for
12: Update pheromone on each vertex
13: until cost(bestA) = 0 ∨ Nmax is reached
14: return bestA
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2.3.1. Assignment Construction

For constructing the assignment, each ant starts with an empty assignment and then iteratively
selects the next vertex that is not assigned to the assignment. The probability of selecting the vertex of
the assignment Ak is defined as:

pAk(< xi, vp >) =
[τAk(< xi, vp >)]

α[ηAk
(< xi, vp >)]

β

m∑
p=1

[τAk(< xi, vp >)]
α[ηAk

(< xi, vp >)]
β

, (1)

ηAk
(< xi, vp >) =

1
1 + cos t((< xi, vp >)∪A) − cos t(A)

, (2)

where τAk(<xi, vp>) is the pheromone value on the vertex <xi, vp>; α is the parameter determining
the weight of the pheromone value; ηAk(<xi, vp>) is the heuristic information of selecting the vertex
<xi, vp> [28], which is inversely proportional to the number of new violated constraints when assigning
<xi, vp> to Ak; β is the parameter determining the weight of the heuristic information; m is the number
of values for each variable. The pseudo-code of the assignment constructed by ant k is given in
Algorithm 2.

Algorithm 2 Assignment Construction

Input: ant k
Output: Ak
1: Selects a starting vertex <xi, vp>

2: Place ant k on the vertex <xi, vp>

3: Ak ← <xi, vp>

4: while |Ak| < |X| do
5: Select vertex <xj, vq> that is not assigned to Ak
6: Move ant k to <xj, vq>

7: Ak ← Ak ∪ <xj, vq>

8: end while
9: return Ak

2.3.2. Ranking-Based Pheromone Updating

After each ant constructs a complete assignment, the pheromone values are updated. In ACOE,
the ants are sorted by the costs of the constructed assignments, and the contribution of the pheromone
updating is weighted according to the rank r of the ant. We used the weight r for the r-th best ant.
Thus, the pheromone values were updated by:

τAk(< xi, vp >) = (1− ρ)τAk(< xi, vp >) + ∆τAk(< xi, vp >)
i f τAk(< xi, vp >) < τmin, then τAk(< xi, vp >) ← τmin

i f τAk(< xi, vp >) > τmax, then τAk(< xi, vp >) ← τmax

(3)

∆τAk
(< xi, vp >) =

 1
r∗cos t(Ak)

i f ant k is the r−th best ant

0 otherwise
, (4)

where ρ is the pheromone evaporation rate (0 < ρ < 1); r is the ranking index; and ∆τAk(<xi, vp>) is the
increased pheromone caused by the ant k. If ant k is the r-th best ant, the increased pheromone on the
vertex <xi, vp> belonging to the assignment Ak is inversely proportional to the cost multiplied by r.
A smaller r causes more pheromones to be increased on the vertices belonging to the assignment.

As indicated by (3), the range of τAk is between the minimum pheromone τmin and the maximum
pheromone τmax in the condition of τmin ≤ τAk ≤ τmax (0 < τmin ≤ τmax) [28]. Once the value of τAk
exceeds the range, the value will change to the nearest end-point.
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The degree to which the global information is contributed depends on the quality of the generated
assignments. A better assignment is more likely to make a greater contribution to the future assignments.
The pheromone updating strategy based on ant ranking make assignments with lower costs more
contribution to the global optimization. Thus, the global search ability of ACOE is enhanced.

2.3.3. Automatic Adjustment Mechanism Based on Information Entropy

Information entropy is used to measure the expected value of a random variable. The larger
the information entropy of a variable, the greater its uncertainty, that is, more information is needed
to determine this variable. The information entropy of an assignment is the sum of the information
entropy of all variables:

H(Ak) = −
n∑

i=1

m∑
p=1

pAk(< xi, vp >) log pAk(< xi, vp >), (5)

where pAk(<xi, vp>) is the probability that the vertex <xi, vp> is selected in the assignment Ak; n is the
number of variable; m is the number of value; H(Ak) is the information entropy of the assignment
constructed by ant k; and the logarithm takes 2 as the base. ACOE solves the CSP by constantly
comparing the current global best assignment and the best assignment in the current iteration.
The comparison process for the two assignments is defined in the formula below:∣∣∣H(bestA) −H(besttA)

∣∣∣< θ, (6)

where H(BestA) is the current global best assignment; H(BesttA) is the best assignment in the tth
iteration; and θ is the specified switch parameter.

At the beginning of ACOE, the pheromones on each vertex are equal and the information entropy
is the largest. As the number of iterations increases, the pheromones on the vertices that found by
ants increase, whereas the pheromones on the other vertices decrease. At the same time, the changing
process of these pheromones leads to a reduction in the information entropy of each assignment. When
the difference between H(BestA) and H(BesttA) is very small, the proposed algorithm performs a local
search (see Section 2.3.4).

2.3.4. Crossover-Based Local Search

To enhance the search ability of ACOE, we incorporated a local search (LS) into the proposed
algorithm. The LS uses a crossover operation to optimize the current best assignment. Thus, this LS is
called CLS. For solving CSPs, assignments with lower costs are generally more inclined to be selected
by ants. Therefore, the excellent assignments with lower costs are selected to explore its neighborhood
by using the CLS procedure, and better assignments are expected to be obtained. In ACOE, a crossover
operation is performed if the difference of the information entropy between the current global best
solution and the best solution in the tth iteration is less than θ. The current best assignment and other
randomly selected assignments will be crossed to obtain a new assignment. Suppose the current best
assignment is bestA = {<x1, v1>, <x2, v2>, <x3, v3>, . . . , <xn−1, vn−1>, <xn, vn>}, where n is the number
of variables; the randomly selected assignment is {<x1, v1>, <x2, v3>, <x3, v4>, . . . , <xn−1, vn−2>, <xn,
vn−3>}. We selected a random integer uniformly distributed between 1 and (n−1) as the crossover
point, and we assumed 2 was the intersection point in this example. Then, bestA and Au crossed to
generate a new assignment C = {<x1, v1>, <x2, v2>, <x3, v4>, . . . , <xn−1, vn−2>, <xn, vn−3>}. If the
newly obtained assignment has a lower cost value than the best assignment, the new assignment will
replace the best assignment. Otherwise, the best assignment will be preserved. The pseudo-code of
CLS is shown in Algorithm 3.
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Algorithm 3 CLS

Input: bestA, number of crossover operations L, number of values m
Output: bestA
1: for u = 1 to L do
2: Au ← select a random assignment
3: crossover point← U [1, m − 1]
4: C← Crossover(bestA, Au)
5: if cost(C) < cost(bestA) then
6: bestA← C
7: end if
8: end for
9: return bestA

2.3.5. Parameter Setting

ACOE has some parameters: The number of ants Nant, the minimum pheromone τmin, the
maximum pheromone τmax, the specified switch parameter θ, the pheromone evaporation rate ρ, and
the weight parameters α and β. We briefly analyzed the impact of these parameters on this proposed
algorithm. Nant was set to 10: The running time will increase if Nant has a larger value; the cost will
increase if Nant has a smaller value. τmin was set to 0.01 and τmax was set to = 4 according to previous
studies [24,29]. θ was set to 0.01: If θ has a smaller value, CLS can hardly work; if θ has a larger value,
the running time will increase due to calling CLS multiple times. β, α, and ρ have an impact on the
exploratory behavior of ants. β was set to 10, α was set to 2, and ρ was set to 0.01. ACOE was run
30 times on the same test case (Test 7) with different combinations of β, α, and ρ. Then, the lowest
cost value corresponding to a combination of the three parameters was recorded. The details of the
experimental results are shown in Table 1. In the table, β was set to 6, 8, and 10; α was set to 2, 3, 4, and
5; ρ was set to 0.01, 0.02, 0.03, 0.04, and 0.05. The other values represent the lowest costs obtained by
ACOE with different β, α, and ρ.

Table 1. Effects of β, α, and ρ with different settings on Test 7.

ρ β 6 8 10

α 2 3 4 5 2 3 4 5 2 3 4 5

0.01 28 26 26 28 25 25 26 27 24 25 25 27
0.02 29 30 29 29 26 26 26 28 25 26 25 27
0.03 30 31 30 29 26 27 26 27 25 26 26 28
0.04 29 30 30 31 28 27 28 29 25 26 27 28
0.05 30 29 31 30 27 29 30 31 26 28 30 29

3. Results and Discussion

3.1. Datasets

In the paper, four classes of binary CSP test cases were generated (Class 1, Class 2, Class 3, and
Class 4), and each class contained six specific test cases. The generated test cases were represented by
four components < n, m, p1, p2 >, where n is the number of variables, m is the domain for each variable,
p1 is the connectivity of the constraint graph, and p2 is the tightness of the constraints. Furthermore,
the constrainedness of a generated test case can be defined by the k-value (the range is 0 to 1), and the
k-value can be calculated according to Equation (7) [30,31]. A CSP is under-constrained and can be
solved when k is less than 1, whereas a CSP is over-constrained and usually difficult to solve when k is
greater than 1. More details of the generated test cases are shown in Table 2.

k(n, m, p1, p2) =
n− 1

2
p1 logm(

1
1− p2

). (7)
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Table 2. Details of generated test cases.

Component Set Test Case p2 k

Class 1 (100, 4, 0.14, p2)

Test 1 0.10 0.527
Test 2 0.12 0.639
Test 3 0.14 0.754
Test 4 0.16 0.872
Test 5 0.18 0.992
Test 6 0.20 1.115
Test 7 0.22 1.242
Test 8 0.24 1.372
Test 9 0.26 1.505

Test 10 0.28 1.642

Class 2 (100, 8, 0.14, p2)

Test 11 0.12 0.426
Test 12 0.14 0.503
Test 13 0.16 0.581
Test 14 0.18 0.661
Test 15 0.20 0.743
Test 16 0.22 0.828
Test 17 0.24 0.914
Test 18 0.26 1.003
Test 19 0.28 1.094
Test 20 0.30 1.188

Class 3 (150, 4, 0.14, p2)

Test 21 0.06 0.466
Test 22 0.08 0.627
Test 23 0.10 0.793
Test 24 0.12 0.961
Test 25 0.14 1.134
Test 26 0.16 1.311
Test 27 0.18 1.493
Test 28 0.20 1.679
Test 29 0.22 1.869
Test 30 0.24 2.605

Class 4 (150, 8, 0.14, p2)

Test 31 0.10 0.528
Test 32 0.12 0.641
Test 33 0.14 0.756
Test 34 0.16 0.874
Test 35 0.18 0.995
Test 36 0.20 1.119
Test 37 0.22 1.246
Test 38 0.24 1.376
Test 39 0.26 1.510
Test 40 0.28 1.648

3.2. Cost Comparison

The cost value is an important index to evaluate the performance of the compared algorithms.
For each test case, we ran eight algorithms (ACOE, ACOS, ACOD, ACON, ACOU, EEMDE, PS, and
GSABC) 30 times respectively. The minimum cost (Min), the average cost (Avg), and the maximum cost
(Max) were recorded, and the experimental results are given in Table 3. It can be seen from the table
that the minimum cost, the average cost, and the maximum cost increase gradually increased with
the growth of the k-value. For the small-scale problems with 100 variables (Test 1–20), the minimum
cost values obtained by ACOE were not obviously superior to those obtained by the other compared
algorithms. The proposed algorithm was not as good as ACON on Test 18, and it was inferior to
ACON and ACOU on Test 20. All the average cost values found by ACOE were the lowest, whereas
the maximum cost values obtained by this proposed algorithm were the lowest except for Test 18.
For the large–scale problems with 150 variables (Test 21–40), ACOE presents more obvious advantages
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than the other seven compared algorithms. For the 20 test cases, ACOE gets all the best minimum
costs, average costs, and maximum costs.

Table 3. Results of the minimum cost, average cost, and maximum cost.

Minimum Cost/Average Cost/Maximum Cost

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 1 0/0/0 0/0/1 0/1/1 0/0/1 0/0/0 0/1/2 0/1/1 0/0/1
Test 2 0/0/1 0/1/2 0/1/2 0/0/1 0/1/1 0/0/1 0/1/2 0/1/2
Test 3 0/0/1 0/1/4 0/1/2 0/1/2 0/1/2 0/2/3 1/2/4 1/1/3
Test 4 0/0/2 0/2/5 0/1/3 0/1/3 0/0/2 0/2/3 0/2/4 0/1/2
Test 5 0/0/1 0/1/3 0/1/3 0/0/2 0/1/2 0/1/2 1/2/3 0/1/2
Test 6 0/2/4 0/4/6 0/5/8 0/3/5 0/3/4 0/4/7 1/4/6 1/3/5
Test 7 24/30/38 29/35/42 29/34/39 27/35/40 25/32/39 28/37/45 30/38/46 27/36/41
Test 8 24/28/35 30/37/42 27/32/39 24/33/39 25/31/38 29/36/42 33/40/49 31/38/44
Test 9 27/34/41 31/40/47 33/42/47 29/36/43 30/36/46 34/42/48 36/42/50 33/41/46

Test 10 32/39/45 39/48/54 40/48/47 37/43/49 35/39/48 42/50/57 42/52/59 40/46/53
Test 11 0/1/1 0/1/3 0/1/2 0/1/2 0/1/2 0/1/3 0/2/4 0/1/2
Test 12 0/2/4 1/3/5 0/3/5 0/3/4 0/2/5 1/3/6 2/4/7 0/3/6
Test 13 0/4/6 1/5/7 1/5/8 0/5/7 0/4/7 1/4/8 1/5/9 1/5/8
Test 14 1/4/7 2/6/9 2/8/10 1/4/8 1/5/10 2/7/11 3/8/12 2/8/11
Test 15 0/5/7 1/6/10 0/5/10 0/5/9 0/5/8 1/6/10 1/6/11 1/5/10
Test 16 0/6/9 2/8/10 2/9/12 1/8/12 1/7/12 3/9/13 3/10/14 2/9/13
Test 17 3/8/14 5/10/18 4/10/16 4/9/15 4/10/15 5/11/16 6/12/19 5/11/18
Test 18 5/8/17 5/11/17 5/10/17 4/10/16 5/9/16 6/9/18 7/11/19 6/10/17
Test 19 10/15/24 14/19/25 12/18/25 13/17/24 11/17/25 14/19/27 15/19/29 15/18/26
Test 20 14/18/24 15/20/27 14/21/29 13/20/28 13/19/27 16/21/31 17/23/32 17/21/30
Test 21 3/4/7 4/7/10 5/7/9 3/5/7 3/5/8 5/8/10 6/10/14 6/8/11
Test 22 5/6/11 7/9/12 7/10/14 6/9/14 7/10/13 9/13/17 9/13/19 8/12/16
Test 23 6/8/13 7/11/15 7/10/15 6/10/14 6/11/14 8/12/17 8/14/19 7/12/16
Test 24 6/9/13 8/12/16 7/12/16 8/12/15 7/11/15 9/13/18 11/15/20 8/14/19
Test 25 5/8/14 6/12/16 5/11/16 5/10/15 6/11/16 8/13/18 10/15/19 6/13/17
Test 26 24/33/41 28/40/45 27/39/45 26/38/44 27/39/42 31/42/49 33/45/52 29/41/48
Test 27 53/57/63 57/65/73 59/64/72 56/62/70 56/61/72 60/68/78 65/74/85 61/70/83
Test 28 50/52/62 52/65/72 57/64/70 53/60/68 51/59/65 55/66/75 59/69/80 58/67/79
Test 29 59/69/77 64/75/87 68/77/88 63/70/80 62/71/83 67/78/90 70/82/95 69/80/92
Test 30 65/73/84 75/83/94 77/89/95 66/75/87 69/76/89 81/95/105 85/98/105 79/92/98
Test 31 0/0/0 0/0/2 0/1/2 0/0/1 0/0/2 0/1/3 0/1/2 0/1/3
Test 32 0/1/2 2/4/5 1/3/4 0/1/3 0/2/3 2/4/6 3/5/6 2/3/5
Test 33 0/2/4 2/4/7 2/4/6 1/3/4 2/3/5 2/5/8 3/6/8 2/3/6
Test 34 1/3/6 2/5/8 2/5/8 2/4/7 2/4/8 3/5/9 3/6/10 2/5/9
Test 35 1/3/8 2/6/11 2/6/10 1/5/10 2/5/10 2/7/11 3/9/14 2/7/10
Test 36 22/27/32 25/32/39 25/30/36 24/30/34 24/29/34 29/36/43 31/39/48 30/38/45
Test 37 29/33/45 34/41/54 35/40/52 33/38/47 33/39/49 38/45/57 40/47/63 35/45/54
Test 38 33/40/47 40/51/57 38/47/54 35/43/49 35/42/48 39/49/55 42/50/59 40/49/60
Test 39 37/45/52 45/53/60 44/54/59 38/48/54 40/47/56 44/55/61 46/58/69 43/56/62
Test 40 44/49/57 50/59/66 53/60/68 44/50/59 46/52/61 55/64/73 54/68/78 49/59/70

3.3. Result Distribution Analysis

In this section, we conducted an analysis about the result distribution of the eight compared
algorithms. Test 8, Test 18, Test 28, and Test 38 were selected as the representative of each case. For each
representative, all of the cost values obtained by each compared algorithm in 30 runs were used as
experimental data. We calculated the minimum point, the first quartile, the median, the third quartile,
and the maximum point of the cost values of each test case, and then we used the five statistical
quantities to draw the box plots (Figure 2). The median was used to describe the concentration of the
experimental data, regardless of the maximum or minimum value of the data distribution. As can
be seen from these box plots, the median cost of ACOE was lower than that of the other compared
algorithms. In addition, the length of the box also reflected the concentration of the data. The box
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length of ACOE was relatively short on the four test cases. The above analysis indicates that the result
distribution of the proposed algorithm was the most concentrated.
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3.4. Convergence Analysis

Convergence means that the objective cost value evaluated by an algorithm tends to be stable
after several iterations. We compared the convergence of the eight compared algorithms on Test 8,
Test 9, Test 10, Test 18, Test 19, Test 20, Test 28, Test 29, Test 30, Test 38, Test 39, and Test 40, and the
convergence diagrams are displayed in Figure 3. The running time (millisecond) was 100, 200, 300,
400, 500, 600, and 700, respectively, and these values were served as the scale units of the horizontal
axis. The cost of each algorithm under different scale units was recorded in these diagrams. For Test 8,
ACOE converged in around 300 ms, ACOU converged in about 400 ms, and the rest of algorithms
converged after approximately 600 ms. For Test 20, ACOE converged only after about 250 ms, which
was significantly faster than the other algorithms. For Test 28, Test 29, and Test 38, ACOE converged
after approximately 300 ms, and the other compared algorithms converge between 350 ms and 550 ms.
For Test 9, Test 10, Test 19, Test 30, Test 39, and Test 40, ACOE converged after approximately 400 ms,
and the other compared algorithms converged after 450 ms. For Test 18, all the five algorithms were in
approximately 450 ms.
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3.5. Hypothesis Test

For the purpose of proving the validity of ACOE in coping with CSPs, we used the fisher-indep
hypothesis test with a 0.05 confidence level. Thus, a significant difference could be reflected between
two algorithms when the p-value was below 0.05. All the cost values obtained by each compared
algorithm in 30 runs were collected as experimental data. The comparative results of ACOE with
ACOS, ACOD, ACON, ACOU, EEMDE, PS, and GSABC are shown in Table 4. For some small–scale test
cases, such as Test 1 and Test 2, ACOE was not significantly different from the other seven compared
algorithms. On Test 3 and Test 11, the proposed algorithm was only significantly different from PS.
ACOE performed significantly than ACOS and PS on Test 4, and it performed significantly than EEMDE,
PS, and GSABC on Test 12, Test 18, and Test 20. On Test 6 and Test 13, the proposed algorithm did not
perform significantly better than ACON and ACOU. The proposed algorithm was not significantly
better than ACOD and ACOU on Test 7, and it was not significantly better than ACON on Test 9 and
Test 19. On the large-scale test cases (Test 21–40), the p-values were less than 0.05 when ACOE was
compared to ACOS, ACOD, ACON, ACOU, EEMDE, PS, and GSABC, which indicates ACOE was
significantly better than the other algorithms.
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Table 4. Results of the hypothesise.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 1

ACOE – 0.438 0.402 0.443 0.500 0.385 0.419 0.440
ACOS 0.568 – 0.496 0.536 0.568 0.423 0.439 0.560
ACOD 0.598 0.504 – 0.573 0.598 0.434 0.503 0.569
ACON 0.557 0.464 0.427 – 0.557 0.401 0.435 0.494
ACOU 0.500 0.432 0.402 0.443 – 0.385 0.419 0.440

EEMDE 0.615 0.577 0.566 0.599 0.615 – 0.579 0.595
PS 0.581 0.561 0.497 0.565 0.581 0.421 – 0.562

GSABC 0.560 0.440 0.431 0.506 0.560 0.405 0.438 –

Test 2

ACOE – 0.321 0.315 0.440 0.380 0.436 0.309 0.298
ACOS 0.679 – 0.480 0.624 0.604 0.610 0.472 0.465
ACOD 0.685 0.520 – 0.638 0.609 0.617 0.477 0.470
ACON 0.560 0.376 0.362 – 0.419 0.466 0.355 0.350
ACOU 0.620 0.396 0.391 0.581 – 0.511 0.384 0.376

EEMDE 0.564 0.390 0.383 0.534 0.489 – 0.375 0.369
PS 0.691 0.528 0.527 0.645 0.616 0.625 – 0.481

GSABC 0.702 0.535 0.530 0.650 0.624 0.631 0.519 –

Test 3

ACOE – 0.303 0.347 0.398 0.465 0.067 7.890 × 10−4 0.187
ACOS 0.697 – 0.580 0.589 0.598 0.214 0.177 0.323
ACOD 0.653 0.420 – 0.508 0.531 0.151 0.104 0.278
ACON 0.602 0.411 0.492 – 0.517 0.143 0.097 0.271
ACOU 0.535 0.402 0.469 0.483 – 0.128 0.088 0.255

EEMDE 0.933 0.786 0.849 0.857 0.878 – 0.378 0.667
PS 1 0.823 0.896 0.903 0.912 0.222 – 0.791

GSABC 0.813 0.677 0.722 0.729 0.745 0.333 0.209 –

Test 4

ACOE – 0.005 0.244 0.240 0.330 0.103 0.045 0.309
ACOS 0.995 – 0.874 0.865 0.945 0.708 0.665 0.901
ACOD 0.756 0.126 – 0.487 0.711 0.288 0.279 0.663
ACON 0.760 0.135 0.513 – 0.720 0.296 0.290 0.669
ACOU 0.670 0.055 0.289 0.280 – 0.195 0.102 0.389

EEMDE 0.897 0.292 0.712 0.704 0.805 – 0.388 0.789
PS 0.955 0.335 0.721 0.710 0.898 0.612 – 0.833

GSABC 0.691 0.099 0.337 0.331 0.611 0.211 0.167 –



Entropy 2019, 21, 766 12 of 20

Table 4. Cont.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 5

ACOE – 0.209 0.201 0.400 0.353 0.348 0.122 0.341
ACOS 0.791 – 0.458 0.681 0.620 0.612 0.366 0.605
ACOD 0.799 0.542 – 0.688 0.623 0.618 0.397 0.610
ACON 0.600 0.319 0.312 – 0.476 0.470 0.209 0.465
ACOU 0.647 0.380 0.377 0.524 – 0.495 0.298 0.491

EEMDE 0.652 0.388 0.382 0.530 0.505 – 0.312 0.498
PS 0.878 0.644 0.603 0.791 0.702 0.668 – 0.679

GSABC 0.659 0.395 0.390 0.535 0.509 0.508 0.321 –

Test 6

ACOE – 0.038 7.765 × 10−5 0.114 0.266 6.742 × 10−4 6.009 × 10−4 0.043
ACOS 0.962 – 0.102 0.777 0.891 0.289 0.276 0.691
ACOD 1 0.898 – 0.991 1 0.792 0.660 0.945
ACON 0.886 0.223 0.009 – 0.768 0.067 0.059 0.290
ACOU 0.734 0.109 8.789 × 10−4 0.232 – 0.009 0.007 0.176

EEMDE 1 0.711 0.208 0.933 0.991 – 0.355 0.887
PS 1 0.724 0.340 0.941 0.993 0.645 – 0.892

GSABC 0.957 0.309 0.055 0.710 0.824 0.113 0.108 –

Test 7

ACOE – 0.039 0.165 0.045 0.389 1.335 × 10−4 1.004 × 10−6 9.876 × 10−4

ACOS 0.961 – 0.858 0.720 0.933 0.221 0.115 0.290
ACOD 0.835 0.142 – 0.419 0.776 0.009 0.001 0.067
ACON 0.955 0.280 0.581 – 0.895 0.113 0.062 0.182
ACOU 0.611 0.067 0.224 0.105 – 8.884 × 10−4 1.453 × 10−4 0.008

EEMDE 1 0.779 0.991 0.887 1 – 0.399 0.662
PS 1 0.885 0.999 0.938 1 0.601 – 0.794

GSABC 1 0.710 0.933 0.818 0.992 0.338 0.206 –

Test 8

ACOE – 7.542 × 10−4 0.009 0.019 0.025 0.001 7.544 × 10−8 5.980 × 10−6

ACOS 1 – 0.595 0.634 0.809 0.553 0.167 0.225
ACOD 0.991 0.405 – 0.562 0.622 0.444 0.004 0.027
ACON 0.981 0.366 0.432 – 0.560 0.408 6.669 × 10−4 0.004
ACOU 0.975 0.191 0.388 0.440 – 0.208 7.664 × 10−5 6.659 × 10−4

EEMDE 0.999 0.447 0.556 0.592 0.798 – 0.096 0.122
PS 1 0.833 0.996 1 1 0.904 – 0.726

GSABC 1 0.775 0.973 0.996 1 0.878 0.274 –
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Table 4. Cont.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 9

ACOE – 0.004 5.545 × 10−7 0.054 0.029 5.898 × 10−8 7.653 × 10−9 6.645 × 10−6

ACOS 0.996 – 0.005 0.913 0.834 7.706 × 10−5 8.744 × 10−6 0.012
ACOD 1 0.995 – 1 1 0.004 1.975 × 10−4 0.992
ACON 0.946 0.087 4.655 × 10−6 – 0.355 2.670 × 10−7 7.980 × 10−8 7.707 × 10−5

ACOU 0.971 0.166 1.542 × 10−4 0.645 – 9.994 × 10−6 1.325 × 10−6 9.966 × 10−4

EEMDE 1 1 0.996 1 1 – 0.238 1
PS 1 1 1 1 1 0.762 – 1

GSABC 1 0.988 0.008 1 1 9.642 × 10−4 1.565 × 10−4 –

Test 10

ACOE – 1.222 × 10−5 9.667 × 10−5 4.448 × 10−4 0.007 8.890 × 10−8 3.897 × 10−10 8.754 × 10−7

ACOS 1 – 1 1 1 2.238 × 10−5 9.688 × 10−7 9.998 × 10−5

ACOD 1 7.766 × 10−4 – 0.993 1 8.890 × 10−6 3.346 × 10−7 2.346 × 10−5

ACON 1 9.986 × 10−5 0.007 – 0.995 1.565 × 10−6 8.853 × 10−8 8.785 × 10−6

ACOU 0.993 1.867 × 10−5 8.855 × 10−4 0.005 – 9.909 × 10−7 6.678 × 10−9 3.332 × 10−6

EEMDE 1 1 1 1 1 – 0.998 1
PS 1 1 1 1 1 0.002 – 1

GSABC 1 1 1 1 1 5.323 × 10−4 4.455 × 10−5 –

Test 11

ACOE – 0.185 0.206 0.295 0.310 0.182 7.656 × 10−5 0.203
ACOS 0.815 – 0.558 0.688 0.756 0.397 0.234 0.502
ACOD 0.794 0.442 – 0.597 0.698 0.335 0.008 0.490
ACON 0.705 0.312 0.403 – 0.603 0.306 2.276 × 10−4 0.391
ACOU 0.690 0.244 0.302 0.397 – 0.239 8.645 × 10−4 0.295

EEMDE 0.818 0.603 0.665 0.694 0.761 – 0.245 0.610
PS 1 0.766 0.992 1 1 0.755 – 0.873

GSABC 0.797 0.498 0.510 0.609 0.705 0.390 0.127 –

Test 12

ACOE – 0.156 0.256 0.320 0.355 0.002 5.895 × 10−4 0.036
ACOS 0.844 – 0.560 0.599 0.635 0.387 0.324 0.425
ACOD 0.744 0.440 – 0.552 0.580 0.345 0.303 0.398
ACON 0.680 0.401 0.448 – 0.511 0.297 0.276 0.345
ACOU 0.645 0.365 0.420 0.489 – 0.189 0.180 0.267

EEMDE 0.998 0.613 0.655 0.703 0.811 – 0.458 0.582
PS 1 0.676 0.697 0.724 0.820 0.542 – 0.604

GSABC 0.964 0.575 0.602 0.655 0.733 0.418 0.396 –
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Table 4. Cont.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 13

ACOE – 0.041 0.026 0.207 0.290 0.037 6.766 × 10−4 0.025
ACOS 0.959 – 0.208 0.751 0.876 0.309 0.220 0.201
ACOD 0.974 0.792 – 0.832 0.902 0.633 0.315 0.508
ACON 0.793 0.249 0.168 – 0.699 0.213 0.043 0.164
ACOU 0.710 0.124 0.098 0.301 – 0.117 1.006 × 10−4 0.095

EEMDE 0.963 0.691 0.367 0.787 0.883 – 0.279 0.361
PS 1 0.780 0.685 0.957 1 0.721 – 0.681

GSABC 0.975 0.799 0.498 0.836 0.905 0.639 0.319 –

Test 14

ACOE – 0.027 0.009 0.176 0.055 8.560 × 10−4 6.745 × 10−5 1.875 × 10−4

ACOS 0.973 – 0.277 0.658 0.511 0.149 0.011 0.085
ACOD 0.991 0.723 – 0.775 0.733 0.256 0.095 0.156
ACON 0.824 0.342 0.225 – 0.421 0.067 7.790 × 10−4 0.006
ACOU 0.945 0.489 0.267 0.579 – 0.144 0.009 0.078

EEMDE 1 0.851 0.744 0.933 0.856 – 0.243 0.387
PS 1 0.989 0.905 1 0.991 0.757 – 0.612

GSABC 1 0.915 0.844 0.994 0.922 0.613 0.388 –

Test 15

ACOE – 0.005 0.009 0.030 0.045 2.674 × 10−4 6.745 × 10−5 0.006
ACOS 0.995 – 0.560 0.714 0.993 0.379 0.204 0.507
ACOD 0.991 0.440 – 0.665 0.898 0.125 0.055 0.465
ACON 0.970 0.286 0.335 – 0.614 0.048 6.443 × 10−4 0.298
ACOU 0.955 0.007 0.102 0.386 – 7.888 × 10−4 1.999 × 10−5 0.008

EEMDE 1 0.621 0.875 0.952 1 – 0.499 0.632
PS 1 0.796 0.945 1 1 0.501 – 0.804

GSABC 0.994 0.495 0.535 0.702 0.992 0.368 0.196 –

Test 16

ACOE – 0.018 6.232 × 10−8 5.178 × 10−7 4.181 × 10−6 1.455 × 10−9 5.743 × 10−10 8.823 × 10−9

ACOS 0.982 – 0.013 0.024 0.031 4.532 × 10−6 1.094 × 10−7 7.895 × 10−6

ACOD 1 0.987 – 0.510 0.528 7.890 × 10−4 8.643 × 10−5 0.012
ACON 1 0.976 0.490 – 0.615 1.658 × 10−4 1.005 × 10−5 7.666 × 10−4

ACOU 1 0.969 0.472 0.385 – 1.005 × 10−5 8.865 × 10−6 3.077 × 10−5

EEMDE 1 1 1 1 1 – 0.411 0.624
PS 1 1 1 1 1 0.589 – 1

GSABC 1 1 0.988 1 1 0.376 5.565 × 10−4 –
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Table 4. Cont.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 17

ACOE – 5.167 × 10−8 3.344 × 10−8 6.437 × 10−5 8.222 × 10−4 5.543 × 10−9 8.644 × 10−11 3.534 × 10−10

ACOS 1 – 0.604 0.951 1 0.401 0.087 0.176
ACOD 1 0.396 – 0.940 1 0.287 8.766 × 10−4 0.005
ACON 1 0.049 0.060 – 0.998 0.202 1.678 × 10−4 7.748 × 10−4

ACOU 1 7.892 × 10−5 3.156 × 10−5 0.002 – 2.453 × 10−6 1.870 × 10−7 7.655 × 10−7

EEMDE 1 0.599 0.713 0.798 1 – 0.226 0.314
PS 1 0.913 1 1 1 0.774 – 0.488

GSABC 1 0.824 0.995 1 1 0.686 0.512 –

Test 18

ACOE – 0.140 0.243 0.399 0.591 0.005 4.886 × 10−4 0.001
ACOS 0.860 – 0.560 0.702 0.874 0.254 0.108 0.164
ACOD 0.757 0.440 – 0.631 0.798 0.120 0.067 0.096
ACON 0.601 0.298 0.369 – 0.613 0.057 0.006 0.012
ACOU 0.409 0.126 0.202 0.387 – 9.653 × 10−4 1.654 × 10−4 8.953 × 10−4

EEMDE 0.995 0.746 0.880 0.943 1 – 0.237 0.316
PS 1 0.892 0.933 0.994 1 0.763 – 0.590

GSABC 0.999 0.836 0.904 0.988 1 0.684 0.410 –

Test 19

ACOE – 0.020 0.029 0.227 0.038 1.887 × 10−5 6.673 × 10−7 3.572 × 10−5

ACOS 0.980 – 0.515 0.801 0.675 0.208 0.008 0.399
ACOD 0.971 0.485 – 0.768 0.508 0.058 9.777 × 10−4 0.168
ACON 0.773 0.199 0.232 – 0.435 6.330 × 10−4 8.545 × 10−5 0.008
ACOU 0.962 0.325 0.402 0.565 – 9.565 × 10−4 2.446 × 10−4 0.043

EEMDE 1 0.792 0.942 1 1 – 0.376 0.605
PS 1 0.992 1 1 1 0.624 – 0.875

GSABC 1 0.601 0.832 0.992 0.957 0.395 0.125 –

Test 20

ACOE – 0.355 0.433 0.452 0.518 0.014 6.674 × 10−4 0.003
ACOS 0.645 – 0.577 0.600 0.773 0.276 0.168 0.201
ACOD 0.567 0.423 – 0.525 0.697 0.188 0.079 0.107
ACON 0.548 0.400 0.475 – 0.640 0.098 0.007 0.056
ACOU 0.482 0.227 0.303 0.360 – 0.005 8.775 × 10−5 7.653 × 10−4

EEMDE 0.986 0.724 0.812 0.902 0.995 – 0.288 0.316
PS 1 0.832 0.921 0.993 1 0.712 – 0.664

GSABC 0.997 0.799 0.893 0.944 1 0.684 0.336 –
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Table 4. Cont.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 21

ACOE – 0.027 0.031 0.047 0.042 7.534 × 10−4 5.909 × 10−6 1.166 × 10−5

ACOS 0.973 – 0.599 0.868 0.772 0.245 0.023 0.086
ACOD 0.969 0.401 – 0.763 0.648 0.196 0.002 0.011
ACON 0.953 0.132 0.237 – 0.336 0.055 9.922 × 10−5 4.542 × 10−4

ACOU 0.958 0.228 0.352 0.664 – 0.105 1.005 × 10−4 9.965 × 10−4

EEMDE 1 0.755 0.804 0.945 0.895 – 0.198 0.344
PS 1 0.977 0.998 1 1 0.802 – 0.602

GSABC 1 0.914 0.989 1 1 0.656 0.398 –

Test 22

ACOE – 0.034 0.021 0.037 0.028 1.301 × 10−5 6.446 × 10−6 5.655 × 10−5

ACOS 0.966 – 0.206 0.697 0.390 0.134 0.054 0.237
ACOD 0.979 0.794 – 0.875 0.630 0.303 0.256 0.379
ACON 0.963 0.303 0.125 – 0.134 1.050 × 10−4 0.005 8.659 × 10−4

ACOU 0.972 0.610 0.370 0.866 – 0.201 0.118 0.298
EEMDE 1 0.866 0.697 1 0.799 – 0.406 0.611

PS 1 0.946 0.744 0.995 0.892 0.594 – 0.689
GSABC 1 0.763 0.621 1 0.702 0.389 0.311 –

Test 23

ACOE – 5.127 × 10−7 3.654 × 10−6 6.008 × 10−5 5.945 × 10−5 1.334 × 10−9 8.644 × 10−11 6.523 × 10−9

ACOS 1 – 0.630 0.883 0.752 0.002 7.674 × 10−4 0.008
ACOD 1 0.370 – 0.765 0.611 1.004 × 10−4 6.653 × 10−5 8.653 × 10−4

ACON 1 0.117 0.235 – 0.380 6.678 × 10−8 2.228 × 10−9 6.989 × 10−7

ACOU 1 0.242 0.389 0.620 – 5.809 × 10−6 7.787 × 10−7 8.542 × 10−5

EEMDE 1 1 1 1 1 – 0.249 0.562
PS 1 1 1 1 1 0.751 – 0.957

GSABC 1 1 1 1 1 0.438 0.043 –

Test 24

ACOE – 9.878 × 10−6 2.289 × 10−6 8.254 × 10−5 2.634 × 10−5 1.034 × 10−8 7.653 × 10−10 8.777 × 10−9

ACOS 1 – 0.635 0.951 1 1.556 × 10−4 2.786 × 10−5 1.002 × 10−4

ACOD 1 0.375 – 0.870 0.966 8.323 × 10−4 5.670 × 10−5 9.997 × 10−5

ACON 1 0.049 0.130 – 0.744 4.721 × 10−5 7.341 × 10−6 1.524 × 10−5

ACOU 1 6.758 × 10−4 0.034 0.256 – 7.753 × 10−6 6.900 × 10−8 8.942 × 10−7

EEMDE 1 1 1 1 1 – 7.773 × 10−4 0.005
PS 1 1 1 1 1 1 – 0.628

GSABC 1 1 1 1 1 0.995 0.372 –
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Table 4. Cont.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 25

ACOE – 3.657 × 10−5 0.037 0.046 4.453 × 10−4 3.652 × 10−8 5.653 × 10−10 7.890 × 10−7

ACOS 1 – 0.892 0.991 0.655 7.674 × 10−4 8.342 × 10−5 0.309
ACOD 0.963 0.108 – 0.567 0.189 8.650 × 10−5 9.765 × 10−7 9.564 × 10−4

ACON 0.954 0.009 0.433 – 0.145 2.760 × 10−5 4.895 × 10−7 6.653 × 10−4

ACOU 1 0.345 0.811 0.855 – 2.008 × 10−4 3.342 × 10−5 0.120
EEMDE 1 1 1 1 1 – 0.305 0.904

PS 1 1 1 1 1 0.695 – 1
GSABC 1 0.691 1 1 0.880 0.096 3.342 × 10−4 –

Test 26

ACOE – 7.620 × 10−6 3.986 × 10−6 1.876 × 10−5 0.041 7.843 × 10−12 7.780 × 10−14 6.742 × 10−11

ACOS 1 – 0.622 0.953 1 1.980 × 10−5 5.432 × 10−6 9.431 × 10−5

ACOD 1 0.378 – 0.969 1 7.532 × 10−7 8.854 × 10−8 4.562 × 10−6

ACON 1 0.047 0.031 – 0.944 8.809 × 10−8 9.876 × 10−10 6.660 × 10−7

ACOU 0.959 8.424 × 10−4 3.874 × 10−4 0.056 – 5.424 × 10−10 6.563 × 10−12 8.236 × 10−9

EEMDE 1 1 1 1 1 – 0.317 1
PS 1 1 1 1 1 0.683 – 1

GSABC 1 1 1 1 1 4.523 × 10−4 6.531 × 10−5 –

Test 27

ACOE – 2.848 × 10−8 4.012 × 10−7 4.645 × 10−6 8.834 × 10−6 3.653 × 10−9 1.009 × 10−9 2.123 × 10−9

ACOS 1 – 0.608 0.654 0.875 1.753 × 10−4 9.784 × 10−4 1.109 × 10−4

ACOD 1 0.392 – 0.568 0.835 4.642 × 10−4 2.006 × 10−5 1.653 × 10−4

ACON 1 0.346 0.432 – 0.548 9.842 × 10−5 8.998 × 10−6 3.111 × 10−4

ACOU 1 0.125 0.165 0.452 – 1.778 × 10−5 3.578 × 10−7 1.879 × 10−5

EEMDE 1 1 1 1 1 – 0.014 0.231
PS 1 1 1 1 1 0.986 – 0.527

GSABC 1 1 1 1 1 0.769 0.473 –

Test 28

ACOE – 2.006 × 10−9 6.955 × 10−8 1.664 × 10−8 5.115 × 10−7 1.892 × 10−9 1.754 × 10−9 1.056 × 10−9

ACOS 1 – 0.597 1 1 0.104 0.003 0.078
ACOD 1 0.403 – 1 1 5.670 × 10−5 2.085 × 10−5 7.753 × 10−5

ACON 1 6.167 × 10−4 6.984 × 10−4 – 0.635 8.664 × 10−6 1.167 × 10−6 5.739 × 10−6

ACOU 1 2.987 × 10−4 9.120 × 10−4 0.365 – 6.524 × 10−7 6.782 × 10−8 3.745 × 10−7

EEMDE 1 0.896 1 1 1 – 0.512 0.595
PS 1 0.997 1 1 1 0.488 – 0.410

GSABC 1 0.922 1 1 1 0.405 0.590 –
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Table 4. Cont.

Test Case ACOE ACOS ACOD ACON ACOU EEMDE PS GSABC

Test 29

ACOE – 4.675 × 10−10 3.043 × 10−10 5.783 × 10−8 3.665 × 10−9 1.524 × 10−10 6.785 × 10−12 7.543 × 10−11

ACOS 1 – 0.388 1 1 5.623 × 10−5 4.563 × 10−6 1.245 × 10−5

ACOD 1 0.612 – 1 1 7.905 × 10−5 9.342 × 10−6 6.894 × 10−5

ACON 1 8.644 × 10−4 1.226 × 10−5 – 0.596 7.543 × 10−7 1.671 × 10−8 8.990 × 10−8

ACOU 1 9.890 × 10−4 5.187 × 10−5 0.404 – 9.532 × 10−7 6.872 × 10−8 9.689 × 10−8

EEMDE 1 1 1 1 1 – 0.001 0.204
PS 1 1 1 1 1 0.999 – 0.606

GSABC 1 1 1 1 1 0.796 0.394 –

Test 30

ACOE – 7.453 × 10−10 1.768 × 10−10 2.875 × 10−9 4.093 × 10−9 8.543 × 10−13 2.901 × 10−13 6.453 × 10−11

ACOS 1 – 0.705 1 1 6.346 × 10−7 3.246 × 10−7 5.895 × 10−6

ACOD 1 0.295 – 1 1 2.005 × 10−7 1.652 × 10−7 1.564 × 10−6

ACON 1 7.463 × 10−5 3.658 × 10−5 – 0.811 6.897 × 10−10 3.455 × 10−10 7.090 × 10−8

ACOU 1 8.156 × 10−6 3.652 × 10−6 0.189 – 5.675 × 10−10 1.400 × 10−10 5.763 × 10−8

EEMDE 1 1 1 1 1 – 0.398 1
PS 1 1 1 1 1 0.602 – 1

GSABC 1 1 1 1 1 4.907 × 10−4 2.689 × 10−4 –
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4. Conclusions

CSP, as a topic of artificial intelligence, plays an important role in many real-life applications. In the
paper, the ACOE algorithm was proposed to deal with the problem. On the generated CSP test cases, the
performance of ACOE was evaluated from the aspects of cost comparison, data distribution, convergence
performance, and hypothesis test. The results showed that the proposed algorithm had advantages in
efficiency and effectiveness. However, there were limitations about the proposed algorithm on the next
two aspects. First of all, although we had introduced some measurements to evaluate the performance
of different algorithms, it is worth mentioning here that other evaluation measures like running time
and standard deviation could be also be applied for a wider range of performance analysis. Secondly,
although ACOE was evaluated on 40 test cases, the algorithm was not tested on real datasets. In the
future, we will focus on the application of the proposed algorithm on real data.
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