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Abstract: The advances in mobile technologies enable mobile devices to cooperate with each other
to perform complex tasks to satisfy users’ composite service requirements. However, data with
different sensitivities and heterogeneous systems with diverse security policies pose a great challenge
on information flow security during the service composition across multiple mobile devices.
The qualitative information flow control mechanism based on non-interference provides a solid
security assurance on the propagation of customer’s private data across multiple service participants.
However, strict discipline limits the service availability and may cause a high failure rate on service
composition. Therefore, we propose a distributed quantitative information flow evaluation approach
for service composition across multiple devices in mobile environments. The quantitative approach
provides us a more precise way to evaluate the leakage and supports the customized disciplines
on information flow security for the diverse requirements of different customers. Considering the
limited energy feature on mobile devices, we use a distributed evaluation approach to provide a
better balance on consumption on each service participant. Through the experiments and evaluations,
the results indicate that our approach can improve the availability of composite service effectively
while the security can be ensured.

Keywords: quantitative information flow; secure information flow model; service composition;
mobile computing

1. Introduction

With the development of intelligent terminal, 5G and IoT technologies, various mobile applications
enrich our daily lives with more flexible and convenient IT services delivery [1,2]. Moreover, high speed
processors and stable connections enable the efficient service interactions among different mobile
devices. Based on service-oriented architecture, service composition across multiple mobile devices
provides a promising way for integrating several distributed services to satisfy users’ complex
requirements [3]. Most works focus on improving the efficiency and availability of composite services
in mobile computing [4–6]. However, various data with different sensitivities and heterogeneous
systems with diverse security policies pose a great challenge on information flow security during
the service composition across multiple devices [7]. In particular, if one service component contains
malicious code or vulnerabilities, customers’ sensitive data may be leaked. In addition, illegal providers
or attackers may collude together to eavesdrop private data more effectively based on feedback from
different components, in which private data may also be leaked even if individual service is protected
by an access control mechanism [8,9].

In order to prevent the data leakage during service composition, types of information flow
mechanisms are proposed including type of system [10], model checking [11,12], program static
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analysis [13,14] and real-time monitoring [15,16]. Considering the limited energy and dynamic
composition relationships, we propose a distributed information flow verification framework for secure
service composition in mobile computing environments [7]. Although these approaches provide a solid
assurance on information flow security of composite service, implementing them in a real application
is still a challenge. These approaches are based on a qualitative discipline, i.e., non-interference [17],
which strictly limits the complete absence of any causal flow from high-level sources to low-level sinks.
Too strict discipline causes the loss of service availability on account of the security limitations on
the cross-level operations in program. It may also cause a high failure rate on service composition
because few services can satisfy the discipline. In fact, it is usually permitted in practice to tolerate
some leakage for a better service availability. For example, the area of our location may be allowed to
be observed by mobile service providers for a customized and more precise route planning. Therefore,
for a better balance on service security and availability, it is important for us to measure “how much”
information is leaked and “how many” leaks are allowed by customers during the service composition.

In order to quantifying the leakage, many quantitative information flow approaches are proposed
based on Shannon’s information theory [18]. The authors in [19,20] propose the approach to quantify
interference in a simple imperative language for the information flow verification. The authors in [21]
present an automatic method for information-flow verification that discovers what information is
leaked and computes its comprehensive quantitative interpretation. The authors in [22] establish a tight
bound on the maximum leakage from repeated independent runs. However, these approaches mainly
focus on a single program that works in a centralized way. During the service composition, there
may be several services with similar functions but developed by different mobile service providers,
which requires us to select appropriate services for optimized performance [6,23]. It would be a
resource-consuming work to evaluate all possible services by a single piece of equipment, which
is hard to be implemented due to the energy-limited features of mobile terminals. In addition,
all candidate services must be reevaluated even if a small change of one service occurs, which also
increases the evaluation load on mobile devices.

In this paper, we present a distributed quantitative information flow evaluation approach
applied on the service composition in a mobile computing environment. Our contributions mainly
include: (1) we make the quantifying rules on information flows based on the static analysis;
(2) we propose the quantitative definition on secure information flow in composite services and
specify the security constraints on each service component for distributed evaluation; (3) we design
a distributed quantitative information flow evaluation framework and approach for secure service
composition in mobile environment, which can provide a better service availability and load balance
with affordable costs.

The rest of the paper is structured as follows. Section 2 presents the basic models of the mobile
service system. Section 3 details the quantifying rules and the security theorems based on the static
analysis. In Section 4, the distributed quantitative information flow evaluation approach is proposed
according to the security theorems. Section 5 evaluates our proposed approach. Section 6 concludes
the paper.

2. Mobile Service System

2.1. System Model

As shown in Figure 1, the Mobile Service System (MSS) is a distributed IT system consisting of
multiple network domains. A domain can have various types of resources, such as data, information,
and other physical resources. Mobile terminals in the domain can use these resources and its application
functions to provide various services to users, e.g., s1, s2, etc. These services can be composed together
for a more complex users’ application. Moreover, there are several candidate services that can execute
the similar functions for a given service. These services can be developed by different service providers.
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For example, s1 can be provided by A, B or other service providers, i.e., s1|A, s1|B and so on. In addition,
there is also a security authority in each domain for the security management in the domain.

Figure 1. Mobile service system.

Referring to the system model in [7], each domain D can be represented as D = 〈S, R, SA〉,
where S is the set of various services, i.e., S = {s0, s1, . . . }; R is the set of physical resources that can be
collected by mobile services in the domain, e.g., environment data, traffic data and so on; SA is the
security authority. Each service si in S is defined as a tuple si = 〈idi, domi, Ini, Outi, Pgi, Cei〉, where idi
is the identifier of the service provider; domi is the domain that si belongs to; Ini is the set of inputs in
si; Outi is the set of the outputs in si; Pgi is the program of si, which describes the execution procedure
of si; Cei is the certificate of the service which specifies the security properties.

Due to the user’s complex requirements, different services si in multiple domains may be
composed together to achieve the service goal. In this paper, we investigate a typical composite
service, i.e., the service chain Sch [7], as shown in Figure 2. A service chain is widely used in service
composition because of its simplified composition structure which is easy to deploy and control.
In service chain Sch, s0 receives the request from user and starts the composition procedure. Then,
each service si, 0 < i < n, receives the intermediate result as the inputs from its unique predecessor
si−1, executes the service program Pgi and outputs the intermediate result to its unique successor si+1.
Finally, the last one sn sends the final results to the user. During the execution, service providers (SP)
can input and obtain some data according to the service request, which may cause the leakage of a
user’s private information.

Figure 2. Service chain model in mobile service system.

2.2. Threat Model

Based on our system model, we make the following assumptions about the security capabilities
of the participants in MSS.

• User: The user is the data owner who has access to all inputs and outputs including public and
private information. We partition them into two sets: L(low) for public data and H(high) for private
data. In addition, users don’t intentionally collude to leak the private data.

• Service Providers: Service providers from different mobile devices are honest but curious.
They execute the service functions in accordance with their descriptions. They can not access users’
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high-level data directly due to the privacy policies, but they can freely observe the public data including
all low-level inputs and outputs before and after (but not during) the service’s execution. Some of
them may try to analyze the value of the private data based on users’ low-level inputs and outputs
on purpose. In addition, different services may collude together to analyze a user’s private data
more effectively.

For a clear description, we define LIni and LOuti as the public inputs and outputs with low-level
security L. HIni and HOuti are defined as the private inputs and outputs with high-level security H.
Then, we can obtain that Ini = LIni

⋃
HIni and Outi = LOuti

⋃
HOuti.

• SA: Security Authority is the trusted third party that executes the security function honestly
without any interception and manipulation.

3. Quantitative Information Flow Model for Service Composition in a Mobile
Computing Environment

3.1. Quantitative Information Flow Model Based on Information Theory

Shannon’s theory provides a standard measurement on information quantity known as
self-information or entropy. For random variable X for storing different data x ∈ X in service
program Pgi, its entropy can be defined as [24]

H(X) = ∑
x

p(x) log
1

p(x)
, (1)

where X is a random variable, p(x) is shorthand for P(X = x), which is the probability of X = x,
and the sum is over the range of X. In Equation (1), the base for log is conventional to use base 2 for
the analysis in computer program.

The conditional entropy can be used to represent the amount of information carried by X give the
knowledge of variable Y, which is defined as:

H(X|Y) = ∑
y

p(y)H(X|Y = y), (2)

where H(X|Y = y) = ∑x p(x|y) log 1
p(x|y) , and p(x|y) is the probability that random variable X = x

given that random variable Y = y.
Based on the information quantity on each variable, the mutual information provides a general

way of measuring the amount of information stored by X that can be learned by observing another
random variable Y, which is defined as:

I(X; Y) = ∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
= H(X) +H(Y)−H(X, Y)

= H(X)−H(X|Y)
= H(Y)−H(Y|X).

(3)

According to our system model, LIn and LOut are the low-level inputs and outputs that service
providers can observe during the service composition. Based on Equation (3), for each X ∈ In,
the leakage through the flow from X to Y ∈ Out can be defined as

FLIn(X Y) = I(X; YlIn) = H(XlIn)−H(X|Y, LIn). (4)

We use FLIn(X  LOut) to represent the overall leakage of X through all different flows from X
to any Y in LOut. For a clear description, we assume all the inputs and outputs are k bits variables and
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the inputs are uniformly distributed and independent from each other in the following calculation.
Then, we can derive the first basic Quantifying Rule (QR) as follows:

QR 1. ∀X ∈ In, Max(FLIn(X LOut)) = H(X) = k and Min(FLIn(X LOut)) = 0.

Then, we can obtain the quantitative definition on information flow security in a service as follows:

Definition 1. ∀X ∈ HIn in a service, the flows in service are K-secure, for 0 ≤ K ≤ k, if

FLIn(X LOut) < K,

where LIn and LOut are the low-level input and output observations, and K is the security threshold that
depends on a user’s requirement and the system running environment.

According to Definition 1, we can derive the following two facts: (1) if K = 0, it requires that
there is no flow from X to any Y in LOut, which becomes the qualitative definition of standard
non-interference as shown in [25]. (2) if 0 < K ≤ k, it is considered secure if there is at least k− K
unknown bits for service providers. A user can choose different thresholds for diverse security
requirements in different running environments.

3.2. Quantifying the Information Flow in Service Components

Clark et al. [20] propose the basic analysis rules to quantify leakage for a software program with
sequence, branch and loop structures. These rules are specified for the single program analysis in a
centralized way, which aim at quantifying the overall leakage instead of each flow’s leakage. Therefore,
they don’t support distributed quantifying across multiple services. Based on some basic rules in [20],
we design the improved quantifying rules on different information flows through the static analysis.
Our rules are based on the worst case assumption for guaranteeing the security. First, for the si’s
program Pgi, its syntax can be defined as follow by referring to [20]. It is a simple imperative language
including all basic notions, operations and structures in a program:

C ∈ Com var ∈ Var E ∈ Exp B ∈ BExp const ∈ N
P ::= P; C | C
C ::= skip | var := E

| if(B) then C else C′

| while(B) C

E ::= var | const | E + E′ | E ∗ E′

B ::= E R E′ | ¬B | B ∧ B′ | B ∨ B′

R ::=< | > | == .

There are two kinds of flows to consider, i.e., explicit and implicit flow [17]. The explicit flow
occurs as a result of executing the assignment statement. For example, for the statement var′ := E, if E
contains variable var, there is an explicit flow between var and var′, namely var → var′. Implicit flow
occurs as a result of executing a statement C or not when this statement C is conditioned on the value
of an binary expression B. This type of flow usually exists in the branch and the loop structures. If B
contains var and var′ appears in C or C′ as an objective variable, there is an implicit flow between var

and var′, namely var
B
99K var′. Based on the basic dependence and its transitivity, we can define the

intra flows from var to var′ as follow, which is represented as δ(var, var′).

Definition 2. ∀var, var′ ∈ Var in si, and there are four cases to consider:
(1) ∃v ∈ Var that satisfies var → v and v→ var′, then δ(var, var′) = var → var′.
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(2) ∃v ∈ Var that satisfies var → v and v
B
99K var′, then δ(var, var′) = var

B
99K var′.

(3) ∃v ∈ Var that satisfies var
B
99K v and v→ var′, then δ(var, var′) = var

B
99K var′.

(4) ∃v ∈ Var that satisfies var
B
99K v and v

B′
99K var′, then δ(var, var′) = var

B
99K var′.

Here, we use var  var′ to represent all the flows from var to var′. According to our attacker
model, the attacker can observe the low-level inputs and outputs before and after the execution of
service. Thus, we mainly focus on the flows between the inputs and outputs. In addition, we can also
obtain that Ini ⊆ Var and Outi ⊆ Var. In order to analyze these flows among the different inputs
and outputs in si, we construct the PDG (Program Dependence Graph) first [26], and then use the
program slicing [27] to obtain all the flows from inputs to outputs based on Definition 2. Then, we
define F i = {δ(X, Y)|X ∈ Ini, Y ∈ Outi} as the set of all intra flows in si for the following calculation.

Based on the definition of F i, we can derive the following quantifying rules on the leakage of each
flow in si. In this paper, we consider the worst case assumptions in which we focus on the computation
of the upper bound of leakage for a strong security assurance.

QR 2. ∀X ∈ HIni and Y ∈ LOuti satisfy X → Y, then we have

FLIni (X → Y) = H(X) = k, (5)

where LIni is the low level input observations in si.

QR 3. ∀X ∈ HIni and Y ∈ LOuti satisfy X
B
99K Y, then we have

FLIni (X
B
99K Y) =


1 B ::= E < E′ | E > E′ ,

FEq B ::= E == E′ ,

F B B ::= ¬B |B ∧ B′ | B ∨ B′,

(6)

where FEq = FLIni (X E) +FLIni (X E′), F B = FLIni (X
B
99K Y) +FLIni (X

B′
99K Y).

QR 2 is used to analyze the leakage of the explicit flow. It is easy to follow that, when there is an
explicit flow from X to Y, we regard this as all the information of X having been delivered to Y based
on knowledge of LIni, i.e.,H(X|Y, LIni) = 0.

QR 3 is used to analyze the leakage of the implicit flow, which includes the following three cases.
(1) For the basic boolean expressions (E < E′) or (E > E′), we consider the worst case in which

the value of B and E′ can be observed based on the knowledge of Y and Z. Then, attackers can deduce
one more bit information about X in E at most after the service execution, which complies with 1− Bit
rule in [20].

For example, for the following program in which x is the 5 bits high level input ranging from −16
to 15, y is the low level output,

{state s}if(x < z) then y = 0 else y = 1{state s’}.

If attackers know the value of z, then he can deduce if the value of x is greater or less than z through
the output value of y. Based on information theory, the entropy of x in state s and s′ can be calculated
as follows:

H(xs|zs) = 5,

H(xs|zs, ys′) = Px<zH(xs|zs, ys′ = 0)+

(1− Px<z)H(xs|zs, ys′ = 1).
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In addition, we can also get that H(xs|zs, ys′) is minimum when z = 0, i.e., Min(H(xs|zs, ys′)) =

(1/2)log(16) + (1/2)log(16) = 4. Then, the attacker can obtain one bit of information about x at most
through this flow.

(2) For the equality expression (E == E′), it is a special case in which service providers may
obtain all bits of X in E or E′ when this expression is true. In this case, the leakage depends on how
much information leaked from X to E and E′, i.e., FLIni (X E) +FLIni (X E′).

(3) For the complex expressions (¬B), (B ∧ B′) and (B ∨ B′), the leakage of X depends on the

quantity of leakage on each condition B and B′, i.e., FLIni (X
B
99K Y) +FLIni (X

B′
99K Y).

These quantifying rules are consistent with the rules in [20]. Based on the quantifying on explicit
and implicit flows, we can calculate the overall leakage from X to Y through different flows by the
following rules.

QR 4. ∀X ∈ HIni and Y ∈ LOuti satisfy X  Y, then we have

FLIni (X Y) = ∑
δ(X,Y)∈Fi

FLIni (δ(X, Y)). (7)

For QR 4, we also consider the worst case in which the leakage of information through each flow
is different. Then, the overall quantity on leakage from X to Y is the sum of the leakage in each flow
δ(X, Y). Based on the above quantifying rules and Definition 1, we can derive the following theorem
on information flow security in si.

Theorem 1. ∀X ∈ HIni in si, the flows in si are K-secure if they satisfy that

∑
Y∈LOuti

FLIni (X Y) < K, 0 ≤ K ≤ k,

where K is the security threshold.

Proof. Based on the information entropy and the quantifying rules, it is easy to deduce that

FLIni (X LOuti) ≤ ∑
Y∈LOuti

FLIni (X Y) < K.

According to Definition 1, the flows in si are secure.

3.3. Quantifying the Information Flow in the Service Chain

In our threat model, different service providers may collude together to analyze s user’s private
data. It means that different providers may share their knowledge on the low-level inputs and outputs
during the service composition, which causes more leakage on a user’s private data. In order to
quantify the additional leakage of private data across different services, we design the quantifying
rules based on the analysis of the inter-service flows.

For service chain Sch = 〈s0, s1, s2, . . . , sn〉 where Inch =
⋃

0≤i≤n Ini = In0,1,...,n and Outch =⋃
0≤i≤n Outi = Out0,1,...,n, the inter-service flows may occur between the inputs and outputs across

multiple services, which is shown as Figures 3 and 4.
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Figure 3. Information flow between adjacent services.

Figure 4. Information flow across multiple services.

Adjacent-service flow is the basic inter-service flow, which occurs because of the transmission
on the intermediate result between the outputs and inputs across the adjacent services, such as the
inter-service flow between Outi,2 and Ini+1,2. Based on the adjacent-service flows, more inter-service
flows occur due to the transitivity of the information flow, such as the inter-service flow between Ini,n
and Outj,1, 0 ≤ i < j. Therefore, we can formally define the inter-service flows as follows [7]:

Definition 3. ∀X ∈ Ini and ∀Y ∈ Outj where 0 ≤ i < j ≤ n, there are following two cases.
(1) j = i + 1: ∃W1 ∈ Outi, W2 ∈ Inj, W1 → W2 that satisfy X  W1 and W2  Y, then X  W2 and
X Y.
(2) j > i + 1: ∃W ∈ Inl ∪Outl , i < l < j that satisfy X W and W  Y, then X Y.

Based on Definition 3, we can obtain all the inter-service flows. Here, we define Fch = {X  
Y|X ∈ Ini, Y ∈ Outj, 0 ≤ i < j ≤ n}. According to the composition structure of service chain model,
the intermediate result is the only method that passes the value of input source across multiple services.
Then, we can obtain the following proposition.

Proposition 1. ∀X ∈ Ini and ∀Y ∈ Outj, 0 ≤ i < j ≤ n, if X  Y, ∃W ∈ Inj satisfies that X  W and
W  Y.

On the basis of Proposition 1, for each inter-service flow X  Y, its leakage from X to Y depends
on the quantity of information that X passes to W and how much information is leaked through the
intra-service flow W  Y. Then, we use FLIni,i+1,...,j(X Y)W to represent the additional leakage of X
to Y through W, which can be calculated based on the following rule.

QR 5. ∀X ∈ HIni, Y ∈ LOutj and W ∈ Inj satisfy X  W and W  Y, then we have

FLIni,i+1,...,j(X Y)W =

{
0, W ∈ LInj,

FLInj(W  Y), W ∈ HInj.
(8)

For the inter-service flow X Y through W, there are two cases to consider in QR 5.
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(1) W ∈ LInj: Because W ∈ LInj, the information of X is leaked through W. Then, service
providers can not obtain additional information about X through the flow W  Y. For this type of
flow, FLIni,i+1,...,j(X Y)W = 0.

(2) W ∈ HInj: During the service composition, it is considered secure that private data are
delivered between high-level sources and sinks. Thus, the explicit flows usually occur between
the high-level inputs and outputs. In this case, we also consider the worst assumption that all the
information of X is delivered to W based on QR 2. Because W ∈ HInj, the information of X can not
be leaked through W. The leakage of X depends on how much information of W leaks through the
flow W  Y. In addition, we assume that the leakage from X to Y is different from the previous flows.
Then, we can obtain that FLIni,i+1,...,j(X Y)W = FLInj(W  Y).

In addition, for each inter-service flow X  Y, the information of X may leak to Y through
different W. Then, we can deduce the following lemma.

Lemma 1. ∀X ∈ Hini and Y ∈ LOutj, 0 ≤ i < j ≤ n, satisfy X Y, then

FLIni,i+1,...,j(X Y) ≤ ∑
W∈HInj

FLInj(W  Y),

where W satisfies X  W and W  Y.

Proof. According to the above analysis and the service chain model, we can deduce that

FLIni,i+1,...,j(X Y) ≤ ∑
W∈Inj

FLIni,i+1,...,j(X Y)W = ∑
W∈HInj

FLInj(W  Y)

lemma is proved.

Based on Lemma 1, we can obtain that

Lemma 2. In a service chain Sch = {s0, s1, . . . , sn}, ∀X ∈ Hini and ∀Y ∈ LOutch satisfy X  Y, then

FLIni,i+1,...,n(X LOutch) ≤ L(X)i + L(X)i+1,...,n,

where L(X)i is the leakage of X to ∀Y ∈ LOuti in service si, namely,

L(X)i = ∑
Y∈LOuti

FLIni (X Y), (9)

and L(X)i+1,...,n is the additional leakage of X to ∀Y ∈ LOutj, i < j ≤ n in following services si+1, . . . , sj,
namely,

L(X)i+1,...,n =
n

∑
j=i+1

∑
Y∈LOutj

∑
W∈HInj

FLInj(W  Y), (10)

and W satisfies X  W and W  Y in Equation (10).

Proof. The proof is shown in Appendix A.

Based on Lemma 2, we can derive the following information flow security theorem.

Theorem 2. For a service chain sch = {s0, s1, . . . , sn}, the information flows are K-secure if each service
component sj, 0 ≤ j ≤ n, satisfies the following two conditions:
(1) Flows in each service component sj are secure.
(2) ∀X ∈ HIni, 0 ≤ i < j; it satisfies that

L(X)i,...,j−1 + L(X)j ≤ K, (11)
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where K is the security threshold. L(X)i,...,j−1 is the overall leakage of X from si to sj−1, namely,

L(X)i,...,j−1 = L(X)i + L(X)i+1,...,j−1 (12)

and L(X)j is the leakage of X in sj, namely,

L(X)j = ∑
Y∈LOutj

∑
W∈HInj

FLInj(W  Y) (13)

and W satisfies X  W and W  Y in Equation (13).

Theorem 2 can be proved based on Lemma 2 and Definition 1. The security constraints on each
service are given in Theorems 1 and 2, which makes a basis for the decentralized evaluation in mobile
computing environment. Each service requires that the leakage of high level data through the intra
and inter flows can not exceed the threshold K.

4. Distributed Quantitative Information Flow Evaluation for Service Composition in a Mobile
Computing Environment

In MSS, services may be composed together to accomplish a user’s complex service requirement.
For a service chain Sch = {s0, s1, s2, . . . , sn}, there are several candidate service components with the
same functions but different providers for each service step si. In order to efficiently evaluate the
leakage for the service composition in a mobile computing environment, we propose a distributed
quantitative information flow evaluation approach based on Theorems 1 and 2.

By referring to Figure 1, candidate services and security authorities will be involved in
the evaluation procedure. The procedure includes two phases, i.e., intra-service evaluation and
inter-service evaluation. First, each candidate service is evaluated by its local SA, and SA generates a
security certificate for the following inter-service evaluation. When these candidate services are going
to be composed together, the inter-service evaluation process will be executed for the evaluation on
leakage by inter-service flows.

4.1. Intra-Service Evaluation

The intra-service evaluation is executed by SA before the service composition. SA evaluates each
candidate service si based on the quantifying rules and Theorem 1, and generates security certificates
Cei for secure ones. This phase can be executed in an offline way to reduce the evaluation cost during
the composition.

During the intra-service evaluation, SA first obtains the PDG of si, then computes the quantity of
leakage from ∀X ∈ HIni to ∀Y ∈ LOuti based on the above QRs. After that, SA validates the flow in
si. For secure services, a certificate Cei specifying the quantity of leakage on each high-level inputs
L(X)i is generated for the following evaluation. Insecure ones without certificates are not allowed
to be composed during the service composition. The intra-service evaluation procedure is presented
as Algorithm 1.

In the computation of the leakage on X Y, we record the value in the certificate which can be
used in the inter-service evaluation phase. It can avoid the repeated work on quantifying leakage in a
same service component. At the end of the procedure, we record the flows between high level inputs
and outputs in certificate instead of computing its leakage. It is based on our worst assumption that
information has been passed to high level outputs if there is a flow, which usually happens. In the
meantime, it can save lots of efforts on computation of leakage during inter-service evaluation without
loss on security.

For a clear description on our intra-service evaluation algorithm, consider the following
service’s program:
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public static int Compare(int hin, int lin){
int hout, lout;
hout=hin;
lout=-1;
if(hin>lin)

lout=0;
else

lout=1;
}

In the above example, hin and hout are high-level inputs and outputs while lin and lout are
low-level ones. First, the code needs to be sent to SA. Then, SA constructs the PDG of ’Compare’

service and obtains the intra-service flow set F i = {hin → hout, hin
hin>lin
99K lout, lin

hin>lin
99K lout}.

After that, we compute the leakage from hin to lout through the flow hin
hin>lin
99K lout based on QR 3.

The leakage is validated according to security threshold K. If it is considered secure, the leakage of hin
through each flow, current overall leakage of hin and the intra-service flows between hin and hout will
be recorded in certificate Cei for the inter-service evaluation. Finally, certificate Cei is signed by SA for
the protection against manipulation.

Algorithm 1 Intra_Eval()

Input: si, K
Output: True or False, Cei.

1: generate the si’s PDG and obtain F i
2: for each X ∈ HIni do
3: for each Y ∈ LOuti do
4: for each δ(X, Y) ∈ F i do
5: compute FLIni (δ(X, Y)) based on QR 2 and QR 3
6: FLIni (X Y)=FLIni (X Y)+FLIni (δ(X, Y))
7: end for
8: record the FLIni (X Y) into service certificate Cei
9: L(X)i = L(X)i+ FLIni (X Y)

10: end for
11: if L(X)i ≥ K then
12: return False
13: end if
14: record the L(X)i into service certificate Cei
15: for each Y ∈ HOuti do
16: if ∃δ(X, Y) ∈ F i then
17: record the flow from X to Y into service certificate Cei
18: end if
19: end for
20: end for
21: signature(Cei,SA)
22: return True

4.2. Inter-Service Evaluation

Inter-Service evaluation is a vital phase to evaluate the leakage of high level data during service
composition. In this phase, si firstly retrieves current leakage on high level data L(X)0,1,...,i and their
inter flows F0,1,...,i. Then, si requires si+1’s intra flow and leakage through the certificate Cei+1, and it
updates the inter-service flow set and evaluates the candidate service si+1 according to Theorem 2.
The inter-Service evaluation procedure is shown as Algorithm 2.
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During the evaluation on candidate service si+1, the additional leakage L(X)i+1 is first calculated
based on QR 5 and Lemma 1. After that, the overall leakage of each high-level input, L(X)0,1,...,i+1,
is computed and validated. If the overall leakage on any high-level input exceeds security threshold K,
it means that this candidate service si+1 is not secure for composition.

Algorithm 2 Inter_Eval()

Input: si+1, K, L(X)0,1,...,i, F0,1,...,i
Output: True or False, L(X)0, 1, . . . , i + 1, F0,1,...,i+1.

1: retrieve cert Cei+1
2: update the flows F0,1,...,i+1 based F0,1,...,i and Cei+1
3: for each X ∈ HInj, j < i + 1 do
4: for each Y ∈ LOuti+1 do
5: for each W ∈ HIni+1 do
6: if (X W) ∧ (W  Y) ∈ F0,1,...,i+1 then
7: get the leakage FLIni+1(W  Y) from the certificate Cei+1
8: L(X)i+1=L(X)i+1+ FLIni+1(W  Y)
9: end if

10: end for
11: end for
12: L(X)0,1,...,i+1 =L(X)0,1,...,i+L(X)i+1
13: if L(X)0,1,...,i+1 ≥ K then
14: return False
15: end if
16: end for
17: return True

4.3. Distributed Quantitative Information Flow Evaluation Algorithm for the Service Composition in Mobile
Computing Environments

Based on the intra-service and inter-service evaluation procedure, we propose a distributed
quantitative information flow evaluation algorithm for service composition across multiple mobile
devices. The evaluation algorithm on each high level input is presented as Algorithm 3.

Algorithm 3 Eval_SC()

Input: si, si+1 K
Output: L(X)0, 1, . . . , n

1: wait start_message
2: if X ∈ HIni then
3: \\ Initiate the X’s leakage in its first service
4: L(X)i,i+1,...,n = L(X)i
5: F i,i+1,...,n = F i
6: send start_message to si + 1’s SA
7: else
8: get L(X)0,..,i and F0,..,i from start_message
9: if Inter_Eval(si+1,K,L(X)0,..,i, F0,..,i)=Fail then

10: send fail_message to the user
11: else
12: if i=n then
13: send success_message to the user
14: else
15: send start_message to si+1
16: end if
17: end if
18: end if
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The algorithm is deployed on each service node in a mobile computing environment. Then,
it works in a step-by-step way through the cooperation among multiple services in different mobile
devices. For each possible service chain, a user sends a start message to the first service s0 to start
the evaluation procedure. During each step evaluation, each candidate service si+1 is evaluated by
its predecessor si. If it returns true, si will send a start message with current leakage and flows to its
successors to continue the evaluation procedure. Otherwise, si will send a failure message to a user to
check whether this service chain is not secure, and the evaluation on this chain will stop. In addition,
for each high-level input in the service chain, it needs to be initiated in its first service based on the
certificate. When the final service sn passes the evaluation, then it will send a success message with
the overall leakage L(X)0,1,...,n on each high level input to user. The leakage can be used as a security
criterion on different candidate service chains.

5. Experiments and Evaluations

The information flow security can be ensured by Theorem 2, and the security proof and analysis
are shown in Appendix A. The basic comparisons of related approaches are shown in Table 1.

Table 1. Basic comparison.

Approach Mode Service
Composition

Our Approach Quantitative Distributed
√

She et al. [13,14] Qualitative Centralized
√

Xi et al. [25] Qualitative Distributed
√

Clark et al. [20,24] Quantitative Centralized ×

Smith et al. [22] Quantitative Centralized ×

According to Table 1, traditional approaches validate the information flow across multiple services
based on non-interference, i.e., qualitative verification. Comparing with quantitative approaches
for a program, our approach supports the distributed quantifying on the flows across multiple
services, which is more appropriate for the service composition in a mobile computing environment.
Although we refer to the rules in [20], these rules are used to quantify the overall leakage of high-level
inputs instead of each flow’s leakage, which is more suitable for the centralized evaluation on a
single program.

We also implemented our approach in Huawei mobile phones and ran the evaluation procedure
in a WLAN network with the speed of 150 Mbps. The basic configuration is shown in Table 2.

Table 2. Configuration.

Mobile Environment

Network Type WLAN
Network Speed 150 Mbps
Mobile Mode random walk
Mobile Devices Huawei nova 3
Device’s CPU and RAM 2.8 GHz, 6 G
Mobile Device’s Operation System Android 9.0

Data Set

Service Step 1–10
Candidate Number 1–10
Security Level H, L
High Level Input and Output 2, 2
Low Level Input and Output 2, 2
Flows between Input and Output randomly generated
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In order to evaluate the performance of our approach, we construct a data set of android
applications. These applications support two security levels, i.e., H (High) and L (Low). Each application
has two high-level inputs, two low-level inputs, two high-level outputs and two low-level outputs.
The flows between different inputs and outputs in each application are randomly generated.
These applications can be regarded as basic services in mobile computing environments, which can
be composed together as a composite service by network communication. For the composite service,
the number of service step Ns is from 1 to 10. The number of candidate service Nc for each step is also
from 1 to 10. Ns means this composite service is composed by Ns types of applications. Nc means
there are Nc applications having similar functions but different implementations for each type service.
In our experiments, we focus on the evaluations on service availability, time cost and energy cost.

(1) Service Availability: we use success number and success rate to evaluate the availability of
the composite service. Success number Nsuc is the number of the composite services that successfully
pass the validation. In addition, success rate Rsuc is the percentage of successful composite services in
all possible ones, which can be calculated as the following equation:

Rsuc =
Nsuc

Nall
, (14)

where Nall is the number of all possible composite services composed of different candidate
applications in our data set.

In this test, we execute the quantitative approaches with different security threshold (K = 8, 16, 32)
and qualitative approaches 100 times separately. Figure 5 shows the average success number and
success rate on service composition with different approaches.

Figure 5a shows the variation on average success number of service composition with fixed service
steps (Ns = 5) but different number of candidate services Nc. With the increase in Nc, the number is
rising because it is easier to be successfully composed with more candidate services. Figure 5b shows
the variation on average success rate of service composition with fixed candidate services (Nc = 5) but
a different number of service steps Ns. With the increase in Ns, the rate is declining because it is harder
to find an appropriate service that can satisfy the security constraints.

K

K

K

K

K

K

Figure 5. Success number and success rate on service composition.

Throughout both figures, the quantitative approaches have better performance compared to the
qualitative approach. Especially for the success rate when Ns = 10 in Figure 5b, few services could
pass the qualitative validation which may cause failure on service composition. On the contrary,
the success rate is still high in quantitative approaches. It indicates that the performance of the
quantitative approach is apparently superior to that of the qualitative approach. Moreover, it is easier
to be successful with a higher security threshold.
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(2) Time Cost: we focus on the time cost on different types of information flow validation
approaches. The time cost mainly includes two types of costs, i.e., computation and communication.
Figure 6a shows the overall time cost including computation and communication on qualitative and
quantitative approaches. With the increase in the number of candidate services, the time cost is
rising because of the increase in the complexity and the number of possible service chains. It also
costs more time due to the additional computations and communications in quantitative evaluation
approaches. However, we can minimize the cost by precomputation on the quantity of leakage in each
candidate service.

Figure 6. Time cost on information flow evaluation.

Figure 6b shows the average computation cost on each mobile device involved in the distributed
and centralized quantitative approaches. We use the time cost on computation to represent the
computation cost in this test. Instead of executing all of the evaluation work on a single device,
the distributed way coordinates all participants to accomplish the evaluation together, which provides
a better balance on the computation cost on mobile devices.

(3) Energy Cost on User’s device: During the evaluation, the energy cost is mainly caused
by the computation and the communication cost on a user’s device. In our distributed approach,
the user starts the evaluation with little computation cost. The computation cost is also evaluated in
the above ’time cost’ test. Thus, we focus on the communication cost on the user’s mobile device in
this test.

Figure 7 shows the communication cost on the user’s mobile device in the distributed and
centralized evaluation approaches. For the centralized evaluation approach, all candidate services will
be evaluated by user’s device. For our distributed approach, a user’s device only needs to send the
request to its following services and receives the final results from the last-step services. Therefore,
the communication cost in a centralized approach is higher than that in our distributed approach.
By combining the evaluation on the computation cost, they indicate that the energy cost on a user’s
device can be reduced by our distributed approach.

Based on the above experiments, the results show that our approach can provide better service
availability with a small increase in time cost, provide a better load balance on computation and reduce
the overload on the users’ mobile phones effectively.
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Figure 7. Communication cost on information flow evaluation.

6. Conclusions

Strict qualitative disciplines decrease the availability of the composite service and may cause a high
failure rate on service composition. In this paper, we propose a distributed quantitative information
flow evaluation approach for secure service composition in mobile computing environments.
Our approach first evaluates the intra-service leakage between different inputs and outputs in each
service, and then ensures the inter-service flow security based on the constraints specified in Theorem 2.
Our framework and approach works in a distributed way which is quite suitable for the evaluation
executed by energy-limited devices in mobile computing environments. Through experiments and
evaluations, the results show that our approach can improve the service availability effectively and
provide a better load balance on each device.
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Appendix A. Proof of Lemma 2

In this section, we are going to prove Lemma 2 by using mathematical induction.

Proof. First, let n = 1, then Sch = {s0, s1} where Inch = {In0, In1} and Outch = {Out0, Out1}.
In addition, we consider the following two cases:
(1) ∀X ∈ HIn0, based on the service chain model, LOutch = LOut0

⋃
LOut1. Then, we can get that

FLIn0,1(X LOutch) ≤ FLIn0(X LOut0) +FLIn0,1(X LOut1). (A1)
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For FLIn0(X LOut0), we can infer that

FLIn0(X LOut0) ≤ ∑
Y∈LOut0

FLIn0(X Y). (A2)

For FLIn0,1(X LOut1),

FLIn0,1(X LOut1) ≤ ∑
Y′∈LOut1

FLIn0,1(X Y′). (A3)

Based on Lemma 1, we can obtain that

FLIn0,1(X Y′) ≤ ∑
W∈HIn1

FLIn1(W  Y′), (A4)

where W satisfies X W and W  Y.
According to Equations (A1), (A2) and (A4),

FLIn0,1(X LOutch) ≤ ∑
Y∈LOut0

FLIn0(X Y) + ∑
Y′∈LOut1

∑
W∈HIn1

FLIn1(W  Y′).

(2) ∀X ∈ HIn1, there is no inter flow because s1 is the last service. Then,

FLIn1(X LOut1) ≤ ∑
Y∈LOut1

FLIn1(X Y).

Therefore, when n = 1, lemma is proved.
Then, we suppose that the Lemma is true when n = m. Then, the case that n = m + 1 is proved

as follows:
(1) ∀X ∈ HIni, 0 ≤ i ≤ m, we can obtain that LOutch = LOuti,i+1,...,m

⋃
LOutm+1. Then,

FLIni,..m+1(X LOutch) ≤ FLIni,..m(X LOuti,i+1,...,m) +FLIni,..m+1(X LOutm+1) (A5)

Based on our assumption on n = m, we can get that

FLIni,...,m(X LOuti,i+1,...,m) ≤ ∑
Y∈LOuti

FLIni (X Y) +
m

∑
j=i+1

∑
Y′∈LOutj

∑
W∈HInj

FLInj(W  Y′), (A6)

where W satisfies X W and W  Y′.
Based on Lemma 1, we can deduce the following equation:

FLIni,...,m+1(X LOutm+1) ≤ ∑
Y′∈LOutm+1

∑
W∈HInm+1

FLInm+1(W  Y′), (A7)

where W satisfies X W and W  Y′.
Based on Equations (A6), (A5) and (A7),

FLIni,...,m+1(X LOutch) ≤ ∑
Y∈LOuti

FLIni (X Y) +
m+1

∑
j=i+1

∑
Y′∈LOutj

∑
W∈HInj

FLInj(W  Y′),

(2) ∀X ∈ HInm+1, we can prove that a lemma is true similar to case (2) in n = 1.
Therefore, when n = m + 1, Lemma 2 is proved.
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