
entropy

Article

A Novel Autonomous Perceptron Model for Pattern
Classification Applications

Alaa Sagheer 1,2 , Mohammed Zidan 3,* and Mohammed M. Abdelsamea 4,5

1 College of Computer Science and Information Technology, King Faisal University, AlAhsa 31982,
Saudi Arabia; asagheer@kfu.edu.sa

2 Center for Artificial Intelligence and Robotics (CAIRO), Faculty of Science, Aswan University,
Aswan 81528, Egypt

3 University of Science and Technology, Zewail City of Science and Technology, October Gardens,
6th of October City, Giza 12578, Egypt

4 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71515, Egypt;
m.abdelsamea@aun.edu.eg

5 School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
* Correspondence: comsi2014@gmail.com

Received: 29 May 2019; Accepted: 30 July 2019; Published: 6 August 2019
����������
�������

Abstract: Pattern classification represents a challenging problem in machine learning and data
science research domains, especially when there is a limited availability of training samples. In recent
years, artificial neural network (ANN) algorithms have demonstrated astonishing performance when
compared to traditional generative and discriminative classification algorithms. However, due to
the complexity of classical ANN architectures, ANNs are sometimes incapable of providing efficient
solutions when addressing complex distribution problems. Motivated by the mathematical definition
of a quantum bit (qubit), we propose a novel autonomous perceptron model (APM) that can solve
the problem of the architecture complexity of traditional ANNs. APM is a nonlinear classification
model that has a simple and fixed architecture inspired by the computational superposition power of
the qubit. The proposed perceptron is able to construct the activation operators autonomously after a
limited number of iterations. Several experiments using various datasets are conducted, where all
the empirical results show the superiority of the proposed model as a classifier in terms of accuracy
and computational time when it is compared with baseline classification models.

Keywords: machine learning; pattern classification; artificial neural networks; quantum-inspired
neural network; soft computing

1. Introduction

Classification is one of the most active research areas in the machine learning domain and plays
a significant role in many applications such as product inspection, quality control, fault detection,
medical diagnosis, credit scoring, bankruptcy prediction and speech recognition, to mention a few [1].
Pattern classification models can be categorized into two broad classes: parametric and non-parametric.

Parametric models such as the support vector machine (SVM) [2] and decision tree [3] rely on
the hypothesis that the training observations should be plentiful and obey a certain distribution.
This provides accurate outcomes, but also restricts their scope. Likewise, discriminant analysis
models [4] have been designed mainly based on the Bayesian decision theory. In such models, the
underlying model probability should be estimated in order to provide the posterior probabilities upon
which the classification decisions are made [4,5]. The major restriction of this class of models is that
the underlying statistical assumptions should be satisfied to provide accurate classification boundaries.

Entropy 2019, 21, 763; doi:10.3390/e21080763 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-1599-9286
https://orcid.org/0000-0002-6646-9747
http://dx.doi.org/10.3390/e21080763
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/21/8/763?type=check_update&version=2

Entropy 2019, 21, 763 2 of 24

Therefore, prior knowledge about model capabilities and data properties should be considered when
building a model [1].

On the other hand, non-parametric models such as the artificial neural network (ANN) can provide
robust solutions to solve complex real-world classification problems with no statistical assumptions
about the distribution of the data. However, there are some restrictions to the use of non-parametric
models. In this paper, we use ANN as an example to shed light on the limitations of non-parametric
models and to motivate our solution. For example, the scope of ANN is limited to the availability of a
large number of training observations, which requires too many hidden nodes and therefore excessive
training time and computing requirements [6]. Furthermore, training an ANN requires the use of an
adaptive method to determine a suitable network structure and an iterative update for connection
weights, which are, in turn, computationally expensive [7].

The expensive computation of ANNs, the difficulty of fine-tuning their hyper-parameters and the
identification of an optimal network structure have motivated research groups to investigate novel
approaches to overcome these limitations. One of these approaches was to integrate other learning
techniques with ANNs to enhance their overall computational complexity. Examples of these
techniques are fuzzy logic [8], genetic algorithms [9], and evolutionary computation [6].

Recently, there have been unremitting research efforts to adopt quantum computation into
machine learning and artificial intelligence contexts [10]. This research trend deals with the capability
of quantum computation applied to neural computation, capitalizing on the superposition power of the
quantum bit (qubit), which is different from its classical counterpart (bit). Quantum computing-based
neural networks and quantum-inspired neural networks (QiNNs) [11] have demonstrated better
performance over classical ANNs in terms of effectiveness and efficiency [12–21]. QiNN models can
be further divided into two main categories: QiNN models that are only implemented on quantum
computers, which strive to break out of labs [22], and models that take advantage of both QiNN and
ANN and could be implemented on classical computers [11,12,14–16]. These models are the main
focus of this paper.

Most of the previously-proposed QiNN approaches were designed mainly to improve the
robustness of classical perceptron models [23] using the computational power of the qubit in the
selection of the perceptron’s activation operator [16,20,24,25]. However, some of these approaches are
computationally very expensive, especially when they are implemented on classical computers. On the
other hand, some of these approaches create a new structure of a quantum neuron [16,24,25], which is
not compatible with the quantum computing postulates [26]. In addition, such quantum neurons are
still sensitive to the selection of appropriate activation operators. In this paper, we propose a novel
autonomous perceptron model (APM) inspired by the computational power of the qubit. The proposed
model is capable of achieving efficient pattern classification experiment results using the classical
computer only. Accordingly, the main contributions of the proposed model can be summarized
as follows:

• The APM is designed with an optimal neural structure of only one single neuron to classify
nonlinear separable datasets.

• The APM is able to construct the neural network activation operators autonomously.
• The APM is a robust classifier that is able to compete favourably with several standard classifiers

and can be implemented in a limited number of iterations.

Here, the empirical experiments show that the proposed perceptron model outperforms other
counterpart models presented in [16,20] when learning the logical XOR function, which cannot be
implemented by the classical perceptron. Moreover, the proposed APM model outperforms several
baseline linear and nonlinear classification models, such as multilayer perceptron, linear discriminate
analysis, SVM and AdaBoost; in terms of accuracy and computational time of classification problems
using several real benchmark datasets.

The rest of the paper is organized as follows: Section 2 shows a few basic concepts of quantum

Entropy 2019, 21, 763 3 of 24

computation and the classical perceptron. A comprehensive overview of related work is provided
in Section 3, along with the limitations of previous works. Section 4 presents the proposed APM
model and its learning settings. Section 5 provides the computational capability of the proposed
model. Section 6 shows the experimental results of the proposed model in learning various
classification problems using real and synthetic datasets. A time complexity analysis of the APM is
reported in Section 7. Section 8 gives a thorough discussion of the results of the paper. Eventually,
Section 9 concludes the paper and its findings.

2. Background

This section shows an overview of a few basic concepts needed for the paper. Readers who are
familiar with these concepts may skip this section.

2.1. Quantum Computation

Quantum computation has attracted much attention in the last two decades after the
development of a quantum algorithm that was able to factorize large integers in polynomial
time [27]. Generally speaking, quantum computation aims to develop computer technology based
on the postulates of quantum mechanics [26]. Classical physics applies to things that human
beings can see, whereas quantum physics applies to things that are at the scale of atoms or below.
Quantum computation essentially capitalizes on two properties of quantum particles followed by the
postulates of quantum mechanics: (i) superposition and (ii) entanglement [26]. Superposition is a
one-particle property, while entanglement is a characteristic of two or more particles. The computer
that uses postulates of quantum mechanics and performs the computation is called a quantum
computer [28].

2.2. Quantum Bit

The quantum computer is completely different from the digital/classical computer [28].
For instance, in the classical computer, information is stored and transformed using the binary system
as bits; whereas in the quantum computer, information is stored and transformed as quantum bits
(qubits). Unlike the classical bit, which is represented as either zero or one, a qubit is represented by a
linear combination, often called a superposition, of the two base states |0〉 and |1〉, as follows:

|ψ〉 = a|0〉+ b|1〉 =
(

a
b

)
(1)

Here, a and b are complex numbers, usually called the probability amplitudes, and therefore, they
satisfy |a|2 + |b|2 = 1. In this representation, we used Dirac’s notations “ket” |.〉 and “bra” 〈.|.

2.3. The Perceptron Model

The single-perceptron model can be described as a single neuron with a sgn (i.e., threshold)
activation function, which can be used to solve simple binary classification problems [29].
More precisely, it can be illustrated using the following equation:

f (x) =

1 i f w.x + B > 0

0 otherwise

(2)

where w is a weight vector, x is the input, and B is a bias. The output value f (x) is then used to
classify an input pattern x based on learned weights. The perceptron has the ability to determine a
separating hyperplane if the patterns are linearly separable in finite steps; otherwise, a convergence
issue occurs [30].

Entropy 2019, 21, 763 4 of 24

3. Related Work

This section provides a comprehensive review for previous works along with their limitations.

3.1. Previously Proposed Models

ANNs are the most widespread type of computational algorithm inspired by the function and
architecture of the biological neural networks in the human brain [7]. Like a simplified brain model,
an ANN can be represented as an n-dimensional graph where the nodes are called neurons and
their connections are weighted by specific parameters [7]. They are nonlinear and non-parametric
models that are easy to use and understand when compared with traditional statistical methods,
which are parametric models. ANNs along with learning algorithms are widely used to solve various
classification, recognition, and forecasting problems [1,7]. However, more than 30 years of research in
ANNs has demonstrated that traditional ANNs are not capable of achieving low-cost learning due to
their expensive computation requirements. Furthermore, in the current era of big data, the pressure to
find innovative approaches to ANNs has been rising [31].

In recent years, there have been persistent research efforts to evoke quantum computation
capabilities in ANN algorithms. Superposition is a property that aligns with the linearity of the
system operators, allowing for a powerful form of parallel computation that is able to develop more
efficient algorithms than the known classical algorithms [18]. The first attempt to use quantum
computing in the classical realm was done by Grover et al. [32] who presented an algorithm to find
an element in an unordered dataset quadratically faster than its classical counterpart. At that early
time, it was reported that the computational power of the QiNN would be higher than that of ANN in
terms of effectiveness and efficiency [33]. Currently, integrating quantum computation capabilities
into ANNs is still an open and challenging trend of research [34].

One of the earlier contributions to this trend was given by Menneer et al. [35], who presented
the first QiNN algorithm. Ventura and Martinez [17] proposed a quantum implementation of the
associative memory model. Likewise, Narayanan and Menneer [36] showed that QiNN is not only
more efficient, but also more powerful when compared with the traditional ANN. Moreover, Gupta and
Zia [37] defined a novel QiNN computational model based on the concept of the Deutsch computational
model. Next, Kouda et al. [38] proposed the qubit neural network through the use of some quantum
characteristics such as quantum superposition and probability interpretation.

Most of the above-mentioned efforts relied on one of two approaches, either the classical feed
forward neural networks (FFNNs) or the Hopfield networks [17]. FFNNs cannot be simulated by
linear and unitary dynamics of quantum computation directly due to the nonlinear and dissipative
dynamics of the classical neurons [34], whereas the Hopfield networks, which are mainly based on the
associative memory rather than a nonlinear activation function, use the Hamming distance to find the
closest unit to the input pattern. In fact, a few real-life applications rely on the Hamming distance,
which thereby limits the usability of the Hopfield QiNN [34].

Another direction that has attracted much attention is based on the classical Rosenblatt’s
perceptron model [23], and several attempts have been made to develop a quantum equivalent
for this classical model. In principle, perceptron models, as linear classifiers, play an important role in
the foundations of classical neural networks [39]. The first quantum perceptron model, which was
considered as “network with a teacher”, was presented by Altaisky et al. [24]. Fei et al. [25] described
a model for quantum perceptron and discussed its quantum learning rule, which was able to learn
the XOR function successfully and had the same computational power as the two-layer perceptron.
Zhou et al. [13,16] presented a quantum perceptron model built on the combination of the classical
perceptron model and quantum computing. Zhou’s model has computing power that the traditional
perceptron is unable to realize. Meng et al. [40] introduced a model based on a quantum computational
multi-agent system with a reinforcement-learning approach in which each perceptron acts as a dynamic
parallel computing agent to increase its speed, computational power, and learning ability.

Most of the previously proposed QiNNs follow supervised learning approaches. More recently,

Entropy 2019, 21, 763 5 of 24

there has been motivation to develop QiNN without a teacher or self-organized networks, where
weight factors are determined by the parameters of the problem to be solved [34]. The first attempt in
this trend was proposed by Siomau [20], who developed an autonomous quantum analogue for the
classical Rosenblatt’s perceptron, exploiting the superposition principle of quantum systems. Siomau’s
model is able to learn the XOR logical function, to perform the classification on previously unseen
classes, and to recognize the superpositions of the learned classes. All these tasks are unrealisable with
a classical perceptron with a single neuron.

Next, several attempts were made in order to exploit the use of quantum mechanics in
particular scenarios. For instance, Bhattacharyya et al. [41] proposed a quantum model inspired
by backpropagation multilayer perceptron based on quantum gates for the prediction of the adsorption
behaviour often exhibited by calcareous soil. Likewise, Schuld et al. [39] introduced a quantum
perceptron model based on the quantum phase estimation algorithm that imitates the step-activation
function of a classical perceptron. They employed it efficiently to construct more complex structures
such as trainable quantum neural networks. Da Silva et al. [18] proposed a quantum perceptron over
a field (QPF), based on quantum gates, as a direct generalization of a classical perceptron to solve
some drawbacks found in previous models of the quantum perceptron. Chen et al. [34] presented the
quantum probability neural network (QPNN) model, which uses the quantum parallelism property
to trace all possible network states in order to improve the result and reduce the effect of the noise.
In addition, QPNN can be used as memory to retrieve the most relevant data and even to generate
new ones. the QPNN model has been applied to the Iris dataset and the Modified National Institute
of Standards and Technology (MNIST) dataset using much fewer neuron resources to obtain a better
result than the classical FFNN.

In 2017, Yamamoto et al. [42] introduced the Multidimensional Input Quantum Perceptron
(MDIQP) using controlled changes of ancillary qubits in combination with phase estimation and
learning algorithms. As an extension of the capabilities of the classical perceptron, MDIQP is capable
of representing and classifying arbitrary sets of multidimensional data, either quantum or classical,
which may not be linearly separable. Neto et al. [43] also introduced a quantum perceptron with an
internal state memory that can be changed during neuron execution. Neto’s perceptron reproduces the
step function of the inner product between input and weights and has a memory that can be updated
during its own execution. Lastly, Liu et al. [44] presented a quantum perceptron algorithm based on
unitary weights, where the singular value decomposition of the total weight matrix from the training
dataset is retained in order to convert the weight matrix to be unitary. The model was validated using
a number of universal quantum gates within one iteration.

3.2. Limitations and Motivation

Generally speaking, the QiNNs models described in Section 3.1 can be divided into two categories.
First, some QiNNs models should be implemented on the quantum computer, such as the models
described in [18,36]. It is known that universal quantum computers strive to break out of labs [22]. Even
if the quantum computer is finally introduced, we do not know which hardware will be used [18,45].
The second category is QiNNs, which can be implemented on the classical computer, such as the
models described in [11,12,14–16,38]. These QiNNs models are not real quantum models; rather, they
are classical neural networks inspired by quantum computation. The proposed model in this paper
falls into the latter QiNN approach.

Most of the QiNN approaches have been designed mainly to improve the robustness of the
classical perceptron model [23] using the computational power of quantum computation in the
selection of the activation operator of the perceptron. However, approaches such as [16,20,24,25] are
still computationally very expensive when they are implemented on the classical computer. Moreover,
each of the quantum perceptron approaches proposed in [16,24,25] suggested a new structure of the
quantum neuron or perceptron. Those new structures of the quantum neuron are not compatible with
the quantum computing postulates and are still sensitive to the selection of the appropriate activation

Entropy 2019, 21, 763 6 of 24

operators [46]. Although, the model in [20] is an autonomous version of the quantum perceptron,
it is a linear model and does not have the potential to learn nonlinear gates, such as the Z-gate and
Hadamard-gate.

Recent models, such as the model described in [39], which presents a direct quantization of the
classical neuron, have a few advantages in terms of quantum computation, but they can be used as
a building block of other QiNNs in the future [34]. Furthermore, the model presented in [18] was a
QiNN; however, the authors assumed that it could be implemented on the quantum computer, even
though the perceptron model of [18] had no activation function and no experimental results were
provided in the paper to verify its performance in real applications [34].

It is worth mentioning that the model described in [34] may be similar to the model described
in our paper; however, we observed that the other model [34] was very sensitive, as the square error
was adopted as a loss function for each sample for the sake of simplifying the problem for the model.
In addition, we noticed that the model adopts the classical sampling strategy to achieve layer reduction.
In fact, we believe that such a simple strategy can easily fall into the dilemma of local optima after
exhaustive learning. Furthermore, a few parameters of the model are adjusted manually.

Although the perceptron model described in [42] can be used as a fundamental cell for the
construction of more complex QiNN models, the model was not evaluated properly in real experiments
or using real datasets. In addition, it uses a number of registers, and thereby qubits, proportional to
the size of the input data, so it requires more computation resources if the size of the input dataset is
large. Finally, there are two quantum perceptron models similar to the perceptron model proposed
in this paper: First is the perceptron presented in [43], but the authors did not evaluate in any real
validation experiment. In addition, it is not clear if there is a possibility to perceive whether the neuron
output is dependent on the internal state or not. Second is the perceptron described in [44], which is a
one-iteration perceptron algorithm based on unitary weights.

Despite the fact that there has been a significant amount of research involving the use of quantum
properties in neural computations, the authors believe that still there is much space to improve.
For example, even a precise definition of a quantum neural network that integrates neural computation
and quantum computation is a nontrivial open problem [39], even though some problems in the
machine learning domain may be solved efficiently on quantum computers in terms of speed, memory
requirements [47], knowledge discovery, and pattern recognition and classification [46].

4. The Autonomous Perceptron Model

In this section, we propose a novel autonomous perceptron model that replaces the classical
perceptron. The proposed APM model is able to learn the features autonomously for pattern
classification with a fixed network structure. In addition, it can be implemented on a classical computer.
Firstly, we define a new computational subspace that will allow the computations to run efficiently on
classical computers.

4.1. The Computational Subspace of APM

In this section, we define a new computational subspace M in terms of quantum computing to
suit the proposed model. The base vectors of this subspace are:{

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)}

Then, following the Dirac notation [26], the vector |xi〉 ∈ M can be written as:

|xi〉 = αi|1〉+ βi|0〉 =
(

αi
βi

)
, |αi|2 + |βi|2 = 1 (3)

Entropy 2019, 21, 763 7 of 24

where αi and βi are complex numbers. Therefore, we call M a vector subspace of the complex vector
space C2, where its bases are inspired by the mathematical representation of the qubit [26]. In this
subspace, we can define two operations: addition and multiplication by scalars, as follows [48]:(

αi + αk
βi + βk

)
=

(
α̃i
β̃i

)

k|xj〉 =
(

kαi
kβi

)
=

(
α̃j
β̃ j

)
where k ∈ R and |α̃j|2 + |β̃ j|2 does not need to equal one.

4.2. The Topological Structure of APM

The topological structure of the proposed model consists of a single neuron only with n input
vectors |x1〉, |x2〉, . . ., |xn〉 ∈ M, where n is the dimension of the input patterns (e.g., the number of
attributes). Here, the input vectors are written using the ket notation, |.〉, since they are normalized
vectors and are defined according to Equation (3). A set of linear weight operators wi of size 2× 2,
where i = 1, 2, . . . , n, are associated with each input, and ynet represents the final network response
(see Figure 1).

Figure 1. Architecture of the autonomous perceptron model (APM) model. Each input is presented as
a two-dimensional normalized vector that is weighted by an operator, and then, the weighted sum yj

is computed. Then, the activation operator Fj for each training pattern is calculated. When a testing
pattern is presented to the APM model, each activation operator is affected by the weighted sum of the
test pattern. Only one activation operator is chosen, which produces the final response through the ynet

of the model.

Given a set of N training samples {(uj, |dj〉)} where j = 1, 2, . . . , N, the jth training example is

uj ∈ Mn, e.g., uj = [|xj1〉, |xj2〉, . . . , |xjn〉]T , and the corresponding target is |dj〉 =
(

αdj
βdj

)
∈ M.

The target vector |dj〉 represents the class label of the training pattern uj. When an input pattern uj is
presented to the network, the weighted sum vector yj will be a mapping from Mn to M defined as:

yj =
n

∑
i=1

wi|xji〉 =
[

µj
νj

]
, j = 1, 2, . . . , N (4)

where µj and νj are the coefficients of the weighted sum vector of the jth pattern in the training set.
Then, the activation operator Fj for the weighted sum yj is defined as:

Fj =

[
cos θj − sin θj
sin φj cos φj

]
(5)

Entropy 2019, 21, 763 8 of 24

where j = 1, 2, 3, . . . , N, and the parameters θj and ϕj are two valued angles. The activation operator Fj
is a linear transformation that transforms yj from M to M and is defined by:[

cos θj − sin θj
sin φj cos φj

] [
µj
νj

]
=

[
αdj

βdj

]
(6)

where [µj, νj]
T is the weighted sum vector of the input pattern uj, calculated by Equation (4),

and (αdj
,βdj

)T is the corresponding target vector. Each activation operator aims to transform the
weighted sum vector yj into the given target |dj〉. The weight operators are updated at time t using the
following rule:

wi(t + 1) = wi(t) + δ e 〈xji| (7)

where δ is the learning rate, 0 < δ ≤ 1, e = (yj − |dj〉) is the perceptron vector error and e〈xji| denotes
the outer product of vectors e and 〈xji|. As the proposed model has been designed as a neural-base
model that is implemented on a classical computer, the weight operator might not be a unitary operator.

The training phase corresponds to the computation of the activation operators for each pattern
in the input data. For each arbitrary test pattern ut = [|xt1〉, |xt2〉, . . . , |xtn〉]T , the testing phase will

run via two consecutive operations: First, the weighted sum is calculated through ytest =
n
∑

i=1
wi|xti〉.

Second, each activation operator is applied to calculate ytest in the form:

youtput(j) = Fj ytest

where j = 1, 2, . . . , N. These two steps can be summarized as follows:

youtput(j) = Fj

n

∑
i=1

wi|xti〉 =
[

αFj

βFj

]
(8)

Here, youtput is a vector of N elements, where each element is a vector of the 2× 1 vector of the
network output. Equation (8) illustrates the effect of the activation operators on the weighted sum
vector when a test pattern is presented to the network. Only one vector will show a response that can
be specified using the following nonlinear rule:

ynet = L
(
|((yT

output ◦ youtput)− Z)|
)
◦ D (9)

where ZN×1 = [1, 1, . . . , 1]T and DN×1 = [|d1〉, |d2〉, . . . , |dN〉]T are the target vectors. The nonlinear
function L retains the smallest absolute value and sets it to one and the rest of the values to zero.
The operation “◦” is the Hadamard product operation [49]. We used “◦” in Equation (9), since it is
clear from Equation (8) that youtput is a vector of N elements, where each element is a vector of the 2× 1
vector of the network output, while yT

output is the transpose of the vector youtput such that each element
of the vector youtput is transposed. The term (yT

output ◦ youtput) in Equation (9) applies the Hadamard
product between each element of the vector yT

output and each element of the vector youtput).
To explain the Hadamard product, assume any two matrices, A and B of the same dimension

m× n, then the Hadamard product A ◦ B is a matrix of the same dimension, as the operands, and is
given by:

(A ◦ B)i,j = (A)i,j (̇B)i,j

Therefore, the Hadamard product defines a binary operation that takes two matrices of the same
dimensions and produces another matrix where each element (i, j) is the product of elements (i, j) of
the original two matrices. For example, let A = [a1, a2]

T and B = [b1, b2]
T . Then, the Hadamard gate

in between can be given as:

Entropy 2019, 21, 763 9 of 24

A ◦ B =

[
a1b1

a2b2

]

4.3. The Learning Algorithm of APM

The learning algorithm of APM is composed of two phases. First is the training phase
(see Algorithm 1), which embeds Equations (4), (6) and (7). In these three equations, the APM
model collects information about the problem by constructing a set of activation operators. Once the
training phase is finished, the second phase of APM, the testing phase is launched (see Algorithm 2).
In this phase, the APM model makes a decision regarding the classification of unseen data, according
to Equation (9) based on the previously collected information in the training phase. In other words,
the output of the perceptron is given as a superposition of vectors given in Equation (8), whereas the
final response of the perceptron is given by Equation (9). The parameters of the proposed perceptron
are the following: the initial weights, the number of training examples N, and the learning rate δ.
The best values of these parameters can be obtained through the validation dataset.

Algorithm 1: The training algorithm of APM.
Step 1: Set all Fi = I (identity matrix). Then, choose the initial weight operators wi randomly
and the number of iterations (itr).

Step 2: For k = 1 : itr
For training patterns uj, j = 1, . . . , N
Calculate the weighted sum vector using Equation (4) for each pattern uj.

End For
Update the weight operators using Equation (7).
End For

Step 3: Compare each weighted sum vector for the patterns of each class label in the dataset
with all other weighted sum vectors for other classes in the same dataset. In this case, it may
be possible that any weighted sum vector for any class equals the weighted sum of any other
class. If this is the case, then go to Step 4; otherwise, go to Step 5.

Step 4: Re-initialize weight operators wi by the same way shown in Step 1, and go to Step 2.
Step 5: Calculate the activation operator for each weighted sum qubit using Equation (6).

When a test pattern ut = [|xt1〉, |xt2〉, . . . , |xtn〉]T is presented to the APM model, the following
algorithm is applied to obtain the corresponding class label.

Algorithm 2: The testing algorithm of APM.

Step 1: For a test pattern ut = [|xt1〉, |xt2〉, . . . , |xtn〉]T do {
Compute the weighted sum of the test pattern as:

ytest =
n
∑

i=1
wi|xti〉

For j = 1 : N

youtput(j) = Fj
n
∑

i=1
wi|xti〉

End For
End For

Step 2: The predicted class label of the test pattern ut is given by the net response of the APM
as given by Equation (9).

5. The Computational Capability of APM

In this section, we introduce a theoretical analysis of the computational capability of the APM
model. As depicted in Figure 1, the APM may have n inputs of the normalized vectors {|xi〉},

Entropy 2019, 21, 763 10 of 24

i = 1, 2, . . . , n, where the attributes of each vector {|xi〉} are represented according to Equation (3). We
can represent the weighted sum; that is given in Equation (4); as:

yj =
n

∑
i=1

wi|xji〉 =
n

∑
i=1

[
w1i w3i
w2i w4i

] [
αji
β ji

]
=

n
∑

i=1
w1iαji +

n
∑

i=1
w3iβ ji

n
∑

i=1
w2iαji +

n
∑

i=1
w4iβ ji

 =

[
µj
νj

]
. (10)

Again, note that the weighted sum of the output vector yj is not normalized. Consequently,
from Equations (8) and (10), the output youtput can be written as:

youtput(j) = Fj

n

∑
i=1

wi|xti〉 = Fj

n
∑

i=1
w1iαji +

n
∑

i=1
w3iβ ji

n
∑

i=1
w2iαji +

n
∑

i=1
w4iβ ji

 (11)

Then, the final output of APM is determined by applying the nonlinear function L according to
Equation (9). Indeed, this function was constructed based on a single activation operator F among the
set of activation operators Fj, where j = 1, 2, . . . , N. Accordingly, the final output of the APM model
can be represented as:

ynet = F

n
∑

i=1
w1iαji +

n
∑

i=1
w3iβ ji

n
∑

i=1
w2iαji +

n
∑

i=1
w4iβ ji

 (12)

On the other hand, if we assume that we have a classical neural network with three layers with
2n neurons in the input layer, four neurons in the hidden layer, and two neurons in the output layer,
as depicted in Figure 2, the output Ot of this network will be:

Ot =

[
Ot1

Ot2

]
=

 f (
n
∑

i=1
w1iαji) + f (

n
∑

i=1
w3iβ ji)

f (
n
∑

i=1
w2iαji) + f (

n
∑

i=1
w4iβ ji)

 (13)

by considering that F = I and f (x) = x in Equations (12) and (13), respectively. Simply, although the
APM model has only a single neuron, it possesses the same computational power of three layers of the
feed-forward neural network with the neuron topology 2n− 4− 2, where n is the number of neurons.
On the other hand, F is a nonlinear operator in Equation (12), as depicted in Equation (5). It is clear
that the APM model that has only a single neuron performs the same nonlinear mapping that can be
performed by the three-layer classical neural network.

Figure 2. A classical three-layer feed-forward neural network has 2n neurons in the input layer,
4 neurons in the hidden layer, and 2 neurons in the output layer.

Entropy 2019, 21, 763 11 of 24

6. Experiments and Results

To demonstrate the robustness, efficiency and effectiveness of our model, we evaluated the
performance of the proposed APM model in two different ways. First, we evaluated the performance of
the proposed model in learning a particular logical function, when compared with other quantum-based
perceptron models. Second, we show the performance of our model in a number of classification
applications and compare it with different parametric and non-parametric classification models.

6.1. Learning a Logical Function

To illustrate the autonomous learning of a particular example of logical functions, such as the XOR
function, we assumed that there was a set of training data pairs Pi = {xi, di }, i = 1, 2, 3 and 4, where the
feature vector included two features xi ∈ {xi1, xi2}, and the desired output d ∈ {+1,−1} is a binary
function [20]. Then, the input patterns can be represented using the states of a two-dimensional system,
i.e., a qubit, so that each pattern is given by one of the basis states |xi〉 ∈= {|0〉, |1〉}, for i = 1 and 2,
where |0〉 and |1〉 denote the computational bases, in the M subspace, for each pattern, as shown in
Section 4.1.

Accordingly, we can define the two classes of the XOR function, where each class includes
two patterns:

Class A:

P1 = {|x11〉 = |0〉, |x12〉 = |0〉, |d1〉 = |0〉}
P2 = {|x21〉 = |1〉, |x22〉 = |1〉, |d2〉 = |0〉} (14)

Class B:

P3 = {|x31〉 = |0〉, |x32〉 = |1〉, |d3〉 = |1〉}
P4 = {|x41〉 = |1〉, |x42〉 = |0〉, |d4〉 = |1〉} (15)

Furthermore, assume that the weight operators are randomly initialized as w1 = w2 =

[
1.1 1.2
0 0

]
.

The learning procedure of the XOR function can be explained as follows: When the four patterns
are presented as input to the APM model, the weighted sum of each pattern is:

y1 =

[
2.2
0

]
, y2 =

[
2.4
0

]
, y3 = y4 =

[
2.3
0

]
(16)

Hence, y3 = y4, since the two patterns P3 and P4 are in the same class, i.e., Class B, and their
values are exchanged (see Equation (15)). Since the first and second patterns have different values
(see Equation (14)), then each of the third and fourth weighted sum values, i.e., y1 or y2, will have
different values. Therefore, as we have only three weighted sum variables, this implies that we have
only three activation operators, where F3 = F4 will take the same value based on the initial values of
w1 and w2. The three activation operators are:

F1 =

[
0.4545 −0.8907

0 1

]
, F2 =

[
0.4167 −0.9091

0 1

]
,

F3 =

[
0 −1

0.4348 0.9005

]
(17)

Entropy 2019, 21, 763 12 of 24

Then, as given in Equation (8), the superposition output can be calculated as follows:

youtput(j) = Fj

n=2

∑
i=1

wi|xti〉 (18)

As pattern P4 is not used in training, we can use it as a test pattern to the APM model. Then,
the weighted sum for this pattern will be:

youtput(1) =

[
0.4545 −0.8907

0 1

] [
2.3
0

]
=

[
1.0454

0

]
,

youtput(2) =

[
0.4167 −0.9091

0 1

] [
2.3
0

]
=

[
0.9584

0

]
,

youtput(3) =

[
0 −1

0.4348 0.9005

] [
2.3
0

]
=

[
0
1

]

Therefore, youtput is given as follows:

youtput =

[[
1.0454

0

]
,

[
0.9584

0

]
,

[
0
1

]]T

(19)

After calculations, Equation (9) is used to decide which vector in Equation (19) will be the output
of the APM network for the current test pattern, as follows:

ynet = L
(
|([1.093 0.919 1.000]− [1 1 1]T)|

)
◦ D

= [0 0 1]T ◦ [[1 0] [1 0] [0 1]]T = [0 1]T = |1〉

Then, the output of pattern P4 is |1〉, which is correct, as given in Equation (15).
Note that the proposed APM model requires only three patterns in order to learn the XOR logical

function and gives a response after only one iteration. Table 1 shows a comparison of the learning
capabilities of the proposed APM model and other quantum-inspired perceptron counterparts [16,20].
Note that the new proposal for a perceptron requires less patterns and iterations to learn the XOR
function when compared with the quantum perceptron (QP) [16], which requires four input patterns
and 16 iterations to fulfil the learning. Similar to APM, the autonomous quantum perceptron (AQP) [20]
requires only one iteration to give a response; however, it shares the same limitations as QP in terms
of the requirement of the four input patterns to learn the XOR function autonomously. Overall, the
proposed autonomous perceptron method is more efficient and requires less computation resources
than both the classical and quantum counterparts in learning the logical XOR function.

Table 1. Comparison of learning capabilities among the proposed APM perceptron, the autonomous
quantum perceptron (AQP) [20], and the quantum perceptron (QP) [16].

Name of Algorithm APM AQP [20] QP [16]

No. of iterations 1 1 16
No. of training patterns 3 4 4

6.2. Classification Experiments

For a fair assessment, we conducted the classification experiments using both real datasets and
artificial datasets using our model and other state-of-the-art models.

Entropy 2019, 21, 763 13 of 24

6.2.1. Experimental Settings

Four benchmark real datasets were used in this comparison, namely the IRIS dataset, the
Breast Cancer dataset, the Types of Glass dataset, and the Wine Vintage dataset. These datasets
were downloaded from the website of the University of California Irvine (UCI) Machine Learning
Repository [50]. For each dataset, we randomly divided the dataset into 50% for the training phase, 15%
for the validation phase, and 35% for the testing phase. In all experiments, we unified the following
conditions: First, we used the lowest limit of training data samples (random selection among 50%)
that was enough to show better performance by all models. Second, the testing data were selected
to be completely unseen previously in the training. Third, the validation data were used to fine-tune
the parameters of all models, and then, we fixed all parameters accordingly during the testing phase.
Table 2 shows the features of each dataset adopted in our experiments.

Table 2. Features of the real benchmark datasets used in the experiments.

Name of Dataset IRIS Breast Cancer Types of Glass Wine Vintage

No. of attributes 4 9 9 13
No. of classes 3 2 2 3
No. of training examples (N) 48% 1.48% 16.85% 25%
No. of patterns 150 699 214 178

In these experiments, we compared the performance of the proposed model with 15 reference
models. Most of these models were key selections in machine learning and data mining communities to
achieve different pattern classification applications. In each model, if any model selection was required,
then we exploited the conventional optimal model selection for the corresponding model. To unify
the implementation medium of all models, all experiments shown in this paper were conducted on a
desktop PC with a CPU configuration as 3.5 GHz Intel(R) Xeon(R) E5-1620 v3, and 32.00 GB RAM on a
64-bit OS operating system. The experiments of the proposed model and the reference models were
implemented using MATLAB Toolbox Release R2016a, The MathWorks, Inc., Natick, MA, USA.

6.2.2. Experimental Results

In the following section, we summarize the experimental results obtained by the proposed model
and the reference models to solve pattern classification problems using real and synthetic datasets.

A. Classification of real dataset

Table 3 illustrates a comparison of the number of neurons required by the proposed perceptron
and the multilayer perceptron approaches to perform the highest classification rate. In addition,
Table 4 shows the classification accuracy of the proposed model and reference models.

Table 3. A comparison of the number of neurons that required for the proposed perceptron APM and
the multilayer perceptron (MLP).

Name of Algorithm IRIS Breast Cancer Types of Glass Wine Vintage

The Proposed Perceptron APM 1 1 1 1
Multilayer Perceptron (MLP) 4-5-3 9-26-2 9-14-2 13-10-3

As shown in Tables 3 and 4, the proposed APM outperformed other models. This is due to two
significant properties: First, in contrast with the multilayer perceptron neural network, the APM had a
fixed network structure with only one neuron to classify nonlinear classification problems, as shown
in Table 3. Second, the APM outperformed the reference models in terms of classification accuracy,
especially in the first three datasets, as shown in Table 4. This table shows that the best model among
the reference models was the subspace model. Table 5 shows the parameters of the subspace model to
classify the datasets at hand.

Entropy 2019, 21, 763 14 of 24

Table 4. The classification accuracy (%) of the proposed APM model and reference models.

Name of Algorithm Non-Linearity
Property IRIS Breast

Cancer
Types of

Glass
Wine

Vintage

Proposed model APM yes 99.6 98.8 100 100
1- Multilayer perceptron yes 96 48.4 61.1 93.9
2- Linear discriminant no 94.7 96.6 90.7 100
3- Quadratic discriminant yes 93.3 48.4 89.7 100
4- LogitBoost yes 94.7 65 62.2 95.3
5- Naive Bayes yes 96 64.3 48.9 93.9
6- K* Classifier yes 94.7 49.1 73.3 91.9
7- Bagging yes 92 97.1 94.4 100
8- MetaClassifier yes 94.7 48.4 55.5 95.9
9- Decision table yes 94.7 70.7 91.6 100
10- Random forest yes 94.7 30.4 77.8 91.9
11- Logistic model Trees no 94.7 65 65.5 95.3
12- Linear SVM no 95.3 94.1 87.9 100
13- Fine KNN yes 96 94.1 93.5 100
14- AdaBoost yes 33.3 91.2 76.6 37.5
15- Subspace yes 94.7 91.2 95.3 100

It is easy to notice in Table 4 that some baseline models showed lower performances than expected.
For example, in the Breast Cancer experiment, the random forest, multilayer perceptron, and naive
Bayes models showed classification accuracies of 30.4, 48.4 and 64.3, respectively. This is not normal
behaviour for these standard models in classification problems. Nevertheless, in order to understand
these results, it is worth mentioning that the most important aspect of the proposed model was the
limited number of training samples N that were needed to train the model. This number N was
decided using validation dataset samples. According to Table 2, we used 1.48% of the whole Breast
Cancer dataset to train the APM. To give a fair comparison in this experiment, this portion of the dataset
was used to train all models. Of course, this portion of training data was very low for training baseline
models such as random forest, multilayer perceptron, and naive Bayes. Certainly, the performance of
these models would be improve drastically if we increased the number of training samples. Therefore,
it would be worth comparing not only the performance, but also the rate of training data necessary to
achieve better results.

Table 5. The parameters of the subspace model to classify the IRIS, Breast Cancer, Types of Glass and
Wine Vintage datasets, where “NN” refers to the Nearest Neighbour model

Name of Algorithm IRIS Breast Cancer Types of Glass Wine Vintage

Type of learner NN NN NN NN
Number of learners 30 30 30 30
Subspace Dimensions 2 7 5 7

B. Classification of synthetic dataset

It is known that synthetic data are computer-generated data that mimic real data, but are less
expensive and more easily labelled than real data. Here, we continue to investigate the robustness of the
proposed APM approach using a classification problem of two-overlapped classes using synthetic data.
This type of classification problem can be interpreted as a complex generalization of the XOR problem.
This classification problem is usually treated in the literature using only nine training patterns [15,51].

However, to ensure a robust assessment of the APM model, we treated this problem using
15 training patterns and 176 testing patterns (for simplicity, a simulation of the 15 training patterns
is shown in Figure 3). As depicted in Figure 3, the training patterns comprised two distinguished
overlapping classes: the first was the oval-shaped class, assigned a target |0〉, while the second was
the square-shaped class, assigned a target |1〉 with arbitrary input patterns, shown in Tables 6 and 7,

Entropy 2019, 21, 763 15 of 24

where the values of the input patterns are classical data. For convenience, it is preferred to write these
values as vectors in M space in the form |η〉 = a|0〉+ b|1〉, where |a|2 + |b|2 = 1. For example, the
classical pattern P1 = (0.1, 0) can be written in M space as:

P1 =

{
|x1〉 =

[
0.1

0.9950

]
, |d1〉 =

[
1
0

]}
. (20)

Figure 3. A classification problem of two overlapping classes.

For performance evaluation, we compared the APM model with the autonomous quantum
perceptron (AQP) [20]. Figure 4 demonstrates the performance of both approaches in the training
and testing phases. As shown in Figure 4, in the training phase, the proposed approach achieved
a classification accuracy of 100%. In contrast, the AQP approach [20] achieved, at most, 40% as a
classification accuracy. In the testing phase, the APM approach started with 98% accuracy, but as we
increased the number of testing patterns, the accuracy increased to 100%. At the same time, the AQP
approach [20] still performed the worst even when we increased the number of testing patterns.

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Number of training patterns

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 %

Testing data APNN Testing data AQP[20] Training data APNN Training data AQP[20]

Figure 4. Classification curve of two overlapped classes using synthetic data.

Entropy 2019, 21, 763 16 of 24

Table 6. Training patterns of the oval-shaped class.

P1 P2 P3 P4 P5 P6 P7 P8

(0.1, 0) (0.1, 0.2) (0, 0.1) (−0.1, 0.2) (−0.1, 0) (0,−0.1) (0.1,−0.2) (−0.1,−0.2)

Table 7. Training patterns of the square-shaped class.

P9 P10 P11 P12 P13 P14 P15

(0.1, 0.1) (0, 0) (0, 0.2) (−0.1, 0.1) (0.1,−0.1) (−0.1,−0.1) (0,−0.2)

7. Time Complexity Analysis

The time complexity of any algorithm is defined as the amount of time taken by the algorithm
to run as a function of the number of inputs [52]. However, the computational time required to train
a neural network is affected by many factors such as the number of neurons, the dimension of the
features, the number of training samples, and the number of epochs required for the training phase
to converge [52]. In pattern classification problems, the number of classes in the dataset is related
to the number of neurons in the neural networks and, sometimes, to the number of output neurons.
In the following section, we analyse the time complexity of the proposed model along with that of the
baseline models.

7.1. Comparison with Baseline Classifiers

During the assessment experiments that yielded the results provided in Table 4, we also wrote
down the implementation time, in seconds, for all models. To ensure a fair assessment, we unified all
experimental settings for all models. We ran each model separately using the given dataset and wrote
down the CPU time that was calculated automatically by the MATLAB function “cputime”. The results
are shown in Table 8, where it is clear that the CPU time required by the proposed model was much
less than the time required by all other reference models.

Table 8. Time complexity comparison (in seconds) among the proposed APM classifier and other
standard classifiers.

Algorithm Name IRIS Breast Cancer Types of Glass Wine Vintage

APM 0.06 0.08 0.05 0.07
Linear Discriminant 0.23 0.19 0.22 0.21
Quadratic Discriminant 0.18 1.87 0.19 0.13
Bagging 0.72 0.8 0.86 0.83
Decision Table 0.89 1.05 0.7 0.34
Linear SVM 1.14 0.7 0.26 0.35
Fine KNN 0.26 0.42 0.24 0.23
AdaBoost 0.31 1.56 0.32 0.23
Subspace 1.14 1.29 0.97 0.87

7.2. Comparison with Multilayer Perceptron MLP using Big-O Analysis

7.2.1. Big-O Analysis for the MLP Model

Here, we compare the time complexity of the proposed APM model with that of the multilayer
perceptron MLP [53] model using asymptotic notations, namely big-O analysis. From the experimental
point of view, conducting an accurate time complexity analysis of two neural network algorithms with
different architectures is a very labour-intensive, as well as unfair process, since time complexity is
machine dependent. In such a case, the simplest way to compare the time complexity of two algorithms
is by calculating the maximum number of primitive (or dominant) operations that each algorithm

Entropy 2019, 21, 763 17 of 24

executes to converge [52], which can be represented widely using the big-O notation. Intuitively, the
number of dominant operations depends on the amount of input data.

It was demonstrated in [52] that the time complexity for training a neural network can be expressed
in terms of the number of input nodes n, the number of hidden nodes H, the number of output nodes
o, and the number of training samples, N. It can take the following form [52]:

Γnodes(n, H, o, N) = [3× n× H + 4× o× (H + 1) + 3× H]× N (21)

If we consider the number of epochs to be P, which is required to calculate the algorithm’s
convergence during the training phase, then Equation (21) takes the form:

Γnodes(n, H, o, N, P) = ([3× n× H + 4× o× (H + 1) + 3× H]× N)× P (22)

To ensure a fair comparison, we consider that both the number of input nodes n and the number
of training samples N are constant for the same dataset, but using different classifiers. Then, we can
represent this formula using big-O analysis for the MLP model as:

Γnodes(n, H, o, N, P) = ([3× n× H + 4× o× (H + 1) + 3× H]× N)× P = O(H, o, P) (23)

7.2.2. Big-O Analysis for the APM Model

For the APM model, assume that wAPM is the total number of weights used in this model. Then,
complexity can be defined as:

wAPM = 4× n

where n is the number of dimensions of training patterns. Each training pattern introduced to the
APM model requires an activation operator, which is given in Equation (5). Then, each training pattern
requires four multiplications, which are included in Equation (6), and another four multiplications to
solve this equation, as well. As we explained before, the APM has a fixed structure that includes only
one neuron, i.e., no hidden or output neurons. Thus, for N training samples, the time complexity of
the APM training phase is given as follows:

ΓAPM(n, N, P) = (([4× n + 4 + 4]× N)× P)

= ([4n + 8]× N)× p (24)

Again, if we consider that both the number of input nodes n and the number of training examples
N are constant for the same dataset for different classifiers, then the big-O analysis of the APM model
will be given as:

ΓAPM(n, N, P) = ([4n + 8]× N)× p = O(P) (25)

From Equations (23) and (25), it is clear that the time complexity of the MLP model depends on
the number of hidden nodes H, the number of output nodes o, and the number of epochs P. In contrast,
the time complexity of the APM model depends only on the number of epochs for the same dataset.
This implies that the proposed APM model has a time speedup compared with the MLP.

8. Results’ Discussion and Analysis

We present now an overview and discussion of the main contributions and findings of this paper.
In recent years, the remarkable importance of machine learning has led to a host of studies that have
tried to bridge between quantum computing and machine learning. There have been several attempts
to develop quantum-inspired perceptron models. In this paper, we proposed a novel autonomous
perceptron model (APM) inspired by the definition of the qubit. The proposed perceptron has an

Entropy 2019, 21, 763 18 of 24

optimal neural structure of only one single neuron to classify nonlinear separable datasets using a
limited number of training samples.

As a nonlinear model, the APM is able to autonomously and efficiently construct the activation
operators, even in complex feature space problems. In this paper, we showed that the proposed
perceptron, with one neuron, has the same computational power of a classical neural network of three
layers with the neuron topology 2n − 4− 2, where n is the number of neurons. We validated the
APM model in different classification experiments using different datasets, where it showed better
performance than its baseline counterparts.

First, we used the APM to learn the logical XOR function. Table 1 shows that the training
requirements of APM to learn the XOR function are simpler than its counterparts [16,20], as well as
multilayer perceptron. Not only the logical XOR function, but also we investigated; in the early draft
of this paper [54], the learning of other logical gates, such as Hadamard-gate and Not-gate, where we
found that APM showed better performance compared to other models. Moreover, classical perceptron,
as a linear model, is incapable of learning nonlinear functions using a single neuron [20,55].

Second, we validated the proposed APM model to perform several classification applications
using four real datasets, namely IRIS, Breast Cancer, Types of Glass and Wine Vintage. Each dataset
includes a different number of classes, attributes and input patterns, as shown in Table 2. The proposed
APM outperformed 15 standard classification models across the same experimental conditions.
As shown in Table 4, the APM accuracy was optimum and approximately reached the highest accuracy.
In contrast, the multilayer perceptron (MLP) showed worse performance for datasets with two classes
and improved slightly when the dataset had more than two classes. The same observation was
noticed in the performance of other baseline classifiers listed in Table 4 where the performance was
sensitive to the number of classes and attributes. This gives us an indication that these classifiers were
data-dependent, unlike APM, which performed ideally in all situations.

This optimum performance of APM compared with the reference models was due to three factors:
(i) As we showed in Section 5, the proposed perceptron with one neuron had the same computational
power of a classical neural network of three layers with the neuron topology 2n− 4− 2, where n is
the number of inputs. (ii) As a result of representing each input vector into a two-dimensional vector
and weighting it with an operator, it was implied that the proposed model maximized the separability
between the patterns in the weighted sum vector space, as depicted in Figures 5–8. (iii) Although
the weighted sum of the testing patterns may overlap when test patterns were fed into APM, each
transfer operator Fj was projected into the corresponding class region accurately. In other words,
each training weighted sum had a transfer operator, calculated using Equation (6), to self-regularize
the decision boundary between distinct classes. Therefore, the set of activation operators gave the
proposed algorithm the potential to self-regulate, which ensured optimum classification results were
achieved, as shown in Table 4.

0

5

10

15

20

25

4
4.1

4.2
4.3

4.4
4.5

4.6
4.7

4.8
4.9

5

x 10
5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Setosa training patterns

Versicolour training patterns

Virginica training patterns

Figure 5. The weighted sum of training patterns of the IRIS dataset.

Entropy 2019, 21, 763 19 of 24

1

2

3

4

5

4

6

8

10

5

6

7

8

9

10

Benign training patterns

Malignant training patterns

Figure 6. The weighted sum of the training patterns of the Breast Cancer dataset.

1
2

3
4

5
6

7
8

9
10

2

2.5

3

3.5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Non−window glass training patterns

Window glass training patterns

Figure 7. The weighted sum of the training patterns of the Types of Glass dataset.

1
2

3
4

5
6

7
8

9
10

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

Vinyard #1 training patterns

Vinyard #2 training patterns

Vinyard #3 training patterns

Figure 8. The weighted sum of the training patterns of the Wine Vintage dataset.

Moreover, as illustrated in Figures 9–12, the APM model had the potential to deal with the
overlapped distribution included in the given classes, and it outperformed other models. As a result,
this maximized the separability among the patterns in the weighted sum vector space due to extending

Entropy 2019, 21, 763 20 of 24

each input vector into a two-dimensional vector and weighting it with an operator. This illustrates the
ideal performance of the proposed model compared with the reference models, for instance, in the case
of the Type of Glass experiment, as depicted clearly in Figures 7 and 11. Overall, the previously
mentioned properties imply that the proposed APM had a non-linear mapping with activation
operators and network structures, which asserts the potential of the proposed model to classify
nonlinear separable problems efficiently. Indeed, this property distinguishes the proposed algorithm
from other algorithms and opens the door widely for more achievements in the quantum-inspired
machine learning modelling.

0

5

10

15

20

25

4
4.1

4.2
4.3

4.4
4.5

4.6
4.7

4.8
4.9

5

x 10
5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Setosa training patterns

Versicolour training patterns

Virginica training patterns

Setosa testing patterns

Versicolour testing patterns

Virginica testing patterns

Figure 9. The weighted sum of the training and testing patterns of the IRIS dataset.

0
50

100
150

200
250

300
350

400
450

500

2
3

4
5

6
7

8
9

10
11

12

4

5

6

7

8

9

10

11

12

Benign training patterns

Malignant training patterns

Benign testing patterns

Malignant testing patterns

Figure 10. The weighted sum of the training and testing patterns of the Breast Cancer dataset.

Entropy 2019, 21, 763 21 of 24

0
20

40
60

80
100

120
140

160

2

2.5

3

3.5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Non−window glass training patterns

Window glass training patterns

Non−window glass testing patterns

Window glass testing patterns

Figure 11. The weighted sum of the training and testing patterns of the Types of Glass dataset.

0
10

20
30

40
50

60
70

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Vinyard #1 training patterns

Vinyard #2 training patterns

Vinyard #3 training patterns

Vinyard #1 testing patterns

Vinyard #2 testing patterns

Vinyard #3 testing patterns

Figure 12. The weighted sum of the training and testing patterns of the Wine Vintage dataset.

Third, we conducted another classification experiment using a synthetic dataset including two
overlapped classes. In this experiment, we conducted a comparison with another autonomous quantum
perceptron (AQP) counterpart [20]. In the training and testing phases, we found that APM is more
robust to the selection of training samples and can efficiently converge using a limited amount
of training data, where classification performance was optimum, as shown Figure 3. In contrast,
the AQP failed to learn a nonlinear separable function, even when the number of training patterns was
increased. On the other hand, the APM demonstrated its consistency when increasing the number of
training patterns.

Fourth, the validation experiment confirmed that the superiority of the APM was not exclusive
to the classification accuracy or learning requirement perspectives, but also included the execution
time that was required to converge. As demonstrated in Table 8, the implementation time required
by the APM was much less than that for other standard classifiers under the same experimental
conditions. Moreover, we showed that the APM required fewer dominant operations to converge than

Entropy 2019, 21, 763 22 of 24

the number of dominant operations that were required by the MLP to converge, also under the same
experimental conditions.

Overall, it is clear that the computational requirements of the proposed APM model were lower
than those of its counterparts. This was due to the fixed architecture of the model, which was
constructed independently of the data at hand. Furthermore, the properties of the proposed perceptron,
which were inspired by the superposition power of the qubit, enabled the model to converge more
quickly than its classical counterparts.

9. Conclusions

In recent years, the remarkable importance of machine learning has led to a host of studies
that have tried to bridge between quantum computers and artificial neural networks. In this paper,
we introduced a new autonomous perceptron model (APM) with a fixed architecture including only
one neuron, which was inspired by the computational power of the quantum bit. Using a limited
number of training samples, the APM can classify different problems of nonlinear separable classes.
As a nonlinear model, the APM is capable of autonomously constructing the activation operators to
achieve efficient learning, even in complex feature space problems. Experimentally, we showed that
although the structure of the proposed neural model contained only one neuron, it could classify the
XOR function, which cannot be classified using a single layer of traditional neurons. Furthermore,
the APM model classified the XOR function using only three patterns out of four, which cannot be
done using other neural models. Empirically, the superiority of the APM to perform classification
using benchmark datasets was demonstrated, and the model compared favourably with both machine
learning approaches and its quantum neural network counterparts. The superiority of the APM was
not exclusive to classification accuracy only, but also, the execution time required for the APM to
converge was less than that of its counterparts. In future works, we plan to investigate the optimum
initial weights that could be used by APM to suit the problem at hand.

Author Contributions: Conceptualization, M.Z. and A.S.; Methodology, M.Z. and A.S.; Software, M.Z. and
M.M.A.; Validation, M.Z., A.S., and M.M.A.; Formal Analysis, M.Z. and A.S.; Investigation, M.Z. and A.S.;
Resources, M.Z. and M.M.A.; Data Curation, M.Z. and M.M.A.; Writing—Original Draft Preparation, M.Z. and
A.S.; Review & Editing A.S. and M.M.A.; Visualization, M.Z.; Supervision, A.S.; Funding Acquisition, A.S.

Funding: The paper funding is performed by the Deanship of Scientific Research at King Faisal University under
the “Nasher” Track (Grant No. 186203).

Acknowledgments: The authors acknowledge the Deanship of Scientific Research at King Faisal University for
the financial support under the “Nasher” Track (Grant No. 186203). The authors also would like to thank Hatem
Fayed the head of Mathematics Department at Zewail University of Science and Technology for his fruitful
suggestions and discussion on the analysis of the proposed algorithm.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Zhang, G. Neural Networks for Classification: A Survey. IEEE Trans. Syst. Man Cybern. Part C 2000, 30,
451–462. [CrossRef]

2. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
3. Jenhani, I.; BenAmor, N.; Elouedi, Z. Decision trees as possibilistic classifiers. Int. J. Approx. Reason. 2008, 48,

748–807. [CrossRef]
4. Rodionova, O.; Alexey, A.; Pomerantseva, L. Discriminant analysis is an inappropriate method of

authentication. Trends Anal. Chem TrAC 2016, 78, 17–22. [CrossRef]
5. Jia, W.; Zhaob, D.; Dingd, L. An optimized RBF neural network algorithm based on partial leastsquares and

genetic algorithm for classification of small sample. Appl. Soft Comput. 2016, 48, 373–384. [CrossRef]
6. Berardi, V.; Patuwo, B.; Hu, M. A principled approach for building and evaluating neural network

classification models. Decis. Support Syst. 2004, 38, 233–246. [CrossRef]
7. Huang, Y. Advances in Artificial Neural Networks Methodological Development and Application. Algorithms

2009, 2, 973–1007. [CrossRef]

http://dx.doi.org/10.1109/5326.897072
http://dx.doi.org/10.1016/j.ijar.2007.12.002
http://dx.doi.org/10.1016/j.trac.2016.01.010
http://dx.doi.org/10.1016/j.asoc.2016.07.037
http://dx.doi.org/10.1016/S0167-9236(03)00093-9
http://dx.doi.org/10.3390/algor2030973

Entropy 2019, 21, 763 23 of 24

8. Buckely, J.; Hayashi, Y. Fuzzy neural networks—A Survey. Fuzzy Sets Syst. 1994, 66, 1–13. [CrossRef]
9. Ding, H.; Wu, J.; Li, X. Evolving neural network using hybrid genetic algorithm and simulated annealing

for rainfall runoff forecasting. In Proceedings of the International Conference in Swarm Intelligence,
Chongqing, China, 12–15 June 2011; pp. 444–451.

10. Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent
progress. Rep. Prog. Phys. 2018, 81, 074001.

11. Schuld, M.; Sinayshiy, I.; Petruccione, F. The quest for a quantum neural network. Quantum Inf. Proc. 2014,
13, 2567–2586. [CrossRef]

12. Shafee, F. Neural networks with quantum gated nodes. Eng. Appl. Artif. Intel. 2007, 20, 429–437. [CrossRef]
13. Zhou, R. Quantum competitive neural network. Int. Theor. Phys. 2010, 49, 110–119. [CrossRef]
14. Sagheer, A.; Metwally, N. Communication via quantum neural network. In Proceedings of the 2010

Second World Congress on Nature and Biologically Inspired Computing (NaBIC), Fukuoka, Japan,
15–17 December 2010; pp. 418–422.

15. Zidan, M.; Sagheer, A.; Metwally, N. An Autonomous Competitive Learning Algorithm using Quantum
Hamming Neural Networks. In Proceedings of the 2015 International Joint Conference on Neural Networks
(IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 788–792.

16. Zhou, R.; Qin, L.; Jiang, N. Quantum perceptron network. In Proceedings of the International Conference on
Artificial Neural Networks, Athens, Greece, 10–14 September 2006; Kollias, S.D., Stafylopatis, A., Duch, W.,
Oja, E., Eds.; Lecture Notes in Computer Science, 4131; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 651–657.

17. Ventura, D.; Martinez, T. Quantum associative memory. Inf. Sci. 2000, 5124, 273–296. [CrossRef]
18. Silva, A.J.D. Ludermir, T.B.; Oliveria, W.R.D. Quantum perceptron over a field and neural network

architecture seclection in a quantum computer. Neural Netw. 2016, 76, 55–64. [CrossRef] [PubMed]
19. Zhong, Y.; Yuan, C. Quantum competition network model based on quantum entanglement. J. Comput. 2012,

7, 2312–2317. [CrossRef]
20. Siomau, M. A quantum model for autonomous learning automata. Quantum Inf. Proc. 2014, 13, 1211–1221.

[CrossRef]
21. Zidan, M.; Abdel-Aty, A.-H.; El-shafei, M.; Feraig, M.; Al-Sbou, Y.; Eleuch, H.; Abdel-Aty, M. Quantum

Classification Algorithm Based on Competitive Learning Neural Network and Entanglement Measure.
Appl. Sci. 2019, 9, 1277. [CrossRef]

22. Lee, G. Quantum Computers Strive to Break Out of the Lab. IEEE Spectr. 2018, Available online:
https://spectrum.ieee.org/computing/hardware/quantum-computers-strive-to-break-out-of-the-lab
(accessed on 13 November 2018).

23. Rosenblatt, F. The Perceptron-a Perceiving and Recognizing Automaton; Report 85-460-1; Cornell Aeronautical
Laboratory: Buffalo, NY, USA, 1957.

24. Altaisky, M. Quantum Neural Networks. arXiv 2001, arXiv:qunat-ph/0l07012.
25. Fei, L.; Baoyu, Z. A study of quantum neural networks. In Proceedings of the IEEE Proc. of International

Conference on Neural Networks and Signal Processing, Nanjing, China, 14–17 December 2003; Volume 1,
pp. 539–542.

26. Chuang, I.; Nielsen, M. Quantum Computation and Quantum Information; Cambridge University Press:
New York, NY, USA, 2001.

27. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Rev. 1999, 41, 303–332. [CrossRef]

28. Sanders, B.C. How to Build a Quantum Computer; IOP Publishing: Bristol, UK, 2017.
29. Raudys, S. Evolution and generalization of a single neuron: I. Single layer perceptron as seven statistical

classifiers. Neural Netw. 1998, 11, 283–296. [CrossRef]
30. Raudys, S. Evolution and generalization of a single neuron: II. Complexity of statistical classifiers and

sample size considerations. Neural Netw. 1998, 11, 297–313. [CrossRef]
31. Omar, Y.A.; Yoo, P.D.; Muhaidat, S.; Karagiannidis, G.K.; Taha, K. Efficient Machine Learning for Big Data:

A Review. Big Data Res. 2015, 2, 87–93.
32. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual

Symposium on Theory of Computation, Philadelphia, PA, USA, 22–24 May1996; pp. 212–219.

http://dx.doi.org/10.1016/0165-0114(94)90297-6
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1016/j.engappai.2006.09.004
http://dx.doi.org/10.1007/s10773-009-0183-y
http://dx.doi.org/10.1016/S0020-0255(99)00101-2
http://dx.doi.org/10.1016/j.neunet.2016.01.002
http://www.ncbi.nlm.nih.gov/pubmed/26878722
http://dx.doi.org/10.4304/jcp.7.9.2312-2317
http://dx.doi.org/10.1007/s11128-013-0723-5
http://dx.doi.org/10.3390/app9071277
https://spectrum.ieee.org/computing/hardware/quantum-computers-strive-to-break-out-of-the-lab
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1016/S0893-6080(97)00135-4
http://dx.doi.org/10.1016/S0893-6080(97)00136-6

Entropy 2019, 21, 763 24 of 24

33. Jeswal, S.K.; Chakraverty, S. Recent Developments and Applications in Quantum Neural Network: A Review.
Arch. Comput. Methods Eng. 2018, 1–15. [CrossRef]

34. Chen, J.; Wang, L.; Charbon, E. A quantum-implementable neural network model. Quantum Inf. Proc. 2017,
16, 245. [CrossRef]

35. Menneer, T. Quantum Artificial Neural Networks. Ph.D. Thesis, University of Exeter: Exeter, UK, 1998.
36. Narayanan, A.; Menneer, T. Quantum artificial neural network architectures and components. Inf. Sci. 2000,

128, 231–255. [CrossRef]
37. Gupta, S.; RKP, Z. Quantum neural networks. J. Comput. Syst. Sci. 2001, 63, 355–383. [CrossRef]
38. Kouda, N.; Matsui, N.; Nishimura, H.; Peper, F. Qubit neural network and its learning efficiency.

Neural Comput. Appl. 2005, 14, 114–121. [CrossRef]
39. Schulda, M.; Sinayskiy, I.; Petruccionea, F. Simulating a perceptron on a quantum computer. Phys. Lett. A

2015, 379, 660–663. [CrossRef]
40. Meng, X.; Wang, J.; Pi, Y.; Yuan, Q. A novel ANN model based on quantum computational MAS theory.

In Bio-Inspired Computational Intelligence and Applications; Li, K., Fei, M., Irwin, G., Ma, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2007; Volume 4688, pp. 28–35.

41. Bhattacharyya, S.; Bhattacharjee, S.; Mondal, N.K. A quantum backpropagation multilayer perceptron
(QBMLP) for predicting iron adsorption capacity of calcareous soi lfrom aqueous solution. Appl. Soft Comput.
2015, 27, 299–312. [CrossRef]

42. Yamamoto, A.Y.; Sundqvist, K.M.; Peng, L.; Harris, H.R. Simulation of a Multidimensional Input
Quantum Perceptron. Quantum Inf. Proc. 2018, 17, 128. [CrossRef]

43. Neto, F.M.; Ludermir, T.; De Oliveira, W.; Da Silva, A. Quantum Perceptron with Dynamic Internal Memory.
In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro,
Brazil, 8–13 July 2018; pp. 1–8.

44. Liu, W.; Gao, P.; Wang, Y.; Wenbin, Y.; Zhang, M. A unitary weights based one-iteration quantum perceptron
algorithm for non-ideal training sets. IEEE Access 2019, 7, 36854–36865. [CrossRef]

45. Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Academic Press:
Cambridge, MA, USA, 2014.

46. Manju, A.; Nigam, M.J. Applications of quantum inspired computational intelligence: A survey. Artif. Intell.
Rev. Arch. 2014, 42, 79–156. [CrossRef]

47. Diamantini, M.C.; Trugenberger, C.A. High-Capacity Quantum Associative Memories. J. Appl. Math. Phys.
2016, 4. [CrossRef]

48. Portuga, R. Walks and Search Algorithms; Springer: New York, NY, USA, 2013.
49. Horn, R.; Johnson, C. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1999; Volume 13,

pp. 1211–1221.
50. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets.html

(accessed on 13 November 2018)
51. Xiao, L.; Shang, P.; Tong, H.; Li, X.; Cao, M. A hybrid quantum-inspired neural networks with sequence inputs.

Neurocomputing 2013, 117, 81–90.
52. Ou, G.; Murphey, Y.L. Multi-class pattern Classification using neural networks. Pattern Recognit. 2007, 40,

4–18. [CrossRef]
53. Karabatak, M.; Ince, M.C. An Expert system for detection of breast Cancer based on association rules and

neural network. Expert Syst. Appl. 2009, 36, 3465–3469. [CrossRef]
54. Sagheer, A.; Zidan, M. Autonomous Quantum Perceptron Neural Network. arXiv 2013, arXiv:1312.4149.
55. NaqviTallh, S.; Akram, T.; Iqbal, S.; Ali, S.; Kamran, M.; Muhammad, N. A dynamically reconfigurable logic

cell: From artificial neural networks to quantum-dot cellular automata. Appl. Nanosci. 2018, 8, 89–103.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11831-018-9269-0
http://dx.doi.org/10.1007/s11128-017-1692-x
http://dx.doi.org/10.1016/S0020-0255(00)00055-4
http://dx.doi.org/10.1006/jcss.2001.1769
http://dx.doi.org/10.1007/s00521-004-0446-8
http://dx.doi.org/10.1016/j.physleta.2014.11.061
http://dx.doi.org/10.1016/j.asoc.2014.11.019
http://dx.doi.org/10.1007/s11128-018-1858-1
http://dx.doi.org/10.1109/ACCESS.2019.2896316
http://dx.doi.org/10.1007/s10462-012-9330-6
http://dx.doi.org/10.4236/jamp.2016.411207
https://archive.ics.uci.edu/ml/datasets.html
http://dx.doi.org/10.1016/j.patcog.2006.04.041
http://dx.doi.org/10.1016/j.eswa.2008.02.064
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Quantum Computation
	Quantum Bit
	The Perceptron Model

	Related Work
	Previously Proposed Models
	Limitations and Motivation

	The Autonomous Perceptron Model
	The Computational Subspace of APM
	The Topological Structure of APM
	The Learning Algorithm of APM

	The Computational Capability of APM
	Experiments and Results
	Learning a Logical Function
	Classification Experiments
	Experimental Settings
	Experimental Results

	Time Complexity Analysis
	Comparison with Baseline Classifiers
	Comparison with Multilayer Perceptron MLP using Big-O Analysis
	Big-O Analysis for the MLP Model
	Big-O Analysis for the APM Model

	Results' Discussion and Analysis
	Conclusions
	References

