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Abstract: Variational inference with a factorized Gaussian posterior estimate is a widely-used
approach for learning parameters and hidden variables. Empirically, a regularizing effect can
be observed that is poorly understood. In this work, we show how mean field inference improves
generalization by limiting mutual information between learned parameters and the data through
noise. We quantify a maximum capacity when the posterior variance is either fixed or learned
and connect it to generalization error, even when the KL-divergence in the objective is scaled by
a constant. Our experiments suggest that bounding information between parameters and data
effectively regularizes neural networks on both supervised and unsupervised tasks.

Keywords: information theory; variational inference; machine learning

1. Introduction

Bayesian machine learning is a popular framework for dealing with uncertainty in a principled
way by integrating over model parameters rather than finding point estimates [1–3]. Unfortunately,
exact inference is usually not feasible due to the intractable normalization constant of the posterior.
A popular alternative is variational inference [4], where a tractable approximate distribution is
optimized to resemble the true posterior as closely as possible. Due to its amenability to stochastic
gradient descent [5–8], variational inference is scalable to large models and datasets.

The most common choice for the variational posterior is a factorized Gaussian. Outside of Bayesian
inference, parameter noise has been found to be an effective regularizer [9–11], e.g., for training neural
networks. In combination with L2-regularization, additive Gaussian parameter noise corresponds to
variational inference with a Gaussian approximate posterior with fixed variance. Interestingly, it has
been observed that flexible posteriors can perform worse than simple ones [12–15].

Variational inference follows the Minimum Description Length (MDL) principle [16–18],
a formalization of Occam’s Razor. Loosely speaking, it states that of two models describing the data
equally well, the “simpler” one should be preferred. However, MDL is only an objective for compressing
the training data and the model and makes no formal statement about generalization to unseen data.
Yet, generalization to new data is a key property of a machine learning algorithm.

Recent work [19–22] has proposed upper bounds on the generalization error as a function of
the mutual information between model parameters and training data. It states that the gap between
training and test error can be reduced by limiting the mutual information. However, to the best of our
knowledge, these bounds and specific inference methods have so far not been linked.

In this work, we show that Gaussian mean field inference in models with Gaussian priors
can be reinterpreted as point estimation in corresponding noisy models. This leads to an upper
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bound on the mutual information between model parameters and data through the data processing
inequality. Our result holds for both supervised and unsupervised models. We discuss the connection
to generalization bounds from Xu and Raginsky [19] and Bu et al. [20], suggesting that the Gaussian
mean field aids generalization. In our experiments, we show that limiting model capacity via mutual
information is an effective measure of regularization, further supporting our theoretical framework.

2. Regularization through the Mean Field

In our derivation, we denote a generic model as p(θ, D) = p(θ)p(D | θ) with unobserved variables
θ and data D. We refer to θ as the model parameters; however, in latent variable models, θ can also
include the per-data point latent variables. The model consists of a prior p(θ) and a likelihood p(D | θ).
Ideally, one would like to find the posterior p(θ | D) = p(D | θ)p(θ)/Z, where Z =

∫
p(D | θ)p(θ)dθ

is the normalizer. However, calculating Z is typically intractable. Variational inference finds an
approximation by maximizing the Evidence Lower Bound (ELBO)

log p(D) ≥ log p(D)− DKL (q(θ)||p(θ | D))

= Eq(θ) log p(D | θ)− DKL (q(θ)||p(θ))
(1)

w.r.t. the approximate posterior q(θ). Our focus in this work lies on Gaussian mean field inference,
so q is a fully-factorized normal distribution with a learnable mean µ and variance σ2. The prior is also
chosen to be component-wise independent p(θ) = N

(
0, σ2

p I
)

. The generative and inference models
for this setting are shown in Figure 1a.

µ θ θ D
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pσ2
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(a) Original model

µ θ θ θ̃ D
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(b) Noisy model: fixed variance

µ θ θ θ̃ D

σ2
p

βσ2 σ2 σ2

(c) Noisy model: learned variance

Figure 1. Gaussian mean field inference on model parameters θ with a Gaussian prior (a) can be
reinterpreted as optimizing a point estimate on a model with injected noise, both when variance is fixed
(b) and learned (c). For the latter case, we show this for the more general case where the complexity
term in the objective is scaled by a constant β > 0, with β = 1 recovering variational inference.
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2.1. Fixed-Variance Gaussian Mean Field Inference

When the variance σ2 of the approximate posterior is fixed, the ELBO can be written as:

Eθ∼N (µ,σ2 I) log p(D | θ)− 1
2σ2

p
∑

i
µ2

i + c (2)

which is optimized with respect to µ. We use i ∈ {1, . . . , K} to denote the parameter index and c for
constant terms.

To show how the Gaussian mean field implicitly limits learned information, we extend the model
with a noisy version of the parameters θ̃ ∼ p(θ̃ | θ) and let the likelihood depend on those noisy
parameters. We choose the noise distribution to be the same as the inference distribution for the
original model and find a lower bound on the log-joint of the noisy model. This leads to the same
objective as mean field variational inference in the original model.

Specifically, we define the noisy model p′(θ, θ̃, D) = p′(θ)p′(θ̃ | θ)p′(D | θ̃) as visualized in
Figure 1b. We use p′ to emphasize the distinction between distributions of the modified noisy model
and the original one. As in the original model, θ ∼ N

(
0, σ2

p I
)

represents the parameters (with the

same prior), i.e., p(θ) = p′(θ). We denote the noisy parameters as θ̃ ∼ N
(
θ, σ2). The likelihood

remains unchanged, i.e., p′(D | θ̃) = p(D | θ), except that it now depends on the noisy parameters
instead of the “clean” ones.

We now show that maximizing a lower bound on the log-joint probability of the noisy model
results in an identical objective as for variational inference in the clean model

log p′(D, θ) (3)

= log
∫

p′(D | θ̃)p′(θ̃ | θ)dθ̃ + log p′(θ) (4)

≥Eθ̃∼N (θ,σ2 I) log p′(D | θ̃)− 1
2σ2

p
∑

i
θ2

i + c (5)

=Eθ̃∼N (µ,σ2 I) log p′(D | θ̃)− 1
2σ2

p
∑

i
µ2

i + c (6)

where Equation (5) follows from Jensen’s inequality as in Equation (1). In the final equation, we have
replaced θ with µ (which is simply a change of names, since we are maximizing the objective over this
free variable) to emphasize that the objective functions are identical.

Since D is independent of θ given θ̃, the joint p(θ, θ̃, D) forms a Markov chain, and the data
processing inequality [23] limits the mutual information I(D, θ) between learned parameters and
data through:

I(D, θ) ≤ I(θ̃, θ) (7)

The upper bound is given by:

I(θ̃, θ) = H(θ̃)− H(θ̃ | θ) =
K
2

log

(
1 +

σ2
p

σ2

)
(8)

where K denotes the number of parameters. Here, we exploit that θ and θ̃ | θ are Gaussian with
H(θ̃) = K

2 log 2πe
(

σ2 + σ2
p

)
and H(θ̃ | θ) = K

2 log 2πeσ2. This quantity is known as the capacity of

channels with Gaussian noise in signal processing [23]. Intuitively, a high prior variance σ2
p corresponds

to a large capacity, while a high noise variance σ2 reduces it. Any desired capacity can be achieved by
simply adjusting the signal-to-noise ratio σ2

p/σ2.
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2.2. Generalization Error vs. Limited Information

Intuitively, we characterize overfitting as learning too much information about the training
data, suggesting that limiting the amount of information extracted from the training data into the
hypothesis should improve generalization. This idea was recently formalized by Xu and Raginsky [19],
Bu et al. [20], Bassily et al. [21], Russo and Zou [22], showing that limiting mutual information between
data and learned parameters bounds the expected generalization error under certain assumptions.

Specifically, their work characterizes the following process: Assume that our training dataset is
sampled from a true distribution pt(D). Based on this training set, a learning algorithm subsequently
returns a distribution over hypotheses given by pt(θ | D). The process defines mutual information
It(D, θ) on the joint distribution pt(D, θ) = pt(D)pt(θ | D). Under certain assumptions on the loss
function, Xu and Raginsky [19] derived a bound on the generalization error of the learning algorithm
in expectation over this sampling process. Bu et al. [20] relaxed the condition on the loss and proved
the applicability to a simple estimation algorithm involving L2-loss.

Exact Bayesian inference returns the true posterior p(θ | D) on a model p(θ, D). The theorem then
states that a bound on I(D, θ) limits the expected generalization error as described in Bu et al. [20]
if the model captures the nature of the generating process in the marginal p(D) =

∫
dθp(θ)p(D | θ).

This is a common assumption necessary to justify any (variational) Bayesian approach.
Exact inference is intractable on deep models, and instead, one typically learns variational or

point estimates for the posterior. That is also true for the objective on the noisy model above, where we
only used a point estimate as given by Equation (6). Therefore, the assumption of exact inference is
not met. Yet, we believe that those bounds motivate the expectation that variational inference aids
generalization by limiting the learned information. If we performed exact inference on the noisy
model in the last section, the given mutual information would imply a bound on generalization error
as implied by Xu and Raginsky [19] and Bu et al. [20]. Therefore, we are optimistic that the gap
between variational inference and those generalization bounds can be closed either by performing
more accurate inference in the noisy model or by taking the dynamics of the training algorithm into
account when bounding mutual information (see Section 5.2 for further discussion).

2.3. Learned-Variance Gaussian Mean Field Inference

The variance in Gaussian mean field inference is typically learned for each parameter [8,24,25].
Similar to when the variance in the approximate posterior is fixed, one can obtain a capacity constraint.
This is the case even for a generalization of the objective from Equation (1) where the divergence
term DKL (q(θ)||p(θ)) is scaled by some factor β > 0. Higgins et al. [26] proposed using β > 1 to
learn “disentangled” representations in variational autoencoders. Further, β is commonly annealed
from 0–1 for expressive models (e.g., Blundell et al. [25], Bowman et al. [27], Sønderby et al. [28].) In
the following, we quantify a general capacity depending on β, where β = 1 recovers the standard
variational objective. For notational simplicity, we here assume a prior variance of σ2

p = 1. It is
straight-forward to adapt the derivation to the general case.

In this case, the objective can be written as:

Eθ∼N (µ,σ2) log p(D | θ) +
β

2 ∑
i

(
log σ2

i − σ2
i − µ2

i − 1
)

(9)

where now, both µ and σ2 represent learned vectors and N
(
µ, σ2) denotes a variable composed of

pairwise independent Gaussian components with means and variances given by the elements of µ

and σ2.
Similar to the previous section, we show a lower bound on the log-joint of a new noisy model to

be identical to Equation (9). Specifically, we define the noisy model p′(θ, σ2, θ̃, D) = p′(θ)p′(σ2)p′(θ̃ |
θ, σ2)p′(D | θ̃) (Figure 1c), with independent priors θi ∼ N

(
0, 1

β

)
and σ2

i ∼ Γ
(

β
2 + 1, β

2

)
, where
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Γ(·, ·) denotes the Gamma distribution. As previously done Section 2.1, we define the noise-injected
parameters as θ̃ ∼ N

(
θ, σ2) and likelihood as p′(D | θ̃) = p(D | θ).

The priors are chosen so that with Jensen’s inequality, we find a lower bound on the log-joint
probability of this model that recovers the objective from Equation (9):

log p′(D, θ, σ2)

= log
∫

p′(D | θ̃)p′(θ̃ | θ, σ2)dθ̃ + log p′(θ) + log p′(σ2)

≥Eθ̃∼N (θ,σ2) log p′(D | θ̃) + ∑
i

(
log p′(θi) + log p′(σ2

i )
)

=Eθ̃∼N (µ,σ2) log p′(D | θ̃) +
β

2 ∑
i

(
log σ2

i − σ2
i − µ2

i

)
+ c

(10)

In the noisy model, the data processing inequality and the independence of dimensions implies
a bound:

I(D, (θ, σ2)) ≤ I(θ̃, (θ, σ2)) = ∑
i

I(θ̃i, (θi, σ2
i )) (11)

where the capacity I(θ̃i, (θi, σ2
i )) per dimension is derived in Appendix A.

Figure 2 shows numerical results for various values of β. Standard variational inference (β = 1)
results in a capacity of 0.45 bits per dimension. We observe that higher β corresponds to smaller
capacity, which is given by the mutual information I(θ̃i, (θi, σ2

i )) between our new latent (θi, σ2
i ) and

θ̃i. This formalizes the intuition that a higher weight of the complexity term in our objective increases
regularization by decreasing a limit on the capacity.
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Figure 2. Relationship between β and capacity I(θ̃i, (θi, σ2
i )) per parameter dimension in Gaussian

mean field inference with learned variance and the complexity term scaled by β > 0.

2.4. Supervised and Unsupervised Learning

The above derivations apply to any learning algorithm that is purely trained with Gaussian mean
field inference. This covers supervised and unsupervised tasks.

In supervised learning, the training data typically consist of pairs of inputs and labels, and a loss
is assigned to each pair that depends on the trained model, e.g., neural network parameters. When all
parameters are learned with one of the discussed mean field methods, the given bounds apply.



Entropy 2019, 21, 758 6 of 14

The derivation also comprises unsupervised methods with per-data latent variables and even
amortized inference such as variational autoencoders [8,24], again as long as all learned variables
are learned via Gaussian mean field inference. While this might be helpful to find generalizing
representations, the focus of the experiments is on validating the generalizing behaviour of the
Bayesian mean field variational approach on neural network parameters for overfitting regimes,
namely a small dataset and complex models.

2.5. Flexible Variational Distributions

The objective function for variational inference is maximized when the approximate posterior is equal
to the true one. This motivates the development of flexible families of posterior distributions [8,29–36].
In the case of exact inference, a bound on generalization as discussed in Section 2.2 only applies if the
model itself has finite mutual information between data and parameters. However, estimating mutual
information is generally a hard problem, particularly in high-dimensional, non-linear models. This makes
it hard to state a generic bound, which is why we focus on the case of Gaussian mean field inference.

3. Related Work

3.1. Regularization in Neural Networks

The Gaussian mean field is intimately related to other popular regularization approaches in deep
learning: As is apparent from Equation (6), the fixed-variance Gaussian mean field applied to training
neural network weights is equivalent to L2-regularization (weight decay) combined with Gaussian
parameter noise [9–11] on all network weights. Molchanov et al. [37] showed that additive parameter
noise results in multiplicative noise on the unit activations. The resulting dependencies between noise
components on the layer output can be ignored without significantly changing empirical results [38].
This is in turn equivalent to scaled Gaussian dropout [24].

3.2. Information Bottlenecks

The information bottleneck principle by Tishby et al. [39], Shamir et al. [40] aims to find a
representation Z of some input X that is most useful to predict an output Y. For this purpose,
the objective is to maximize the amount of information I(Y, Z) the representation contains about the
output under a bounded amount of information I(X, Z) about the input:

max
I(X,Z)<C

I(Y, Z) (12)

They described a training procedure using the softly-constrained objective:

minLIB = min I(X, Z)− βI(Y, Z) (13)

where β > 0 controls the trade-off.
Alemi et al. [41] suggested a variational approximation for this objective. For the task

of reconstruction, where labels Y are identical to inputs X, this results exactly in the β-VAE
objective [42,43]. This is in accordance with our result from Section 2.3 that there is a maximum capacity
per latent dimension that decreases for higher β. Setting β > 1, as suggested by Higgins et al. [26],
for obtaining disentangled representations, corresponds to lower capacity per latent component than
achieved by standard variational inference.

Both Tishby et al. [39] and Higgins et al. [26] introduced β as a trade-off parameter without
a quantitative interpretation. With our information-theoretic perspective, we quantify the implied
capacity and provide a link to the generalization error. Further, both methods are concerned with
the information in the latent representation. They do not limit the mutual information with the
model parameters, leaving them vulnerable to model overfitting under our theoretical assumptions.
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We experimentally validated this vulnerability and explore the effect of filling this gap by applying
Gaussian mean field inference to the model parameters.

3.3. Information Estimation with Neural Networks

Multiple recent techniques [44–46] proposed the use of neural networks for obtaining a lower
bound on the mutual information. This is useful in settings when we want to maximize mutual
information, e.g., between the data and a lower-dimensional representation. In contrast, we show that
Gaussian variational inference on variables with a Gaussian prior implicitly places an upper bound on
the mutual information between these variables and the data and explore its regularizing effect.

4. Experiments

In this section, we analyse the implications of applying Gaussian mean field inference of a fixed
scale to the model parameters in the supervised and unsupervised context. Our theoretical results
suggest that varying the capacity will affect the generalization capability, and we show this effect
on small data regimes and how it changes with the training set size. Furthermore, we investigate
whether capacity is the only predictor for generalization or whether varying priors and architectures
also have an effect. Finally, we demonstrate qualitatively how the capacity bounds are reflected in
Fashion MNIST reconstruction.

4.1. Supervised Learning

We begin with a supervised classification task on the CIFAR10 dataset, training only on a subset of
the first 5000 samples. We used 63 × 3 convolutional layers with 128 channels each followed by a ReLU
activation function, every second of which implemented striding of 2 to reduce the input dimensionality.
Finally, the last layer was a linear projection, which parameterized a categorical distribution. The capacity
of each parameter in this network was set to specific values given by Equation (8).

Figure 3 shows that decreasing the model capacity per dimension (by increasing the noise)
reduced the training log-likelihood and increased the test log-likelihood until both of them meet at
an optimal capacity. One can observe that very small capacities led to a signal that was too noisy,
and good predictions were no longer possible. In short, regimes of underfitting and overfitting were
generated depending on the capacity.

3 4 5 6 7 8 9 10
model capacity per dimension in bits

6

5

4

3

2

1

0

lo
gl

ik
el

ih
oo

d

Test
Train

Figure 3. Classifying CIFAR10 with varying model capacities. Large capacities lead to overfitting,
while small capacities drown the signal in noise. Each configuration was evaluated 5 times; the mean
and standard deviation are displayed.
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4.2. Unsupervised Learning

We now evaluate the regularizing effect of fixed-scale Gaussian mean field inference in an
unsupervised setting for image reconstruction on the MNIST dataset. Therefore, we used a VAE [6]
with 2 latent dimensions and a 3-layer neural network parameterizing the conditional factorized
Gaussian distribution. As usual, it was trained using the free energy objective, but different from the
original work, we also used Gaussian mean field inference for the model parameters. Again, we used
a small training set of 200 examples for the following experiments if not denoted otherwise.

4.2.1. Varying Model Capacity and Priors

In our first experiment, we analysed generalization by inspecting the test evidence lower bound
(ELBO) when varying the model capacity, which can be seen in Figure 4a. Similar to the supervised
case, we can observe that there was a certain model capacity range that explained the data very
well, while less or more capacity resulted in noise drowning and overfitting, respectively.In the
same figure, we also investigated whether the information-theoretic model capacity can predict
generalization independently of the specific prior distribution. Since we merely state an upper
bound on mutual information in Section 2.1, the prior may have an effect in practice, which cannot
be explained only by the capacity. Figure 4a shows that indeed, while the general behaviour
remained the same for different model priors, the generalization error was not entirely independent.
Furthermore, the observation that all curves descended with larger capacities, for all priors, suggests
that weight decay [47] of fixed scale without parameters noise was not sufficient to regularize arbitrarily
large networks. In Figure 4b, we investigated the extreme case of dropping the prior entirely and
switching to maximum-likelihood learning instead by using an improper uniform prior. This approach
recovered Gaussian dropout [24,48]. Dropping the prior set the bottleneck capacity to infinity and
should lead to worse generalization. Comparing the test ELBO of this Gaussian dropout variant to
the original Gaussian mean field inference in Figure 4b confirmed this result for larger capacities.
For larger noise scales, generalization was still working well, a result that was not explained in our
information-theoretic framework, but plausible due to the deployed limited architecture.

0 1 2 3 4 5 6
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(a)
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log noise scale on model parameters
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Unit prior VAE
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(b)

Figure 4. MNIST test reconstruction with a variational autoencoder training on 200 samples for various
capacities and Gaussian priors. (a) The test Evidence Lower Bound (ELBO) is not invariant when
varying the prior on the model parameters. Nevertheless, the first increasing and then decreasing
trend when changing the capacity remains; (b) Using an improper prior, similar to just using Gaussian
dropout on the weights, leads to an accelerated decrease of generalization for smaller noise scales.
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4.2.2. Varying Training Set Size

Figure 5a shows how limiting the capacity affects the test ELBO for varying amounts of training
data. Models with very small capacity extracted less information from the data into the model,
thus yielding a good test ELBO somewhat independent of the dataset size. This is visible as a graph
that ascends very little with more training data (e.g., total model capacity of 330 kbits). Note that we
here report the capacity of the entire model, which is the sum of the capacities for each parameter.
In order to improve the test ELBO, more information from the data had to be extracted into the model.
However, clearly, this led to non-generalizing information being extracted when the dataset was small,
leading to overfitting. Only for larger datasets, the extracted information generalized. This is visible as
a strongly-ascending test ELBO with larger dataset sizes and bad generalization for small datasets.
We can therefore conclude that the information bottleneck needs to be chosen based on the amount of
data that are available. Intuitively, when more information is available, the more information should
be extracted into the model.

103 104
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400

350
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150

100

te
st
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lb

o

Total model capacity 19 kbit
Total model capacity 330 kbit
Total model capacity 396 kbit
Total model capacity 495 kbit
Total model capacity 594 kbit
Total model capacity 891 kbit
Total model capacity 1189 kbit
Total model capacity 2378 kbit
Total model capacity unrestricted

(a)
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total capacity in bits
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te
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 e
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o

2 layers
3 layers
4 layers
5 layers
6 layers

(b)

Figure 5. MNIST test reconstruction with a VAE; training on varying dataset sizes, architectures,
and model capacities. (a) Varying the number of samples. Depending on the size of the dataset, higher
capacities of the model are required to fit all the data points; (b) Varying architecture. Overfitting
is not getting worse for more layers if the capacity is low enough. More layers do overfit only for
higher capacities.

4.2.3. Varying Model Size

Furthermore, we inspected how the size of the model (here, in terms of the number of layers)
affected generalization in Figure 5b. Similar to varying the prior distribution, we were interested
in how well the total capacity predicted generalization and the role the architecture plays. It can
be observed that larger networks were more resilient to larger total capacities before they started
overfitting. This indicates that the total capacity was less important than the individual capacity
(i.e., noise) per parameter. Nevertheless, larger networks were more prone to overfitting for very large
model capacities. This makes sense as their functional form was less constrained, an aspect that was
not captured by our theory.

4.2.4. Qualitative Reconstruction

Finally, we plot test reconstruction means for the binarized Fashion MNIST dataset under the same
setup for various capacities in Figure 6. In accordance with the previous experiments, we observed
that if the capacity was chosen too small, the model was not learning anything useful, while too large
capacities resulted in overconfidence. This can be observed in most means being close to either 0–1.
An intermediate capacity, on the other hand, made sensible predictions (given that it was trained only
on 200 samples) with sensible uncertainty, visible through grey pixels that correspond to high entropy.
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Figure 6. Test reconstruction means for binarized Fashion MNIST trained on 200 samples with
per-parameter capacities of 5, 2, and 1 bits (top) compared to the true data (bottom).

5. Discussion

In this section, we discuss how the capacity can be set, as well as the effect of the model architecture
and learning dynamics.

5.1. Choosing the Capacity

We have obtained a new trade-off parameter, the capacity, that has a simple quantitative
interpretation: It determines how many bits to extract maximally from the training set. In contrast,
for the β parameter introduced in Tishby et al. [39] and Higgins et al. [26], a clear interpretation is not
known. Yet, it may still be hard to set the capacity optimally. Simple mechanisms such as evaluation
of a validation set to determine its value may be used. We expect that more theoretically-rigorous
methods could be developed.

Furthermore, in this paper, we focused on the regularization that Gaussian mean field inference
implies on the model parameters. The same concept is valid for data-dependent latent variables,
for instance in VAEs, as discussed in Section 2.4. In VAEs, Gaussian mean field inference on the
latent variables leads to a restricted latent capacity, but leaves the capacity of the model unbounded.
This leaves VAEs vulnerable to model overfitting, as demonstrated in the experiments, and setting β as
done in Higgins et al. [26] is not sufficient to control complexity. This motivates the limitation
of capacity between the data and both per-data point latent variables and model parameters.
The interaction between the two is an interesting future research direction.

5.2. Role of Learning Dynamics and Architecture

As discussed in Section 2.2, it is necessary to perform exact inference in the noisy model for
the bounds on the generalization error to hold. However, this assumption was not met. In practice,
pt(θ | D) encodes the complete learning algorithm, which in deep learning typically includes parameter
initialization and the dynamics of the stochastic gradient descent optimization.

Our experiments confirmed the relevance of the aforementioned factors: L2-regularization works
in practice, even though no noise was added to the parameters. This could be explained by the fact
that noise was already implicitly added through stochastic gradient descent [49] or through the output
distribution of the network. Similarly, Gaussian dropout [9–11] without a prior on the parameters
helped generalization. Again, early stopping combined with a finite reach of gradient descent steps
effectively shaped a prior of finite variance in the parameter space. This could also formalize why
the annealing schedule employed by Blundell et al. [25], Bowman et al. [27] and Sønderby et al. [28]
was effective.

Since these other factors affect generalization, quantifying mutual information It(θ, D) of the
actual distribution due to the learning dynamics might be a promising approach to explain why neural
networks often generalize well on their own. This idea is in accordance with recent work that links the
learning dynamics of small neural networks to generalization behaviour [50].

On the other hand, the architecture choice also had an influence on generalization. This does not
contradict our theory, we since we only formulated an upper bound on mutual information. Tightening
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this bound based on the model architecture and output distribution is usually hard, as discussed in
Section 2.5, but might be possible.

Another promising direction would be to sample approximately from the exact posterior
on network parameters (i.e., as done by Marceau-Caron and Ollivier [51]), on a capacity-limited
architecture, instead of the usual approach of point estimation. In the limit of infinite training time,
this would fully realize the discussed bound on the expected generalization error.

6. Conclusions

We explored an information-theoretic perspective on the regularizing effects observed in Gaussian
mean field approaches. The derivation featured a capacity that can be naturally interpreted as a limit
on the amount of information extracted about the given data by the inferred model. We validated its
practicality for both supervised and unsupervised learning.

How this capacity should be set for parameters and latent variables depending on the task and
data is an interesting direction of research. We exploited a theoretical link of mutual information
and generalization error. While this work is restricted to the Gaussian mean field, incorporating the
effect of learning dynamics on mutual information in the future work might allow understanding why
overparameterized neural networks still generalize well to unseen data.
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Appendix A. Capacity in Learned-Variance Gaussian Mean Field Inference

The capacity per dimension for the model discussed in Section 2.3 is given by:

I(θ̃i, (θi, σ2
i ))

=H(θ̃i)− H(θ̃i | θi, σ2
i )

=−
∫ ∞

−∞
p′(θ̃i) log p′(θ̃i)dθ̃i −

∫ ∞

0
p′(σ2

i )
1
2

log 2πeσ2
i dσ2

i

(A1)

θ̃i | θi, σ2
i ∼ N

(
θi, σ2

i
)

with θi ∼ N
(

0, 1
β

)
implies θ̃i | σ2

i ∼ N
(

0, σ2
i + 1

β

)
. Together with σ2

i ∼

Γ
(

β
2 + 1, β

2

)
, this implies:

p′(θ̃i) =
∫ ∞

0
dσ2

i p′(σ2
i )p′(θ̃i | σ2

i )

=
∫ ∞

0
dσ2

i
1

Γ
(

β
2

) ( β

2
σ2

i e−σ2
i

) β
2
·
(

2π

(
σ2

i +
1
β

))− 1
2

e
− 1

2
(

σ2
i +

1
β

) θ̃2
i (A2)

Numerical results for the capacity I(θ̃i, (θi, σ2
i )) with varying β are given below (see Table A1)

and plotted in Figure 2.
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Table A1. Capacity I(θ̃i, (θi, σ2
i )) in learned-variance Gaussian mean field inference with varying factor

β on the divergence term.

β I(θ̃i, (θi, σ2
i ))

0.01 0.68 bits
0.1 0.65 bits
1 0.45 bits
10 0.12 bits

100 0.014 bits
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