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Abstract: Almost any interaction between two physical entities can be described through the
transfer of either charge, spin, momentum, or energy. Therefore, any theory able to describe
these transport phenomena can shed light on a variety of physical, chemical, and biological effects,
enriching our understanding of complex, yet fundamental, natural processes, e.g., catalysis or
photosynthesis. In this review, we will discuss the standard workhorses for transport in nanoscale
devices, namely Boltzmann’s equation and Landauer’s approach. We will emphasize their strengths,
but also analyze their limits, proposing theories and models useful to go beyond the state of the art in
the investigation of transport in nanoscale devices.

Keywords: electronic transport; thermal transport; strongly correlated systems; Landauer-Büttiker
formalism; Boltzmann transport equation; time-dependent density functional theory;
electron–phonon coupling

1. Introduction

Some of the most spectacular advancements in the description of nature have come from the
observation that apparently diverse effects are in reality based on the same physical principles. One of
these is the realization that whatever interaction between two entities happens through the exchange
of some physical quantity, either momentum, energy, spin, or particles. It is, therefore, of paramount
importance to be able to describe how this transfer happens at a nanoscopic level, since these
principles are usually fundamental to understand more complex systems, such as materials for energy
applications, biological systems, and so on [1–4]. For example, it is now clear that our current inability
in reproducing solar energy conversion that takes place normally in plants is related to the difficulties
in understanding how light is transformed into an electrical current inside a leaf, in particular how the
carriers are split and then move away from the light-receptor centers. At the same time, one key point
in this energy conversion process is how excess energy is dissipated. Nature has developed for the
leaf feedback mechanisms avoiding it being burnt if storing too much energy—these self-regulating
mechanisms are yet outside our understanding and only recently with the advancement of both
theoretical and experimental methods have some breakthroughs have been made [5,6].
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In this review, we will discuss some of the most common approaches of widespread use in the
nanoscale transport community. Here, we assume that a “device” of size ranging from 1 to a few
hundreds nm is connected to some macroscopic metallic leads that can induce electrical and energy
transfer through the device. We will focus on two fundamental models to describe this transport: on the
one hand we will discuss the Landauer’s formalism for quantum transport. This is valid when the flow
crosses the device essentially without being scattered, i.e., in the so-called ballistic regime: an accurate
description when the mean free path of the particles, i.e., the distance between two scattering events,
is larger than the dimensions of the device. On the other hand, we will consider the Boltzmann’s
equation for transport. Here, we assume particle are effectively described by a distribution function
and they can be scattered by particle–particle interaction, impurities, or by the device. In this case,
the mean free path must be small, otherwise the description through an out-of-equilibrium distribution
function does not hold. Both theories can be equally applied to the problem of energy and electric
current transport, i.e., to the description of the dynamics of electrons and phonons. The ability of
treating on essentially equal footing electrons and phonons allows for a comprehensive description
of the device maintaining somewhat a consistent level of accuracy. In general, the outcome of the
theory are the transport coefficients [1,2,4]. They serve in describing how the device responds to
external stimuli such as a thermal gradient or a bias voltage. We will therefore focus on the electrical
conductance σ, the Seebeck’s coefficient S, and the electron and phonon thermal conductances κe and
κp, respectively.

After having introduced the fundamental models, we will discuss some of their uses,
generalizations, and other methods applicable to the intermediate regime where the mean free path is
comparable with the dimension of the device. In particular, we will discuss the role of electron–electron
and electron–phonon coupling in modifying the transport coefficients. The review is organized as
follows: Section 2 introduces Boltzmann’s equation and Landauer’s quantum transport formalisms.
We will discuss their formulation using the most advanced electronic structure methods and discuss
critically their advantages and limits. This section also allows us to introduce a consistent notation
for the rest of the presentation; In Section 3 we will discuss some recent attempts to go beyond the
standard approaches. We will explore, for example, the role of electron–phonon interaction and strong
electron correlation in affecting the transport coefficients, and introduce theories and models that allow
description of these effects efficiently while maintaining the strength of the general formalisms; Finally,
Section 4 contains an outlook of some potential lines of further investigation.

2. Static Approaches: Semiclassical and Quantum Transport Approaches

The calculation of the transport coefficients of a nanoscale device requires an accurate description
of both electron and phonon (or, whenever translational invariance is broken, vibrational) properties.
This description is used into standard methodologies to evaluate the transport coefficients and
afterwards, e.g., the figure-of-merit of thermoelectric energy conversion. In this review, we will
describe two of these methods, namely the Boltzmann’s transport theory which can be seen as a
semiclassical method since it is based on the evaluation of the distribution function through velocities
and density of states of the device, and the Landauer’s approach to quantum transport, which on the
other hand describes a ballistic particle transfer through scattering between states in the leads [1,2,4].
There are many Approaches, however, of high scientific significance due to their accurate description
of particle–particle interaction that we will not discuss here. One of these is the rate equations
formalism [7], which can be made extremely accurate and describe strongly correlated system,
but its wild scaling with the number of states reduces its applicability to either simplified models or
small systems.

2.1. Semiclassical Boltzmann Transport

To calculate macroscopic transport coefficients, such as electronic or thermal conductivity,
one needs to analyze the microscopic processes happening when electrons are scattered by phonons or
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impurities in a metal or semiconductor. The idea is to treat the electronic excitations as particles and
follow their motion over time. For example, an electron in a metal exposed to an electric field E gets
accelerated to a velocity v, and over time gains the kinetic energy

∆ε = vEt. (1)

However, the velocity of the electron cannot grow forever as the electron will be scattered sooner or
later with impurities or by phonons, changing its direction and losing part of its kinetic energy. If we
do not know the exact microscopic details of how this scattering happens, we might just consider a
macroscopic relaxation time τ. This is the average time an electron gets accelerated by the electric
field before being scattered, i.e., the time between electron–phonon transitions. After the collision
takes place the particle starts again with its acceleration parallel to the electric field until further
scattering. The averaged velocity (over time and many different scattering events) due to acceleration
and scattering is responsible for the finite electrical conductivity, as the current density is J = nev,
where n is the electron concentration and e its charge.

Let us now consider the conductivity of a metal or semiconductor in more details. An electron
in a crystal occupies states according to its distribution function f (r, k, t), giving the probability of
finding an electron at position r and time t with the crystal momentum k. At equilibrium, when no
fields or temperature gradients are applied, this is given by Fermi function,

f0(k, µ, T) =
1

e(εn(k)−µ)/kBT + 1
, (2)

where µ is the total chemical potential and εn(k) the energy of an electron in the n-th band with
momentum k, kB the Boltzmann’s constant and T the temperature. However, if we now apply,
for example, a potential bias, electrons will get excited and the actual distribution functions shifts
to higher energies. The equal interplay between acceleration on the one hand and collisions and
scattering on the other, will possibly set up a steady-state condition. When we switch off the electrical
field again, the system relaxes back to its equilibrium state.

In 1872, Boltzmann laid down an equation for f connecting thermodynamics with non-equilibrium
kinetics [8]. Although this was long before the birth of modern quantum mechanics, his transport
theory consists of a probabilistic description for the one-particle distribution function f (r, k, t).
This equation for out-of-equilibrium situations is called the semiclassical Boltzmann transport equation
(BTE). Here, we will lay down the basic equation and see how to solve it for systems which are close
to equilibrium, while in Section 2.2 we review a fully quantum-mechanical treatment for transport
properties. As mentioned before, we will treat crystal electrons as semiclassical particles fulfilling
the equations

dk
dt

=
1
h̄

Fe, (3)

v =
1
h̄
∇kεn(k). (4)

Here, Fe is the force acting on the electron and v its velocity. Considering the total change in time of
the distribution function

d f (r, k, t)
dt

=
∂ f
∂t

+
∂r
∂t
· ∂ f

∂r
+

∂k
∂t

∂ f
∂k

=
∂ f
∂t

+ v · ∇r f +
1
h̄

Fe · ∇k f , (5)

and setting it equal to the scattering rate, we arrive at the BTE,

∂ f
∂t

+ v · ∇r f +
1
h̄

Fe · ∇k f =
∂ f
∂t

∣∣∣∣
scatt

. (6)
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The BTE states that the electron distribution changes due to in- and out-going scattering events
which together form ∂ f

∂t |scatt. Although the Boltzmann transport theory is probabilistic, it is still classical
as in quantum mechanics one cannot specify the canonical variables p and r simultaneously, due to the
Heisenberg uncertainty principle, ∆p∆x ≥ h̄. The assumption here is that the uncertainty in space and
momentum is small enough compared to the system size that the electrons can be treated as particles.
The scattering term, ∂ f

∂t |scatt, is the most interesting and complicated part of the BTE which accounts for
the change of the electron probability due to electron–electron or electron–phonon scattering events,
which we can treat quantum mechanically.

Without taking care of the exact form of the underlying scattering mechanisms, the constant
relaxation time approximation (CRTA)assumes that the system seeks to return to the equilibrium
configuration f0 in a time τ after being disturbed by external electric or temperature fields. In general,
τ, known as relaxation time, should depend on the direction of the scattering events, energy, and on
the exact scattering mechanisms. However, the easiest version of the CRTA assumes one constant
momentum relaxation time for all modes, direction, and scattering processes and the collision term
can be written in the form [9,10]

∂ f (r, k, t)
∂t

∣∣∣∣
scatt
' − δ f (r, k, t)

τ
(7)

Here, the rate of change of f (r, k, t) due to collisions is assumed to be proportional to the deviation
from the equilibrium distribution, δ f = f − f0. To better understand the meaning of the CTRA,
we assume no electric field present (no Fe) and spatial uniformity (gradient with respect to r vanishes).
Then the BTE, Equation (6), in the CRTA takes the form

∂ f
∂t

= − δ f
τ

, (8)

which has the familiar solution for the deviation from equilibrium

δ f (t) = δ f (0)e−t/τ . (9)

This means that the perturbed system relaxes with a typical timescale τ to its equilibrium
distribution. The CRTA is a crude approximation that fails for certain systems as we will see later in
this section.

When going beyond the simple CRTA and concentrating on the phonon-limited carrier mobilities
in semiconductors, it is common to consider the electron–phonon scattering as the dominant
mechanism. Furthermore, we adopt the notation for crystals in k-space, as such, the distribution
function depends on the band index n and the momentum k, i.e., fnk. Therefore, for time-independent
and homogenous fields, the BTE in k-space reads

∂k
∂t

∂ fnk
∂k

=
∂ fnk

∂t

∣∣∣∣
scatt

. (10)

Neglecting magnetic fields and considering only the presence of electric fields, the BTE for
phonon-limited carrier mobilities is given by [11,12]

eE ∂ fnk
∂k = Ω

(2π)2 h̄ ∑m,v
∫

dq|gmnv(k, q)|2

×
{

fnk
[
1− fmk+q

][
(nqv + 1)δ(εnk − εmk+q − h̄ωqv) + nqvδ(εnk − εmk+q + h̄ωqv)

]
− fmk+q

[
1− fnk

][
(nqv + 1)δ(εnk − εmk+q + h̄ωqv) + nqvδ(εnk − εmk+q − h̄ωqv)

]}
.

(11)

The first two terms in the second line represent scattering of an electron from energy band n
with momentum k into the state m, k + q by either the emission (nqv + 1) or the absorption (nqv) of
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a phonon with frequency ωqv. The factor fnk[1− fmk+q] make sure that the initial electronic state is
occupied while the final state is unoccupied. The last two terms represent the backscattering events
from state m, k + q towards the state in the energy band n with momentum k. Here, Ω is the volume
of the primitive unit cell, the δ-functions ensure energy conservation during the scattering process and
nqv is the Bose-Einstein distribution function, giving the probability that a crystal phonon with moment
q is present in branch v. The term gmnv(k, q) is the electron–phonon coupling matrix element, which is
normally calculated within density functional perturbation theory [13–15]. Taking the derivative with
respect to the i−component of the electric field Ei, and linearizing the equation around the equilibrium
distribution f 0, we get a direct equation for ∂Ei fnk [12]

∂ fnk
∂Ei

= e
∂ f 0

nk
∂εnk

vnk,iτnk +
Ωτnk
(2π)2h̄ ∑

m,v

∫
dq

∂ fmk+q

∂Ei
|gmnv(k, q)|2 (12)

×
{[

1 + nqv − f 0
nk
]
δ(εnk − εmk+q + h̄ωqk) +

[
nqv + f 0

nk
]
δ(εnk − εmk+q − h̄ωqk)

}
,

where the inverse of the electron energy relaxation time due to the electron–phonon interaction is

τ−1
nk (T, µ) =

Ω
(2π)2h̄ ∑

m,v

∫
dq|gmnv(k, q)|2

{[
nvq + f 0

mk+q
]
δ(εnk − εmk+q + h̄ωqv)

+
[
nvq + 1− f 0

mk+q
]
δ(εnk − εmk+q − h̄ωqv)

}
. (13)

Note here that the Fermi distribution for the electrons is a function of both temperature and
chemical potential, while the phonon distribution function depends on the temperature. Equation (12)
is the linearized BTE (LBTE) for phonon-limited carrier transport and is valid for most semiconductors
where the acceleration of the free carriers is smaller than the thermal energy, eEvτ � kBT. We would
like to point out that in contrast to the CRTA, here the relaxation time depends on the energy and
momentum of the electron. The LBTE needs to be solved self-consistently for the variation of the
electron distribution function with respect to the applied field, therefore also called iterative BTE.
By neglecting the integral part of the LBTE, one obtains an equation for the distribution function which
can be solved directly,

∂ fnk
∂Ei

= e
∂ f 0

nk
∂εnk

vnk,iτnk (14)

and is called the self-energy relaxation time approximation (SERTA). This is due to the analogy
that the relaxation time τ in Equation (13) is related to the Fan-Migdal electron self-energy by
τ−1

nk = 2ImΣFM
nk [13]. In the SERTA, the electron mobility takes the form

µαβ(T, µ) = − eΩ
ne(2π)3 ∑

n∈CB

∫
dk

∂ f 0
nk(T, µ)

∂εnk
vnk,αvnk,βτnk(T, µ). (15)

When calculating the mobility within SERTA or LBTE, the relaxation time in Equation (13) is evaluated
on a very fine k-grid by integrating over a dense q-grid for the phonons. This direct Brillouin zone
sampling is computationally very demanding and hence cannot be applied for complex material
screening. For example, the EPW code [16] calculates the electron–phonon coupling on a coarse grid in
the BZ and maps it onto a fine grid by using Wannier’s function interpolation. This method is however
still very costly and therefore other approaches are needed to tackle the calculations of thermoelectric
transport properties. One approach solves the BTE within the CRTA, Equation (7): This leads to good
results for electrical conductors where the energy relaxation time depends weakly on the electron
energy, ε, [10,17] and allows for a single constant relaxation time. However, when performing the
CRTA one needs to estimate the relaxation time within simplified models, such as the deformation
potential (DP) approximation [18–20] or Allen’s formalism [21,22]. For most materials, τ is strongly
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anisotropic, depending on energy and carrier concentration and the CRTA cannot be applied and
we need to revert to first-principles computations for predicting τnk. The so-called electron–phonon
averaged (EPA) approximation [23] turns the demanding integral over momentum in Equation (13)
into an integration over energy. This is done by replacing quantities that depend on momentum
(|gmnv(k, q)|2, ωvq) by their energy-dependent averages (g2

v(εnk, εmk+q) , ωv). This allows a much
coarser grid in the electron energies therefore reducing computational cost drastically. Technical details
and derivations can be found in [23] and the final relaxation time within the EPA is given by

τ−1(ε, µ, T) =
2πΩ

2h̄ ∑
v

{
g2

v(ε, ε + ωv)
[
n(ωv, T) + f 0(ε + ωv)

]
ρ(ε + ωv)

+g2
v(ε, ε−ωv)

[
n(ωv, T) + 1− f 0(ε−ωv)

]
ρ(ε−ωv)

}
, (16)

where ωv is the average phonon mode energy and ρ(ε) is the electron density of states per unit energy
and unit volume. The EPA is implemented in the Quantum Espresso suite [24] and Boltztrap code [25].

Figure 1 compares the relaxation time calculated within Equation (13) by the EPW code and
within the EPA, Equation (16) for (a) HfCoSb and (b) HfNiSn. We see that the relaxation times in both
approaches are in a good agreement, and furthermore that approximating the relaxation times with a
constant, as done in CRTA, might fail for predicting the electron conductivity of real materials.
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samples, extrinsic scattering mechanisms 
are often dominant at low temperatures. At 
temperatures above the Debye temperature 
all the phonon modes are populated, which 
allows using much coarser sampling of elec-
tron energies in Equations (9) and (10) to 
reduce computational cost. If electron energy 
grid spacing is larger than the highest optical 
phonon energy, Equation (10) is reduced to 
the average phonon mode energy

8qqω ων ν  (11)

This allows further simplification by per-
forming the integration over qq  and the sum-
mation over m in Equation (8) analytically, 
which yields

? ∑τ ε µ π ε ε ω ω

ε ω µ ρ ε ω

ε ε ω ω ε ω µ ρ ε ω

( )
( )

= Ω +

+ + +

+ − + − − −

ν
ν ν ν

ν ν

ν ν ν ν ν

− { [

]
[ ] }

( , , )
2

( , ) ( , )

( , , )

( , ) ( , ) 1 ( , , )

1

s

2

2

T
g

g n T

f T

g n T f T
 (12)

Here, ρ(ε) is the electron density of states defined as the 
number of electronic states per unit energy and unit volume. 
Consequently, Equation (5) is rewritten in the following form

∫µ
π

ε ε ρ ε τ ε µ ε µ( )=αβ αβ

−

+( , )
(2 ) ( )

d ( ) ( , , ) ( , , )( ) s
2

3
B

1
2 ( )K T

g e
k T

v T I Tp
p

p
p  (13)

where εαβ ( )2v  is the energy projected squared velocity tensor[11]

kk kk kk kk∫∑ρ δ( ) = −αβ α βv v v
n

n n n( ) d ( )2

BZ
ε ε ε ε  (14)

3. Carrier scattering and transport

To verify our approximation and to compare available 
approaches, we use the CRT, EPA, and EPW methods to compute 
electronic transport properties for state-of-the-art TE materials 
from the family of HH compounds, the p-type HfCoSb[39,40] and 
n-type HfNiSn.[41] Isovalent Zr–Hf alloying is used to reduce lat-
tice thermal conductivity by mass disorder scattering,[39–41] and 
we neglect its effect in our computations of the electronic struc-
ture. Heterovalent Sn–Sb substitution is experimentally used to 
achieve p- and n-doping, which we treat within the rigid-band 
approximation.[42] The carrier concentrations are obtained from 
Hall measurements at room temperature: p = 0.06 per formula 
unit (1.1 × 1021 cm−3) for Hf0.5Zr0.5CoSb0.8Sn0.2

[39] and n = 0.01 
per formula unit (1.7 × 1020 cm−3) for ZrNiSn0.99Sb0.01.[43] The 
rigid-band approximation is applicable up to carrier concentra-
tions of 3 × 1021 cm−3,[44–48] and the carrier concentrations used 
in this work do not exceed 2 × 1021 cm−3.

We compare the EPA and EPW results for the electron 
energy relaxation time τ as a function of the electron energy ε 

on Figure 1 and see that the two approaches are in quantitative 
agreement and that τ increases sharply near the band edges. This 
can be seen by extracting the ε dependence from Equation (12)

ε ε εg( ) ~ ( ) ( )1 2τ ρ−
 (15)

Given a weaker ε dependence of g than that of ρ (see 
Figure S1 in the Supporting Information), Equation (15) 
implies that τ varies inversely as ρ, in agreement with previous 
studies.[3,8,28,49–51] This allows g2 to be calculated on a coarse 
grid in the BZ and mapped onto a coarse energy grid, while ρ is 
easily computed on a fine grid. As a result, the EPA approxima-
tion is computationally faster by orders of magnitude and sim-
pler to apply than the direct BZ sampling and the EPW interpo-
lation scheme (see the Experimental Section).

It is important to note that the values of τ(ε) that contribute 
the most to electronic transport coefficients, particularly con-
ductivities, are selected by the corresponding transport inte-
grands (Figure S2, Supporting Information) centered at µ, 
the electronic chemical potential that depends on the doping 
level (vertical lines in Figure 1). The electronic transport coef-
ficients calculated with Equations (2–4) are shown in Figure 2 
as a function of T and in Figure 3 as a function of p and n. For 
comparison, the experimental data for single-crystal ingot and 
nanostructured samples[39–41] are shown in Figure 2 by open 
and filled symbols, respectively. The constant values of the elec-
tron energy relaxation time, τ = 4 fs for heavily doped HfCoSb 
(p = 0.06) and τ = 30 fs for less heavily doped HfNiSn (n = 0.01), 
are obtained by fitting the calculated electrical conductivity σ to 
the experimental data of the ingot samples at T = 400 °C (see 
Figure 2a,b). The order of magnitude difference between the 
two τ values indicates that τ is sensitive to both the material 
composition and the carrier concentration. The ability to cap-
ture this dependence from first principles, which is absent in 
the CRT approach, is crucial for quantitative optimization and 
screening of materials.

Compared to measurements, EPA and EPW calculations 
overestimate σ at low temperatures, as seen in Figure 2a,b. This 
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Figure 1. The electron energy relaxation time τ for a) p-type HfCoSb and b) n-type HfNiSn as 
a function of the electron energy ε calculated within the EPA approximation (solid curves) and 
the EPW method (solid symbols). Gray bars denote the band gaps. Calculations are performed 
at temperature T = 400 °C and at carrier concentrations p = 0.06 and n = 0.01 per formula unit 
for HfCoSb and HfNiSn, respectively. The vertical short-dashed lines denote the corresponding 
chemical potentials of electrons µ.

Figure 1. Relaxation time for (a) HfCoSb and (b) HfNiSn calculated within the EPA (Equation (16))
compared to the complete sampling of the Brillion zone (Equation (13)). Both approaches are in
good agreement and the CRTA (dashed blue line) might fail to accurately calculate the conductivity.
Reprinted with permission from [23]. Copyright (2018) John Wiley and Sons.

2.2. Landauer–Buttiker and Quantum Transport

The Landauer–Buttiker’s formalism (LB) is an elegant and economic way to study transport
through molecular devices [26–28]. The idea at its core is deceivingly simple: The overall device is
separated into three or more regions of space, one of which the central, usually characterizes the
physical properties of the overall system. The other regions serve as sink or reservoir of electrons.
The only property that is required from the reservoirs is that they connect smoothly with the central
region, thus avoiding backscattering due to the contacts, and that they are either perfect emitters
or absorbers, in the sense that one electron entering them cannot leave through the central region
again. This requires also that their spectral density is essentially flat over a wide range of energies
around the Fermi level of the central system. LB then describes the currents flowing between the leads,
through the probability that an electron entering through the lead i is scattered by the central region,
and thus leaves through the lead j, Ti,j. In this respect thus the LB formalism is a scattering theory and
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the transmission probability is its central ingredient. Finally, one sums over all the allowed electron
energies [26–28]. The electrical current is therefore given by

Ii,j =
2e
h

∫
dε
(

fi(ε)− f j(ε)
)

Ti,j(ε), (17)

where fi is the Fermi function describing the electron occupations of the lead i, e is the electron charge,
h is the Plank’s constant, and the factor 2 takes into account spin degeneracy. Generally, the Fermi
functions depend upon the local temperature Ti of the lead i, their chemical potential µi, and the bias
applied to the lead, Vi. Without loss of generality, in the presence of the bias Vi we can assume that
µi = 0. It is important to realize the important approximation of the model: we are assuming that
the occupation of the electrons entering from the lead i, depends only on the equilibrium physical
parameter of the i lead. Finally, we have also assumed that the central system is essentially one
dimensional—in this case, the density of states and the electron velocity cancel out to achieve the
universal result of Equation (17). A thorough discussion of the derivation and the physical implications
of the Landauer transport theory goes way beyond the aim of this review and the topic has been
discussed in a large number of publications, including reviews and monographs [1,2,4,26–29].

Given the current I from the different terminals, one can easily calculate the two-terminal
conductance, in the linear-response regime δVi,j → 0,

σi,j = lim
δVi,j→0

Ii,j

δVi,j
=

2e2

h

∫
dε f ′(ε)Ti,j(ε). (18)

where f ′(ε) is the first derivative of the Fermi function with respect to the energy, and δVi,j = Vi −Vj
the bias difference between the leads i and j. The simplest most striking prediction that the LB theory
makes is the quantization of the conductance. Indeed, in the low temperature limit, f ′ → δ(ε− EF)

where EF is the Fermi energy of the leads, so that [26–28]

σi,j =
2e2

h
Ti,j(EF). (19)

If we assume that Ni,j states are fully open to transport current, i.e., their transmission probability goes
to 1, we have

σi,j =
2e2

h
Ni,j (20)

as it has been carefully verified in many experiments, for example in the quantum Hall effect [30,31]
or in the ballistic regime of a quantum point contact [32–34]. Equation (19) is what is normally called
the “Landauer’s formula” and it is deceivingly simple. However, its physical interpretation has
puzzled the community for many years. In particular, one question that arises naturally is from
where this conductance originates. Clearly, we are describing an almost ideal system. The electrons
flow seamlessly from the leads to the central region, and they are transmitted to the other lead with
probability 1, so there is no scattering in these states. In addition, yet, we have a finite conductance
thus associated with energy loss and potential drops. The solution of this apparent paradox lies in
the different dimensionality of the leads with respect to the central system. The “adjustment” of the
wave-function to adapt to the reduced dimensionality of the center causes a charge accumulation at
the interfaces between the center and the leads, no matter how smooth these interfaces are. This extra
charge that accumulates as soon as we contact the central region, creates a finite bias that opposes the
one applied to the reservoir and finite conductance appears.

One of the main advantages of the Landauer’s formalism lies in treating on the same footing
different physical problems. For example, the study of thermal transport both by electrons and
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phonons can be easily recast in the form of a scattering problem for the electrons and phonons trough
the central region. Therefore, the energy current due to the electrons is evaluated as

Je
i,j =

2
h

∫
dε(ε− µ)

(
fi(ε)− f j(ε)

)
Ti,j(ε), (21)

while the phonon contribution is given by

Jp
i,j =

h̄
2π

∫
dωω

(
ni(ω)− nj(ω)

)
Ti,j(ω), (22)

where ni is the Bose distribution of the phonons in the lead i kept at temperature Ti. In the following
we assume that Ti = T + ∆Ti, where ∆Ti defines the difference between the temperature of the lead i
and the reference temperature T. As we did for the electrical conductance, we can calculate the thermal
conductance for the phonons and the electrons by simply assuming that a small thermal gradient is
present between the leads. Moreover, if one assumes that both the potential and thermal gradient are
small, the Landauer formalism reduces to the Onsager linear-response out-of-equilibrium transport
theory, with the advantage of providing a reliable way of calculating the Onsager’s coefficients [1,35].
Indeed, if one defines the functions (Lorentz’s integrals)

Ln =
∫

dε(ε− µ)n f ′(ε)Ti,j(ε) (23)

we have the Onsager’s relations (restricting ourselves to only two leads)

I =
2e2

h
L0∆V − 2e

hT
L1∆T, (24)

Je = −2e
h

L1∆V +
2

hT
L2∆T. (25)

The electron transport coefficients, namely the electrical conductance, the thermal conductance
and the Seebeck’s coefficient then follow from their physical definitions and are expressed solely
in terms of the functions Ln. Indeed, the electrical conductance is σ = I/∆V|∆T≡0 = 2e2L0/h,
the Seebeck’s coefficient is S = −∆V/∆T|I=0 = −L1/eTL0, while the thermal conductance is
κ = J/∆T|I=0 = 2(L2 − L2

1/L0)/hT. Notice that the physical definition of the transport coefficients is
in general not restricted to the linear-response regime, so one could define the Seebeck coefficient as
S = −∆V/∆T also for large ∆T, but the expression in terms of the Onsager’s coefficients and Lorentz
integrals is valid only in linear response.

Moreover, the formula for the phonon energy current Equation (22) predicts the surprising result
that the low energy phonons, usually responsible for large part of the energy transport since they have
the longer wavelength, have a quantized thermal conductance,

κp =
k2

Bπ2

3h
T, (26)

per each open channel, as predicted by Rego and Kirczenow [36] and verified by Schwab et al. [37].
Although the Landauer’s theory appears quite natural, its physical implications are far reaching as

we have seen with the introduction of the quantum of conductance [30–34] and the quantum of thermal
conductance that has been observed [37]. However, the maximum strength of the theory is reached
when it is coupled with the standard method for electronic structure calculations, namely static
Density Functional Theory (DFT), and the non-equilibrium Green’s function formalism (NEGF).
These two methods made the Landauer’s theory and the Boltzmann’s transport theory, the base for
almost any recent transport calculations. DFT indeed produces a reliable description of the system
energy and electron density and of the electronic band structure, both necessary for the evaluation
of the transmission probability although its use on transport modeling should be taken with care
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as we will discuss shortly. Starting from the DFT description the NEGF method can express the
transmission coefficients Ti,j in terms of the Green’s functions of the leads and those of the central
system. This combination allows for an almost parameter-free description of quantum transport at the
atomistic level and it is the actual reference method for this kind of physical problems.

So far we have not discussed how to calculate the transmission probabilities between the leads i
and j, Ti,j. This is usually a difficult problem since to make an accurate description of the scattering
process we need modeling the states of the electrons inside the central region. Fortunately, we can
combine the predictive power of DFT, which precisely describes the states of the system with the
NEGF formalism which (as we will see) allows calculation of the transmission probability. A detailed
derivation of all the results would be outside the scope of this review. There are a significant number
of detailed monographs dedicated to the subject and we refer the interested reader to them [29,38].
Given a Hamiltonian H, we formally define its advanced and retarded Green’s functions through
(we set from now on h̄ = 1) [

−i
d
dt
− H

]
GR(A)(t, t′) = δ(t− t′), (27)

with the conditions GR(t, t′) = 0 if t < t′ and GA(t, t′) = 0 is t > t′. An equivalent definition of the
retarded and advanced Green’s functions is based on their representation in terms of energy, i.e., after a
Fourier transform,

[(E± iη)− H] GR(A)(E) = 1 (28)

where η is an infinitesimal positive quantity that serves to establish the analytical properties of GR(A).
When we select a basis set for the Hilbert space, the Green’s functions (as well as the Hamiltonian)
can be represented as infinite matrices. However, normally only a certain number of states will be
relevant for the dynamics (in our case those close to the Fermi energy or electrochemical potential µ)
and therefore only a submatrix of the total Green’s function will be needed.

For the study of electron transport through a nanoscale device, we need to describe the system
(a central region) coupled to at least two external reservoirs. A pictorial representation of a device is
given in Figure 2.

Figure 2. A central region (C) is connected to two external energy and particle left and right reservoirs
(L and R) by metallic contacts. Current flows between the reservoirs when a temperature or bias
gradient is established. The reservoirs are semi-infinite, namely the left proceeds from −∞ to C,
the right goes from C to +∞.

If separated, each of these objects can be described by their Hamiltonian and Green’s functions.
When we couple the central region with the reservoirs, we are effectively introducing an interaction
potential that couples states in the reservoirs with states in the leads. We introduce the following
notation: HA with A = L, R, or C is the Hamiltonian of the left or right reservoir, or the central
region, respectively; VAB with AB = RC, LC, CR, or RL represent the coupling between the central
region with the left and right reservoirs, respectively. VAB can be for example a tunneling Hamiltonian
between the lead and the central system. We assume there is not direct coupling between the reservoirs,
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so electrons must travel through the central region. In a matrix representation, we can think of the
total Hamiltonian as a matrix whose sub-matrices are HA and VAB,

H =

 HL VLC 0
VCL HC VCR

0 VRC HR

 . (29)

Clearly, one could define a Green’s function associated with this Hamiltonian whose dynamical
equation can be written as E− HL + iη −VLC 0

−VCL E− HC + iη −VCR
0 −VRC E− HR + iη


 GR

L GR
LC 0

GR
CL GR

C GR
CR

0 GR
RC GR

R

 = 1̂, (30)

where we have used the previous notation for the elements of GR, and 1̂ is the identity matrix.
This system of equations can be solved exactly to first express GR

LC and GR
RC in terms of GR

C and then,
solve for the latter. The exact result is

GR
C =

[
E + iη − HC − ΣR

]−1
=
[

E− HC − ΣR
]−1

(31)

where we have defined the self-energy

ΣR = V†
LC (E + iη − HL)

−1 VLC + V†
RC (E + iη − HR)

−1 VRC, (32)

where with a † we indicate the Hermitian conjugate of V. Notice that in GR
C the analytic properties are

finally determined by those of the self-energy Σ and one can therefore neglect the terms iη. A similar
equation can be derived for GA

C . It is important to point out that in this theory, the leads enter both
in the interaction with the central region through VLC and VRC and their isolated Green’s function

GR
L(R) =

(
E + iη − HL(R)

)−1
.

To solve this set of equations, one assumes that there is no particle–particle interaction in the
leads. This approximation can be justified by observing that they are thought of as normal metals
and thus the screening length is relatively small, thus particles can be treated as weakly interacting
if not independent. Within this scheme, GL(R) are uniquely determined and can be used to arrive at
the lead self-energies to solve for GR

C and GA
C . In these last quantities, however, we cannot neglect

particle–particle interaction. Due to the complexity of the problem, the exact many-body Hamiltonian
HC is replaced with the so-called Kohn–Sham (KS) Hamiltonian, where an external single-particle
potential (generally unknown) serves to mimic the effect of the interaction (see also the following
sections for somewhat deeper discussion) [39–42]. The KS Hamiltonian is tailored to reproduce the
exact ground-state energy and density, but it often produces an accurate description of the total Green’s
function of the isolated central region.

Finally, we connect the Green’s function formalism with the Landauer’s approach to quantum
transport, since the former gives direct access to the transmission probability Ti,j. This step can be done
by, for example, introducing the states for the left and right leads and solve the scattering problem
with the central region by using the Green’s functions. After some manipulations, one writes the
transmission function T(E) as [43]

T(E) = Tr
(

ΓLGA
C ΓRGR

C

)
, (33)

where ΓL(R) = i
(

ΣR
L(R) − ΣA

L(R)

)
is the so-called spectral function of the leads. Other approaches or

models to the calculation of the transmission probability are clearly possible, and provide the tools
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to investigate novel and interesting phenomena, see for example Ref. [44] and the references in that
focus issue.

This formalism is suited to describe both thermal and electrical transport since we have never
specified the kind of gradient we maintain between the reservoirs. We are therefore entitled to consider
both a bias voltage, and a temperature gradient that modifies the particle distribution functions in
the reservoirs.

Quite naturally the formalism can be extended to consider the transport of energy through
phonons or more generally vibrations. Formally, the only difference lies in replacing the particle
Green’s function G with the vibration Green’s function D which is a solution of(

ω2 + iη − Hv

)
DR(ω) = 1 (34)

where ω is the frequency of the vibration, and Hv the Hamiltonian function describing the vibration
dynamics. Following the same steps as before, one can introduce the transmission function of the
vibration T(ω) and derive a formula similar to Equation (33).

It is fair to examine here some of the problems one might face when using DFT + NEGF for the
electronic transport calculations:

• The original static DFT is in principle limited to provide the ground-state density and energy
and nothing about the excited states of a system. Whatever result one extracts from the theory
for example on the band-gap, band structure (and related quantities) should then be checked
with independent methods and with experiments. It is well known for example that DFT with its
standard approximation tends to underestimate the band-gap of many materials.

• Although the use of the NEGF greatly extends the applicability of the theory, the approximations
behind the standard DFT codes makes the results not suitable for strong correlated materials
where the effect of the Coulomb interaction is stronger. We will come back on this point later.

• Even if the description of the excited states happened to be accurate, the electron and heat
current are dynamical quantities so in principle beyond the static approach of DFT. There are
methods to go beyond this limit while remaining in the realm of a time-independent formalism.
“Dynamical corrections” need to be included in the theory to take dynamics into account [45,46].

3. Advanced Methods

The Boltzmann’s equation and the Landauer-Büttiker formalism can be considered the de-facto
standard methods to study transport in nanoscale devices, especially when coupled with accurate
electronic structure calculations of the Density Functional Theory. It has become clear however that
these methods have severe limitations that reduce the ensemble of systems to which they can be
applied. In this section, we will discuss some attempts we made to go beyond and include novel
effects outside the limitations of the state of the art. Some of these methods are admittedly in their
infancy and a consistent amount of work is necessary before they can be admitted in the mainstream
research methods. We hope that this section can motivate the interested readers to enter this enticing
field which still bears endless possibilities.

3.1. Time-Dependent Density Functional Theory

Density Functional Theory proved an important point of quantum mechanics, i.e., that some
exact properties of a many-body interacting system can be extracted from the study of a Doppelgänger
of non-interacting particles [40–42,47]. The simplification brought about cannot be underestimated:
it is enough to think that an interacting system requires an exponentially large Hilbert’s space for its
accurate numerical description, while the same system of non-interacting particles requires only a
polynomially large (with the number of states) space. This difference separates being able to treat
just a few particles from studying complex molecules or crystal unit cells. There are two prices to
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pay for this simplification; On the one hand, we are ready to give up the complete information about
the many-body system and study only certain quantities. The standard DFT formalism was aimed
at the ground-state energy and density. Any other quantity that is then obtained in DFT must then
be checked against other models; On the other hand, the particle–particle interaction is replaced in
the so-called Kohn-Sham (KS) system with a non-linear external potential (known as KS potential)
that is assumed to depend only on the single-particle ground-state density [39,47,48]. This potential
is clearly unknown and we need to revert to some sort of approximation to make the theory useful.
Standard approximations have been developed and admittedly work rather well especially when
dealing with atoms and small molecules, but failure is also around the corner. Indeed, some of the
standard problems of DFT in dealing with transport calculation derives from a combination of these
points: band-gap and transport coefficients are normally not static ground-state properties, and the
standard approximations for the KS potential consistently underestimate the electronic band-gap.
Finally, there are classes of problems that are outside the realm of standard DFT, such as for example
the calculation of spectroscopic quantities. A detailed introduction to DFT would bring us far away
from the scope of this review. We can however, recommend excellent introductory material for the
interested reader [40–42,47].

There are many ways to go beyond these issues. We can formulate the theory in the time domain,
in such a way that we can extract the exact time dynamics of some of the quantities of the many-body
interacting system [49–51]. This is the case of Time-Dependent Density Functional Theory. Meanwhile,
we can improve the standard approximations of the KS potential, for example introducing corrections
that take into account some part of the strong correlation between particles in certain regimes [52].

In the next sections we will introduce the Time-Dependent Density Functional Theory
(TDDFT) [40,41] and its further extensions and later the so-called “i-DFT” that can be used to introduce
strong correlation effects, such as Coulomb blockade into a TDDFT formulation (see Section 3.2) [53,54].

3.1.1. Time-Dependent Density Functional Theory—Fundamentals

The standard approach of DFT is based on the existence of a one-to-one mapping between the exact
ground-state density and the external potential applied to a quantum system [48]. Furthermore, one can
extend this mapping between two systems, the many-body interacting “real” system and a many-body
non-interacting “Kohn-Sham” system [39] where we introduce an effective external potential
(dubbed KS potential). This second mapping allows for calculating quantities, i.e., the ground-state
density and energy, belonging to the real system by using the KS system, bringing about a large
numerical simplification. DFT is therefore the actual method of choice for calculating electronic
structure of materials as well as the energies of complex atoms and molecules [42]. The KS mapping
was later extended to the dynamics of the single-particle density by Runge and Gross [55]. The existence
of this second mapping lays the foundations for performing, e.g., numerical spectroscopy with so-called
ab-initio methods, i.e., without—in principle—any fitting parameter [41]. TDDFT can theoretically
be used for studying electrical transport (see for example Ref. [56–60]), but the information it can
provide is only partial [61,62].

It appears natural therefore, from the Runge and Gross’ theorem (RG), to establish a mapping
between the single-particle current density and the external (vector) potential applied to the real
system [63]. In principle, this Time-Dependent Current-Density Functional Theory (TDCDFT)
should be the workhorse for charge transport calculations, but the lack of suitable approximations
for the KS’s potential renders the theory of little use at the moment. One the other hand,
addressing thermal transport phenomena within DFT would require instead a non-equilibrium theory
based on either a local temperature or a local energy density. Recently, a functional theory based on
the excess energy density as the basic variable has been presented [64,65] which is suited to study
thermoelectrical phenomena in the static and time-dependent case. In the following, we will look only
at standard TDDFT.
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The RG theorem proves that for a general time-dependent Hamiltonian H that describes the
dynamics of a many-body system,

H(t) = T + Vint + Vext(t) (35)

there exists a one-to-one mapping between the single-particle density n(r, t) and the external potential
Vext(r, t), given the initial conditions. Here, T is the kinetic energy, Vint the particle-particle interaction,
and Vext the time-dependent external potential. The proof of the theorem assumes that both density
and potential can be expanded in series around the initial time: a detailed proof and the physical
assumption on which this is based can be found in [40,41]. It has since been shown that there exists a
system of non-interacting particles whose single-particle density is identical at each time to n(r, t) of
the interacting system [66]. The existence of this mapping then allows investigation of the dynamics
of a system by looking at its non-interacting Doppelgänger. Clearly, this brought about the same
reduction of computational requirements as the standard DFT. However, as was the case with DFT,
we are exchanging some of the physical information about the system to reduce the dimensionality
of the problem. It should then come as no-surprise that TDDFT cannot for example reproduce the
exact single-particle current density j(r, t) since some of its contributions are not derivable from the
knowledge of the density alone [67]. Indeed, if starting from the continuity equation,

∂tn(r, t) = −∇ · j(r, t), (36)

we need to conclude that given the density we can determine only the longitudinal part of j(r, t)
and any term jT such that j(r, t) = jL(r, t) + jT(r, t) and ∇ · jT ≡ 0 cannot be obtained from
Equation (36). However, some information about the total current can still be obtained from the
continuity equation [68].

As with the static DFT, we study the KS Hamiltonian HKS,

HKS = TS + VKS (37)

where TS = ∑i p2
i /2m is the kinetic energy of the non-interacting particles of mass m and momenta

{pi}, and VKS = Vext + VHxc. The potential VHxc is the sum of the Hartree and exchange–correlation
(xc) potentials that replace the particle–particle interaction. By the RG theorem VHxc is a functional of
the density only, VHxc = VHxc[n](r, t), and the dynamics of the single-particle density of the real system
evolving with Hamiltonian H is identical to the dynamics of the single-particle density evolving with
HKS. Notice that in principle, given the particle–particle interaction of the original many-body problem,
VHxc is a universal functional and does not depend on the external potential Vext. This implies for
example that if we are interested in the dynamics of an electronic system, VHxc is the same either if
we are studying an atom, a molecule, a slab, or a bulk, i.e., this potential is transferrable to whatever
system we want to study. This high transferability makes finding reliable approximation for VHxc

difficult. Indeed, the universal VHxc for the electrons contains the physical information needed to go
from the standard weakly interacting Landau’s Fermi liquid, to the strongly correlated Wigner’s crystal
or superconducting phases. Notice that for the electrons, a large part of VHxc is given by the Hartree’s
(mean-field) interaction, and only a relatively small contribution of the overall energy determines all
these interesting phases of matter. Therefore, standard approaches to build some approximation to
VHxc are based on interpolating the numerical solution of the many-body problem with some known
high- and low-density limits [69,70]. Many of these approximations are static. To apply them to the
dynamics, a common method is the so-called adiabatic local density approximation (ALDA). In this
approximation, we take a static VHxc[n] and replace the static density with the instantaneous density
n(r, t). Indeed, this neglects the history of the system—while we generally expect that the xc potential
to be history dependent. For example, one can show that in this approximation there is not relaxation
induced by particle–particle interaction, in contrast with observation [71,72].
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3.2. Strongly Correlated System

The Landauer approach coupled with Density Functional Theory through the Non-Equilibrium
Green’s function formalism provides a reliable and presently standard method to calculate the transport
properties of many devices. Countless are the successes of the theory, far beyond its actual range of
applicability. Nonetheless there are many reasons to go beyond this state of the art. A simple reason is
that we need alternative methods to provide benchmarks for the DFT + LB theory and learn from them.
Indeed, the strength of DFT lies also in adapting the KS potential to the cases under investigation.
On the other hand, we might need to go beyond some of the fundamental approximations and thus
build a different theory.

Meanwhile, a striking example of the limits of the DFT + LB theory is related to one of the most
fascinating outcomes of the so-called mesoscopic physics. Imagine that the device we place between
two leads is a small molecule or a quantum dot. Both these systems are thought of having just a few
states close to the Fermi energy (or the electrochemical potential). Imagine that one electron enters
the device and occupies the lowest energy state. The next electron then faces an increased energy
barrier, since beside the energy to occupy the lowest available energy states it also musts overcome the
Coulomb interaction with the other electron. Normally, for large devices this energy is small since the
electron density is “diluted”, but when we consider small dots or molecules, the Coulomb interaction
might be the dominating energy scale and transport can be “blocked” until either the first electron
leaves the device or the second electron has enough energy to overcome the Coulomb interaction.
A standard DFT + LB approach to this problem is most likely going to fail. Indeed, DFT describes the
electrons through their density and therefore it does not produce the sharp energy transition due to
the addition of a single electron. This effect goes normally under the name of “Coulomb blockade”,
and it is the epitome of a strongly correlated system where essentially the dynamics is dictated by
electron interaction and correlation.

However, it is important to point out that these limits are related to our ability of inventing KS
potentials able to describe certain physical regime. Per se, DFT can describe the ground-state properties
of the system and thus give the exact energy for the single and double occupied electron states. It is our
inability of encoding these effects into the KS potential that makes the theory fails. Indeed, progress has
been made to include strong correlation into the KS potential into a pure DFT scheme. Here, we will
consider the extension of DFT to deal with the Coulomb blockade regime. To do that, we first need to
extend the theory to include the transport properties in a more accurate way. As we will see this step
corrects the electronic conductance that is calculated from the standard DFT approach.

Our starting point is the observation that generally speaking, the quantities we want to investigate
in studying the device of Figure 2 are the local electron density n(r) and the total current I flowing
from one reservoir to the other due to a thermal gradient or a bias voltage. For the moment, we will
focus on the steady state, i.e., we assume the system has evolved from an initial state and approached,
as time goes by, a constant density and current. The external fields that we are applying are the
bias voltage V and the gate voltage v which controls the electron density and the total number of
particles. We assume that the nuclear potential is not affected by the electron distribution and it is,
therefore, constant (we assume uniform temperature). We see V and v as a perturbation and n(r)
and I as response. To make a DFT theory for this set of variables, we need to prove that they are
uniquely connected. Specifically, that the pair n(r) and I uniquely determine both V and v. Moreover,
we are interested in n(r) and I only inside a finite region,R, surrounding the device. The proof of the
theorem entails the evaluation of the Jacobian of the mapping {n(r), I} → {v(r), V} for any r ∈ R.
One can prove that around V = 0 this mapping is invertible since the Jacobian does not vanish [53].
We can therefore follow the KS construction and find a system of non-interacting particles which can
reproduce n(r) and I of the original system by replacing the interaction with the external potentials

VS[n, I] = V[n, I] + Vxc[n, I] (38)

vS[n, I] = v[n, I] + vHxc[n, I] (39)
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where Vxc and vHxc are the xc potentials (in vHxc we include also the Hartree mean-field potential).
n(r) and I in the KS system are determined by

n(r) = 2
∫ dε

2π

[
f
(

ε− V + Vxc

2

)
AL(r, ε) + f

(
ε +

V + Vxc

2

)
AR(r, ε)

]
(40)

I = 2
∫ dε

2π

[
f
(

ε +
V + Vxc

2

)
− f

(
ε− V + Vxc

2

)]
T(ε), (41)

where AR(L) = 〈r|G(ε)ΓR(L)G†(ε)|r〉 is the right (left) KS partial spectral function, G(ε) the
Green’s function of the KS system in the energy representation, and T(ε) the transmission function
(see Equation (33)). Notice that the right-hand sides are expressed solely in terms of KS quantities,
while in the left-hand side we have the many-body quantities. In these expressions, the gate voltage v
enters in the KS partial spectral function and the transmission coefficient only. We want now to derive
an expression for the electrical conductance σ and the Seebeck’s coefficient S solely determined from
the KS quantities. We are focusing here to the linear-response regime, i.e., we will take at the end the
limit V → 0. In this limit Vxc(n) vanishes for any density n, since otherwise we would have a finite
current when no external perturbation is present in contradiction with the theorem of uniqueness.
We have

σ =
dI
dV

∣∣∣∣
V=0

=

(
1 +

dVxc

dV

∣∣∣∣
V=0

) ∫ dε

2π
f ′ (ε) T(ε) =

(
1 +

dVxc

dV

∣∣∣∣
V=0

)
σS (42)

where we have introduced the KS conductance σS =
∫

dε/2π f ′ (ε) T(ε). To evaluate the term in the
round bracket we use the standard chain rules, remembering that our “variables” are n(r) and I,

dVxc

dV

∣∣∣∣
V=0

=
∂Vxc

∂I
∂I
∂V

+
∫

dr
δVxc

δn(r)
∂n(r)

∂V
=

∂Vxc

∂I
σ (43)

since the last term vanishes in the linear-response regime, Vxc(n)I=0 = 0. Inserting this expansion into
the previous result, we find finally

σ =
σS

1− ∂Vxc
∂I σS

. (44)

Notice that in general we should expect that ∂Vxc
∂I 6= 0, and therefore σ 6= σS. Although for the

conductance we can find a general correction, for the Seebeck’s coefficient we can derive an analytical
formula only in the Coulomb blockade regime. In this particular physical condition, we are interested
only in the total number of particles, N =

∫
R drn(r) and we can prove that

S = −
dN
dT
dN
dµ

(45)

if µ is the electrochemical potential. In a similar way as for the conductance, we find for the Seebeck
coefficient in the Coulomb blockade regime, the expression

S = SS +
∂vHxc

∂T
(46)

where SS is the Seebeck’s coefficient calculated from the Landauer’s approach [73]. We can compare
our result with the standard DFT approach and with the exact solution provided by the rate
equations [7,74,75]. Other approaches are possible to directly calculate the transmission probability,
with and without interaction in the central region [44,76,77]. A direct comparison of the different
methods would be desirable, but difficult, since one needs to map each set of parameters appropriately.

Figure 3 report the Seebeck’s coefficient as calculated from the exact many-body theory, the rate
equations, the correction Equation (46) and the standard DFT approach SS. We notice that the
dynamical correction brings SS to coincide with the exact results. Notice that N in this case is well
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reproduced both by the dynamical approach as well as by the standard DFT, therefore in this case is
a variable less sensitive to the approximations used. When considering more than one level, we use
a constant interaction model. For the case of two levels, we find some discrepancies from the exact
theories and the present approach (see Figure 4). This discrepancy originates from using the total
number of particles N rather than the single occupation of each states n1 and n2 as our basic variables.

Figure 3. The Seebeck’s coefficient for a single quantum dot in the Coulomb blockade regime as a
function of the gate voltage v. The exact many-body (MB), the rate equation (RE), and the present
theory (DFT) agree quite well in the whole range of the gate voltage v considered. The standard KS
gives the correct asymptotic but fails in the central region. In cyan, we plot the effect of the dynamical
correction ∂vHxc

∂T . In the inset, we report the total number of particles N. All the theories agree quite
well for this quantity. Reprinted from [73]. Copyright (2015) American Physical Society.
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Figure 4. Left pane, the total number of particles N and the occupation of the second (highest) energy
level as a function of the gate voltage v. While the first is exactly reproduced by both DFT and rate
equations, the second differs. This originates differences also in the Seebeck’s coefficient which is
sensitive to the single particle occupations (right pane). These differences are however small compared
with the correction brought about by the dynamical approach. Reprinted from [73]. Copyright (2015)
American Physical Society.

3.3. Open-Quantum Systems

The theory of open-quantum systems (OQS) is a well-established model of the coupling between a
system and an external environment [78–80]. Usually, the latter is considered to be a large reservoir of
particles, momentum, and energy which it freely exchanges with the system. The coupling between the
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system and the environment might be quite general, and we can couple more than one environment,
with different macroscopic thermodynamic parameters, such as temperature, chemical potential,
or pressure, at a time. Usually the theory is used to describe the dynamical relaxation of the system
towards some steady state or thermal equilibrium, but it has found also widespread applications
in quantum optics, transport modeling, surface hopping in chemical reactions [81], and so forth
(see also Section 3.4).

In the following, we are making some standard assumptions about the environment(s):

(1) They are usually unaffected by the coupling with the systems. This means that the macroscopic
parameters that describe the environment are not modified by the coupling with the system.
This holds (partially) true if the environment is thought of as made of infinitely many degrees
of freedom.

(2) The external parameters are controllable in time, and due to the previous assumption, there is
no-feedback between the environment and the system. For example, this implies that the
establishment of an electrical current between two reservoirs at different chemical potentials
through a molecular junction does not change the electrochemical potential, the temperature,
or charge distribution in the reservoirs.

An efficient way to deal with the environment is therefore by tracing out its degrees of freedom
and introduce effective correlation functions, (usually dependent on the thermodynamic parameters)
with which we describe the dynamics of the quantum system. The way the tracing is made defines the
accuracy of the theory. Normally, one can identify two large families of approximations: in the first
(called Markovian) the system dynamics does not have any history. The state is determined solely by
the evolution at a certain time t and does not depend on any time t′ < t. On the other hand, we have
non-Markovian dynamics where the state of the system depends on all or some of the previous times,
the history of the system, since the initial time t0. Into this second family, we then distinguish how
the kernel generated by the coupling with the environment depends on the actual state of the system.
Let us therefore establish some notation and the standard results. In the following, we will work on
a formulation based on the density matrix. Alternative formulations based on a vector state in the
Hilbert space are possible and will be briefly discussed later [78,80].

We assume that a system S is coupled to an environment B. When there is no coupling,
the dynamics of S is described by a set of operators acting on a Hilbert spaceHS, while the dynamics
of B by operators acting onHB. We further assume that these Hilbert spaces are disjoint, therefore the
total Hilbert space of S + B is given by HS ⊗ HB, and thus the state of the total system S + B is
represented by a density matrix in this space. It follows that each operator of S commutes with each
operator of B. We now assume that there is a coupling between S and B, HSB = ∑

q
i λiVi,S ⊗Vi,B where

Vi,S(B) is an operator acting on the HS(B) space, and q the number of operators coupling the system
with the bath. Notice that this expansion is always possible due to the commutativity between the
operators acting on S and B. For the moment, we focus on the simple case q = 1, but the extension to
the more general case q > 1 is trivial, so in the following we set λi = λ. The density matrix of the total
system evolves according to the von-Neumann equation,

∂tρ(t) = −
i
h̄
[H, ρ(t)] , (47)

where H = HS + HB + HSB is the total Hamiltonian. A basis set for the total Hilbert space is given by
{|j, k〉} where j is a element of the basis forHS and k forHB.

Clearly, if we are interested in the dynamics of the system S only, this equation contains much
more information than needed, since it entails the dynamics of the many degrees of freedom of the
environment. We wish therefore to obtain an equation of motion for a density matrix, where the
coupling with the environment is effectively described by some macroscopic parameters. This is
possible when one assumes that the coupling strength λ is sufficiently small and we can use
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perturbation theory. The exact definition of the “smallness” of λ is actually an open problem, and we
will refer the interested reader elsewhere [78–80].

The aim of the theory is to obtain the dynamics of the reduced density matrix, whose element
(i, j) is given by

(ρR)i,j = (trBρ)i,j = ∑
k∈HB

〈i, k|ρ|k, j〉. (48)

The reduced density matrix is therefore a density matrix in the space of the system S, but its
dynamics is determined not only by HS but also by the dynamics of the environment. The derivation
of the equation of motion for the reduced density matrix of the system stems from the dynamics of the
density matrix of the bath when decoupled from the system, ρB(t) = exp (−iHBt) ρB(0) exp (iHBt),
the factorization of the initial density matrix ρ(0) = ρS(0)⊗ ρB(0), and the vanishing of the quantum
averages of the bath operators VB to first order in λ, trB (ρBVB) ∝ λ2 (this latter assumption can be
relaxed and would eventually contribute an effective force that redefines the system Hamiltonian).
This standard procedure leads, after some straightforward algebra, to [78,80]

dρS
dt

= −i [HS, ρS] + λ2
[
VS, M†(t)−M(t)

]
, (49)

where we have defined

M(t) =
∫ t

0
dt′C(t, t′)e−iHS(t−t′)VSρS(t′)eiHS(t−t′) (50)

and
C(t, t′) = trB

[
ρB(0)VB(t)VB(t′)

]
(51)

is the bath correlation function, where VB(t) = exp(iHBt)VB(0) exp(−iHBt) is the time evolution of
the bath operators. Equation (49) is difficult to solve for two reasons. On the one hand, the density
matrix is usually a dense matrix of N2 elements, if we have N elements in the basis set. This usually
requires long computation time and large amounts of memory. On the other hand, it contains the full
history of the system and at each time step this history needs to be evaluated to calculate the integrals
in Equation (50). To deal with the first problem, one can formally derive an equation of motion for
a state vector in the Hilbert space that somewhat resembles a wave-function dynamics [82–84] and
scales as N although its physical interpretation is slightly different [85,86]. However, the state vector
follows a stochastic dynamic and therefore one needs to average over the realizations of the stochastic
noise, balancing the computation gain of the reduced dimensionality. To deal with the second problem,
we have two ways: we can neglect completely the history of the system, or retain part of it. In the
Markov approximation [78–80] one arrives to the so-called Lindblad equation [87]

dρS
dt

= −i [HS, ρS] +
λ2

2
(V†

S VSρS + ρSV†
S VS − 2V†

S ρSVS). (52)

Lindblad proved that this equation is the most general master equation of the Markov’s type that
preserves trace, positiveness and hermiticity of the density matrix ρS at each time steps up to second
order in λ. A second approach follows from the observation that up to second order in λ, ρS(t) = ρS(0).
Then, up to the same order of approximation, one replaces ρ(t′) with ρ(t), in Equation (50), i.e.,

M(t) ≈
∫ t

0
dt′C(t, t′)e−iHS(t−t′)VSρS(t)eiHS(t−t′). (53)

This operator is now local in time, although one needs to calculate it at each time step. In the
absence of any magnetic field, the bath dynamics satisfies time-reversal symmetry, and this is usually
sufficient for C(t, t′) = C(t− t′), especially if ρB(0) is the equilibrium statistical density matrix of the
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bath ρB,equ = exp(−βHB) where β = 1/kBT and T the bath temperature, we can separate this integral
and arrive at the Redfield master equation [80,88].

To describe thermal transport within OQS one needs to couple two environments, kept at different
temperature, locally to the system

dρS
dt

= −i [HS, ρS] + LL[ρS] + LR[ρS]. (54)

Here, LL and LR describe the left and right environment, respectively. A possible nano-junction
attached to two environments is shown in the upper panel of Figure 5. Furthermore, in Figure 5a one
sees the voltage drop over the device induced by the applied temperature gradient, ∆T, due to the
environmental coupling. One can observe a linear-response regime for small ∆T, a regime of rapid rise
in ∆V and for large temperature gradients a region where the voltage drop has reached saturation due
to the finite size of the system. The inset of Figure 5 shows the thermopower S = −d(∆V)/d(∆T) that
presents a maximum in response to the thermal gradient at ∆T ≈ 0.25 [a.u.].

3

0 0.5 1 1.5 2 2.5
0

5

10

15

20

ΔV

ΔΤ

TL TR

0.0 0.5 1.0 1.5 2.0 2.5

S

ΔΤ

-35

-25

-15

-5

(a)

gR/gL

ΔQ

0.01 0.1 1 10
-2

0

2

4

6 (b)

FIG. 1: (Color online) (a) Upper panel: nanojunction geom-
etry considered in this calculation (see text for parameters).
Main panel: Voltage drop ∆V across the junction as a func-
tion of the temperature difference between the leads. There
are three distinct regimes: the linear regime, a regime of rapid
voltage rise and saturation. Solid line is a fit to an expo-

nential rise. Inset: generalized thermopower, S = − d(∆V )
d(∆T )

.

(b) Charge imbalance ∆Q as a function of the ratio between
the right and left lead-wire coupling gR/gL, at a constant
gL = 0.001 and at ∆T = 1.

wire length Ld = 160 (at third filling), with coupling
gL = gR = 1, and temperatures TL = 0.05 and TR = 0.5.
In Fig. 2(a) we plot the full distribution function of
the wire (circles), f(Ek) = ρkk, along with the curve
f(Ek) = 1

2 (fD(TL)+fD(TR)) (solid line). As seen, the fit
between the data and the DF is excellent. In Fig. 2(b-f)
we plot the local DF f(Ek, x) = ρkk|ψk(x)|2 for different
positions along the wire, x = 1, 40, 80, 120, 160 (respec-
tively). Note the fast oscillations upon approaching the
center of the wire, and the symmetry with respect to the
wire center. The origin of the oscillations lies both in the
NE nature of the system and in the geometry (i.e. the
fact that the wire is ballistic and that the wire-lead cou-
pling is large). In a system with small wire-lead coupling
we found (not shown) that the oscillations persist at the
center of the wire, but are smoothed at the wire edges.
Fig. 2(b-f) shows that although the full DF is a simple
average of the left and right lead distributions, one can-
not assign a simple position dependence, as in the case
of mesoscopic wires [24].
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FIG. 2: (Color online) (a) Full distribution function of a long
wire, Ld = 160 (see text for numerical parameters). The
solid line is a mean distribution function f(E) = 1

2
(fD(TL) +

fD(TR)). (b-f) Local distribution function for different posi-
tions along the wire.

ature is generally not unique out of equilibrium [25].
Here we provide an operational definition, which is both
physically transparent and can (in principle) be directly
probed experimentally [16]. In order to do so, we add
an additional relaxation operator Ltip[ρM ] to the master
equation (1). This corresponds to applying a local bath
at a temperature Ttip in contact with a single site of the
system (see upper panel of Fig. 3). Due to energy flow
between the probe and the coupled site, the system dy-
namics is generally modified. However, one can “float”
the temperature Ttip such that the change in local (and
hence global, e.g., thermopower) properties of the system
is minimal. We define this temperature as the local tem-
perature of our system at the probe position. We choose
to monitor the change in the local density from its value
in the absence of the probe, but any other quantity would
be equally valid and lead to the same local temperature.

Knowledge of the local temperature allows us to ad-
dress the problem of validity of Fourier’s law at the nano-
scale. It has been conjectured [17] and demonstrated for
systems such as spin-chains [21, 26] and coupled har-
monic oscillators [27] that in ballistic quantum systems
Fourier’s law is invalid. Stimulated by this open prob-
lem, we plot in Fig. 3 the local temperature at steady
state for three different values of the lead-wire coupling,
g = 0.001, 0.1, 0.8 and a junction with lead dimensions
4 × 3, wire length Ld = 21, temperatures TL = 0.05 and
TR = 1.5, and electron density at third filling. For weak
coupling (g = 0.001), we find that the temperature in-
side the wire is very low, but a “hot spot” develops in
the cold lead. As the coupling increases the hot spot van-
ishes, and temperature oscillations develop in the wire.
As expected, at high coupling, the wire equilibrates at
a temperature that is roughly the average between TL

and TR. For large lead-wire coupling the temperature in
the wire is uniform, and most of the temperature drop
occurs at the contacts, similar to what has been argued
for the phenomenon of local ionic heating [28]. We note
that when the coupling g ∼ 1, so that the wave-functions

Figure 5. Upper Panel: Nanostructure connected locally to two reservoirs kept at different temperature.
Below: Voltage drop, ∆V as a function of the temperature gradient, ∆T. The inset shows the
thermopower S = − d(∆V)

d(∆T) . Reprinted (adapted) with permission from [89]. Copyright (2009) American
Chemical Society.

Note that all the shown quantities correspond to the steady-state solution of the master equations,
where the long-time limit has been reached. In general, the OQS approach is not limited to this
regime and can also be used to study time-dependent phenomena in nanoscale devices beyond linear
response [78,90,91].

For the purposes of this review, it is relevant to point out that the quantum system is in
general a device made of interacting electrons and ions. This, as we have seen (Section 3.1.1), is an
incredibly complex problem and the coupling with the external environment does not make it simpler.
Fortunately, we can use the theory of open quantum systems with (time-dependent) DFT to extract
from a non-interacting open-quantum system information about the dynamics of the interacting
one [58,83,92–95]. More surprisingly, it has been shown that the DFT for open-quantum system can
be constructed in such a way that the KS system can be made closed. This means that the effects of
the external environment can be included in the KS potentials [94,95]. However, it is not clear how
one could effectively build the required KS potentials which would be depending on the coupling
operators between the system and the environment. These difficulties have so far hindered a full
development of the theory and its routine application for the investigation of transport in complex
devices and physical conditions.
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3.4. Influence of Decoherence onto Thermoelectrical Transport

The observation or measurement process acting on a classical object does not influence its
physical properties. However, when entering the nanoscale world and the quantum realm one
needs to revisit some classical concepts. In the smallest nanodevices, electrons are usually set
up in coherent superpositions, and a global measurement would destroy most of their coherence
changing the dynamical response. Decoherence does not only originate from the measurement by
a macroscopic observer, but it also occurs when the quantum system interacts locally with another
quantum system. This effect of local quantum observation covers a variety of situations, such as,
e.g., local electron–phonon coupling and continuous [96] or frequent [97] quantum non-demolition
measurements. It has been shown that decoherence influences the efficiency of energy transport in
biological [98–100] and molecular devices [100–102] and is responsible for the decoupling of the
system from the environment via the Quantum Zeno effect [103,104].

While standard static transport approaches such as the BTE or LB fails in catching up with these
dynamical effects, methods such as TDDFT or OQS approaches allow for the time-resolved study of
electron transport and energy dissipation. Additionally, methods describing the dynamics within a
density matrix formalism are suitable to study the role of coherence in nanoscale transport devices.
Indeed, by modeling decoherence as an additional environment within a master equation approach,
one can include it into a consistent thermodynamic formalism [105],

LD[ρS] = λD
[
2|β〉〈β|ρS|β〉〈β| − |β〉〈β|ρS − ρS|β〉〈β|

]
. (55)

Here |β〉 is the ket-vector representing the state of the spatial region where decoherence takes place.
This bath can change the coherence of the system and has; in contrast to classical reservoirs that are in
a thermal ensemble state, no temperature is associated with it [106]. This formalism has been applied
to a ratchet-like device shown in Figure 6a [105].

By changing the on-site energy levels on the parallel horizontal branches of the device
(graphically indicated by the size of the spheres), a spatial asymmetry is introduced. In the upper
branch the on-site energies increase from left to right in equal proportion, while in the lower branch
this is reversed. Therefore, the device acts as a quantum ratchet by the presence of two rectifiers on
each branch in opposite direction. This directional transport device driven by thermal and quantum
fluctuations has a preferred electronic current direction, in this example clockwise. In the ratchet,
a hot (H) and cold (C) reservoir introduce a thermal gradient in the device while at the same time the
decoherence bath (D) is acting at site β

dρS
dt

= −i [HS, ρS] + LH [ρS] + LC[ρS] + LD[ρS]. (56)

While in this set-up energy is exchanged via the baths, particle current is then confined inside the
device. Figure 6b shows the electronic current at steady state for the upper branch. Please note that by
charge conservation, the current in the lower branch is exactly the same but flowing in the opposite
direction. Here, red indicates a positive current, from left to right in the upper branch. If no decoherence
is applied (λD = 0), the current is flowing in the clockwise direction through the ratchet. Increasing
the decoherence, the ring current decreases until its direction gets reversed. It has been found that the
local quantum observer cannot only control the particle current but also energy currents in direction
and strength inside the device [105]. This demonstrates that in thermoelectric nanodevices the current
and heat flows are not only dictated by the temperature and potential gradients, but can also be
manipulated by the external control of the coherence of the device. This effect is illustrated in Figure 6c.
When looking at the whole picture the water flows uphill, however, when we only observe current
flow in the circle (and ignore the rest of the illustration) it seems the water flows down the channel.
This apparent paradox mimics the coherent superposition of two quantum states (water flowing
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up/down). The observation process in specific parts of our system can tune between these two
quantum states and hence change the ‘physical response of the nanodevice’ in a controlled way.
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Figure 6. Influence of quantum decoherence on the thermoelectric flows in a quantum ratchet shown
in (a). (b) The electrical current in the upper branch can be seen. The current can change direction
as a function of both λD and ∆T. (c) Artistic illustration (copyright K. Aranburu) of the role of
decoherence in a nanodevice: When observing inside the black circle, it appears the water flows
down the channel, instead, by looking at the whole painting the water actually flows uphill. This
apparent paradox mimics the coherent superposition of two quantum states (water flowing up/down).
By observing at specific parts of our system one is able to tune between these two states and hence
change the ‘physical response of the nanodevice’ in a controlled way. Parts (a,b) are adapted from [105].
Copyright (2017) SpringerNature.

3.5. Time-Dependent Thermal Transport Theory

Modeling thermal transport and thermoelectric effects at the nanoscale is difficult, because besides
the intricacies of certain materials, we lack a working definition of temperature at those scales. Indeed,
the concepts of equilibrium and thermodynamic limits are difficult to extend to the case of a few
electrons or phonons strongly localized in a nanodevice. Clearly, also the idea that the leads/reservoirs
have a well-established temperature (distribution function) down to the contact with the device is an
abstraction. Many attempts have been tried to remedy this situation and general extensions of some
thermodynamics concepts to the nanoscale have been attempted [107,108].

One of such attempts is to completely remove the needs for macroscopic reservoirs and leads
by replacing them with an effective radiation of known properties. One might think for example,
of replacing the electrostatic bias with the time-dependent vector potential that produces the same
electric field. A similar attempt can be made with the temperature gradient. We replace the coupling
to the energy reservoirs by two black bodies each radiating according to their own temperature
and spectral properties: the electromagnetic field of the blackbody radiation is then included in the
system dynamics and establish in this way the needed temperature gradient and transport dynamics.
To maintain a steady state and avoid that the energy stored in the device saturates, we assume that
the system is weakly coupled to an external environment at a given temperature. This corresponds to
an experimental set-up; the quantum systems gets excited out of its equilibrium by thermal radiation
and at the same time can release energy to its surrounding. (such as a metal heated up by a laser
and starts to glow). Recent progress has been made to include these quantum-electro-dynamical
effects into an ab-initio formalism [109]. Being able to study and detect the radiation produced by the
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transport dynamics could possibly allow the definition of an effective “local temperature” based on
the electrodynamics theory.

We assume each blackbody to be located far away from the devices, therefore for all our purposes
we will consider the radiation they produce as composed solely of plane waves propagating along the
line connecting the device and the blackbody. In Figure 7 the considered nanodevice is shown and the
left and right blackbody radiation is indicated by AL and AR respectively. While the blackbodies radiate
according to their respective temperature TL and TR, the system is interacting with an environment
at temperature TE. The amplitude of each plane wave of the blackbody field is determined by the
temperature of the blackbody itself. We assume therefore the thermal radiation of the form

AL(R)(r, t) = E0

∫
dΩ
√

Ωn
(

Ω, TL(R)

)
sin(kx±Ωt + ϕ(Ω)), (57)

where n(Ω, T) is the Bose-Einstein distribution, E0 = E0ey. Here, E0 is the strength of the
corresponding electric field, where ey is the unit vector in the y direction and k is the momentum of the
photon with frequency Ω. We have considered a random phase, ϕ(Ω) ∈ [0, 2π) that ensures the plane
waves are incoherently reaching the device. In principle, there are more realistic, but numerically more
expensive, ways to model the blackbody thermal radiation [110,111]. A comparison of these methods
with the results of Equation (57) is still missing. Due to the coupling with an external environment,
we expect that the system reaches a steady state. This coupling is effectively described through a
master equation where the environmental power spectrum for |ω| < ωc is

C(ω) = 4|ω|3n(|ω|, TE) + θ(−ω), (58)

where θ(ω) is the Heaviside step function, and ωc is a cutoff frequency determined by the scale of
the system. For |ω| > ωc, C(ω) = 0. We apply this model to the case of a device described in the
tight-binding formalism where the electrons are not interacting. In this case, the Hamiltonian for the
system is given by

Hs = ∑
〈i,j〉

Ti,jc†
i cj, (59)

where the operator cj destroys an electron in the site j and Ti,j is the hopping parameters. The blackbody
radiation enters here as a Peierls transformation into the Hamiltonian

Ti,j = ti,j exp
[
−i
∫ Rj

Ri

dr (AL(r, t) + AR(r, t))
]

, (60)

where ti,j is the hopping parameter in the absence of the radiation. We align the device along the
direction joining the two blackbodies. If one considers initially the case where the blackbodies and the
environment have the same temperature, we see that the dynamics of the system points towards a
steady state with no net energy transport in the long-time limit [109].

TE

1 2 3

4 5 6AL(TL) AR(TR)

x

y

Figure 7. Set-up under consideration. Six tight-binding sites are connected locally to the radiation of
two blackbody at temperature, TL and TR. Furthermore, the system is connected to an environment at
temperature TE. Reprinted (adapted) from [109]. Copyright (2015) American Physical Society.
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In the case of a finite temperature gradient we observe in Figure 8 a turnover of the energy
current, jT , with respect to the flux of energy from the blackbodies. Here, 〈S〉 is the time-averaged
Poynting vector indicating the coupling strength to the blackbodies. Indeed, for small fluxes, the energy
current increases when increasing the flux, then reaches a maximum and later vanishes for intense
radiations. The reason for this turnover lies in the finite number of states available to carry energy.
For small fluxes almost all states are empty and there is the possibility to allocate for a larger number
of carriers. When the flux increases, the states fill up, and less and less will be available for conduction,
until essentially all the states will by full and no dynamics is possible [109]. We want to point out that
this theory can be applied to large temperature gradients: the coupling with the black body radiation
is not restricted to linear response, while the system is coupled weakly to the environment [109].

0 10 20 30 40
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15

20

25

jx T

(µ
a.
u
.)

kB�T = 1
kB�T = 0.5

hSi (µ0c)
�1

Figure 8. Thermal current along the x direction for different temperature gradients as a function
of the strength of the coupling 〈S〉. For large coupling, the current decreases since the energy level
are all filled, and the dynamics is quenched. Reprinted (adapted) [109]. Copyright (2015) American
Physical Society.

4. Discussion

The investigation of energy and electrical transport in nanoscale devices has recently attracted a
consistent amount of interest for its wide range of potential applications in technology, biomedicine and
energy materials to name just a few. A comprehensive look at the field would, therefore, require more
than a reasonably short review. We have preferred a bird-eye introduction to what we believe are
the actual more promising theoretical methods, the Boltzmann’s equation and the Landauer-Büttiker
formalism for quantum transport. These methods are somewhat complementary since they apply
to different regimes, namely a diffusive regime where scattering events are important, or a ballistic
regime where the quantum-mechanical effects are dominant. While these methods might not be
the most accurate for any situation, most of the recent progress in our understanding of thermal,
energy, and electronic transport at the nanoscale is based upon them or some of their extensions.
Both methods benefit from an accurate description of the quantum-mechanical properties of the
material under investigation. In this respect, the method of choice is Density Functional Theory,
since its practical implementation allow for an almost straightforward interfacing with both the
Boltzmann or Landauer theories (the last one through the Non-Equilibrium Green’s functions
formalism). Therefore, the use of DFT methods for electronic structure calculations (including phonon
and vibration properties) combined with Boltzmann’s or Landauer’s theories is to some extent the
state of the art of modern calculations.

We have briefly discussed the need to go beyond this state of the art both in terms of the limits
of DFT or the limits of the approximations used in the methods themselves. Clearly, this is a very
fertile field of investigation and in most cases it requires novel paradigms. We have exposed a few
here: the introduction of methods beyond the constant relaxation time approximations ameliorates
the description of electron and phonon transport by introducing energy-dependent relaxation times;
The static DFT cannot, in principle, be the theory to study transport, an inherent out-of-equilibrium
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problem. We therefore introduce extension of DFT able to properly take into account the dynamics of
the electrons and show how this theory naturally allows for the description of strongly correlated effect
in nanoscale molecular transport, in particular how it corrects the calculation of the Seebeck coefficient.
We finally introduced the theory of open-quantum system, where the system under investigation is
“open” to an external environment with which it could exchange energy, momentum, and particles.
The external environment might have a passive role of driving an otherwise out-of-equilibrium system
toward a steady or ground state, or an active role in which it drives the system itself allowing for
novel quantum-mechanical effects to be exploited. As the OQS approach describes the dynamics of
the density operator, this theory can be also used to investigate the influence of coherence in quantum
transport devices. This might pave the way for novel strategies to construct quantum devices for
thermoelectric energy conversion, photonics, spintronic injection, and sensing, to just name a few.

Clearly, the previous description cannot be complete. For example, we are aware of other
DFT methods to include thermoelectric phenomena [64,65] or strong correlations [52,112–114] in the
Kohn-Sham system, or an accurate description of vibrational modes and energy transport with classical
methods by solving the Newton’s equations [115,116], or the inclusion of non-harmonic effects in the
non-equilibrium Green’s function for the phonons [117]. Each of these topics deserves a complete
introduction per se.

We hope this review serves both to the young researcher to have an outlook of the actual state
of the art and potential ways beyond it, without striving through the immense amount of literature
currently available and in continuous development, and to the experienced scientist as a reference
where some of the most fundamental results and future outlooks are collected.
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