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Abstract: Using the partition-free time-dependent Landauer—Biittiker formalism for transient current
correlations, we study the traversal times taken for electrons to cross graphene nanoribbon (GNR)
molecular junctions. We demonstrate electron traversal signatures that vary with disorder and
orientation of the GNR. These findings can be related to operational frequencies of GNR-based
devices and their consequent rational design.
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1. Introduction

A fundamental property limiting the operational frequency of a molecular device is the traversal
time T, for electronic information to cross between the nanojunction terminals [1]. For instance,
in graphene, the cutoff frequency fmax is related to the traversal time as fmax = 1/277; [2,3]. For the
molecular electrician, this raises the key question of how long it takes for electronic information to
propagate across a nanosized device, as this sets a fundamental limit on the speed of the device
operation. In quantum mechanics, time does not have the same status as a dynamical variable such as
the energy or particle position. In fact, much debate has centred around the correct definition of the
traversal time through a generic potential barrier [4-6], as well as the relation of this quantity to the
dwell time (time spent in the molecular region) [7], the Larmor clock time (the time taken to move
between scattering channels) [8,9], the group delay time (the time delay in the nonlocal propagating
wave packet caused by scattering off the potential barrier) [10], or to a generic description of probability
distributions via path integrals [11,12]. Crucially, all the aforementioned times are defined in terms of
the transmission probability, potential and incident energy of electrons moving in a static scattering
theory picture [13], so that a theory which takes strong time-dependence into account is still needed.
This is crucial for the understanding of laser-stimulated tunnelling processes and related to the problem
of tunnelling times in strong field ionisation experiments [14-16].

Graphene nanoribbon (GNR)-based molecular junctions are excellent candidates for
room-temperature transistors, i.e., graphene field-effect transistors (GFETs) [2], GHz-THz frequency
modulators [17], and photodetectors [18], due to their high mobility and charge carrier saturation
velocities. GNRs can be engineered with band gaps that are tuneable via the nanoribbon symmetry
properties and widths [19], and currently, sub-10 nm nanoribbon widths are accessible from chemical
fabrication techniques [20-24]. Recent experimental progress shows an inverse scaling of operational
frequency with the nanoribbon length [3], or with the square of the nanoribbon length [20] for ribbons
whose carrier drift velocity scales inversely with ribbon length. Typically, the maximum operational
frequencies of radio frequency (RF) GFETs exceed those of Silicon-based transistors with the same
dimensions [3], and can in principle be achieved in the 100 GHz range [25-27]. The cutoff frequencies
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of GFETs are strongly affected by the presence of defects and flexibility in the nanoribbon, but 100 GHz
flexible nanoribbons have also recently been fabricated [28].

Disorder may have a profound impact on the operation of the graphene-based devices.
For example, it has been investigated that edge disorder affects the armchair-oriented GNR (AGNR)
more than the zigzag-oriented ones (ZGNR) [29,30]. This is because the edge states in ZGNRs are
energetically protected against impurity perturbations. This is not the case for AGNRs, in which the
edge states are less dominant so that disorder has a much larger effect on the conductance [31,32].
On the other hand, disorder-induced broken chiral symmetry in terms of random bond disorder was
considered in Ref. [33].

In this paper, we expand upon a recent proposal [34] to investigate traversal times for electrons
moving in disordered GNRs by looking directly at the dynamics of statistical correlations between
electronic signals measured in different reservoirs connected to the GNR. We demonstrate that the
traversal time has a clearer signature in AGNR than in ZGNR. This is because the charge densities
in AGNR structures are more delocalised than in ZGNR, where the formation of standing-edge-state
charge waves leads to wave fronts with a spatial orientation lying diagonal across the plane of the
nanoribbon [35-37]. We also show that the effect of breaking chiral symmetry (on-site disorder) has less
effect on the traversal times compared with the disorder that preserves chirality (hopping disorder).
(A random on-site potential breaks the sublattice symmetry and can broaden possible Landau levels,
i.e., the chiral symmetry is destroyed. This does not happen with nearest neighbour hopping disorder
as hopping between different sublattices is by construction the same in both directions [33,38—40]).

2. Model and Method

Our transport setup (cf. Figure 1) is described by the Hamiltonian H = Hjeaq + Hiead-GNR + HoNR
where the lead environment is given by

N .
Hlead = Zektxckackzx- (1)
ko

Figure 1. Transport setup for an armchair graphene nanoribbon where the left-most carbon atoms
are connected to the &« = L lead and the right-most carbon atoms are connected to the « = R lead.
For times t > 0, a voltage bias V(¢) is applied in the leads and charge carriers start to flow through the
graphene junction. We consider ribbons of varying lengths (2, 5, and 10 nm), and similarly also the
zigzag orientation (not shown).

The operators ¢ are electron annihilation (creation) operators. At the initial switch-on time fo,
the energy dispersion is shifted by the bias voltage ey, — €x, + Vi (t). The left-most atoms are
connected to the left lead (L), whereas the right-most atoms are connected to the right lead (R).
The coupling between the leads (x = L, R) and the GNR has the form

Hiead-oNR = Y (Tinkalonlea + o), 2
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where h.c. stands for the hermitian conjugate. We wish to emphasise that the coupling matrix elements
Tks are kept constant for all times (i.e., we work within the partition-free approach [41-43]). In practice,
we choose the lead bandwidth, given by the energy dispersions e,, to be much larger than the coupling
energies so that we may employ the wide-band limit approximation (WBLA), in which the level width
matrix Iy mn (w) = 27T Y Typkad (W — €xy) Tran is evaluated at the Fermi energy of lead «. The WBLA is
justified because we are interested in a regime where the lead-GNR coupling is weaker than the internal
hopping within the GNR [44-47], as this also enables us to focus on the effect on traversal time caused
by the internal ribbon structure. The GNR is modelled by a single 7r-orbital tight-binding picture

Hong = Y BnnChin, ®3)

mn

where the intramolecular hopping parameters h,,,, are nonzero for the nearest neighbours only, and set
by the typically used carbon—carbon hopping integral in graphene hy,, = tc = 2.7 eV [48-51].
Longer-range hoppings could be included in the model similarly but here we wish to preserve the
particle-hole symmetry of the undisordered GNR. While our system is completely described above,
it would also be feasible to consider hydrogen passivation at the edges of the graphene nanoribbons,
as is customary in typical experimental setups [52,53] and in their ab initio modelling [36,54,55],
to remove dangling bonds at the edges.

We employ the recently developed time-dependent Landauer-Biittiker (TD-LB) formalism [35,56-64]
to compute the two-time current correlation function Cyg (t1,t2) = (Al (1) AT 5 (t2)) between the
current deviation operators Al, (t1) = I, (t1) — (Ix (t1)) between different leads labelled by « and
B. The current operator of lead « is related to the particle number there via I (t) = qua/ dt,
where g is the charge of the particle. When there is no variation of current in one of the leads,
i.e., Aly () = 0 the correlation between this signal and the current variation in the other leads is
trivially zero. The partition-free approach employed here also means that the whole system, described
by Equations (1)—(3), is coupled during an initial equilibration period that occurs prior to the switch-on
time #p. This leads to a global initial temperature T and lead-independent initial chemical potential .

In a two-terminal junction (cf. Figure 1), the labels « and B can refer to either the left (L)
or right (R) terminals, whose energies are shifted symmetrically to create a voltage drop of V (t)
across the system V (t) /2 = Vi (t) = —Vg(t). We note here that the driving bias voltage in
our setup can be of dc type (sudden quench) or ac type (time-dependent modulation) [35,59,65].
In Ref. [34], it was shown that timescales associated with electron traversal times and internal
reflection processes could be seen as resonances in the real part of symmetrised cross-lead correlations
C) (t+1,t) = [Crr (t+ T, ) + Cre (t+T,1)] /2, as a function of the relative time 7. The traversal
time Ty, is therefore defined by the following relation:

max ’Re [C(X) (t+ T,t)} ‘ = ’Re [C(X> (t + Ty, t)} ‘ . (4)

The motivation behind this definition becomes more apparent when we look at the simulation data of
current cross-correlations in Section 3. It is, indeed, observed that the currents in each lead I} (t) and
IR (t) become most strongly correlated at the time taken for electrons to propagate between the leads
following a voltage quench, which is then attributed to electron traversal events.

Within the WBLA, the cross-correlations are evaluated in terms of Keldysh components of the
Green’s function G (f1,t) (projected onto the GNR subspace) [34]
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c(x) (i’1,i’2) = 2(]2 y TI'GNR{F,XG> (tl,tz) Iy,G=< (t2, t1)
aFa!

iG” (h,t2) [AF (t2,t1) Ty + Ta(AY) " (h,12) ]

i[Ay (b b) Ty + Ta(AQ) (b, 1) |G= (f2, 1)

= AT () Ay (k) = (AD) () (AD) (1)

+ o+

©)

where the A7 (t1, 1) matrices are defined in terms of convolutions on the real and imaginary branches
on the complex time contour [34]. We investigate the dynamics of steady state (the switch-on time is
taken to ty) — —oo) cross-correlations, which are accessible experimentally [66].

We note that there is some spreading in the individual resonant peaks associated with traversal
times in the correlator, so that our proposal takes into account the probabilistic nature of electron
propagation in accordance with realistic proposals for traversal time distributions [13,14,67]. This is
particularly relevant for our approach which enables us to study arbitrary time-dependent biases, e.g.,
in which the drive is stochastic in time [61]. The Fourier transform of the real part of C(*) (t + 1, 1),
with respect to the relative time 7, is equivalent to the frequency-dependent power spectrum associated
with cross-lead correlations:

lim ]—“{Re [C(x) (t+r,t)} ;w} _ Pr (w) ‘;PRL (w) ©)

tg——o0

Here, P,g (w) is defined as the Fourier transform with respect to T of the real part of Cyp (t + 7, t) [34].
In practice, the high-frequency component of the current fluctuations can be probed by studying
the infrared-to-optical frequency range of light emitted by the junction [66]. It is worth noting
that Equation (5) is valid in the transient regime for arbitrary time-dependent bias voltage profiles,
whereas in Equation (6) the switch-on time f is taken to minus infinity (fp — —o0) or, equivalently,
the observation time t is taken to infinity (f — o0). While all the quantities in Equation (5) depend only
on the time difference T = t; — t; at this “long-time limit” (and the Fourier transform in Equation (6)
is taken with respect to this relative time), in the transient regime, it would be required to consider
separate frequencies for each time ¢; and t; in Equation (5).

The central idea of our work is that one should quantify the traversal time for electronic
information to cross the system by looking directly at the correlations in the electronic signal itself,
rather than trying to build an indirect definition of operational time from the calculation of transmission
probabilities. The definition of traversal time here is closely related to the definition of Miller and
Pollak, which makes use of flux—flux correlation functions [68]. However, the TD-LB formalism is valid
for arbitrary lead temperatures, lead-GNR hybridisation strengths, and time-dependent biases.

3. Results and Discussion

As we consider the WBLA, the detailed electronic structure of the leads is not important for the
description of the transport properties of the GNR. We then fix the coupling strength between the
GNR and the leads by the frequency-independent resonance width I;; = t¢/10 corresponding to
a weak-coupling regime where the WBLA is a good approximation [44—47]. This is further justified in
typical transport setups where the bandwidth of the leads is sufficiently large (e.g., gold electrodes)
compared to the applied bias voltage. As we wish to preserve the charge neutrality of the GNR in
equilibrium, we set the chemical potential to 4 = 0. The global equilibrium temperature is set by
(kgT)~! = 100t." (T = 313 K).

3.1. Response to a dc Drive

It is instructive to first study the current correlations in GNRs without disorder. Figure 2 shows the
current cross-correlations of undisordered AGNRs and ZGNRs of various lengths and time-independent
bias voltages. We can make many general observations from the data:
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e  The signal is more clear for the AGNR than ZGNR. In the AGNR case, the propagating wavefront
is coherent [35], so that there is less spread in the resonant traversal time signal than in the
corresponding ZGNR case. This relates to the shape of the propagating wavefront, since in AGNR
it is flat, whereas in ZGNR it has a triangular shape [35]. The back-and-forth internal reflections of
the wavepackets between the electrode interfaces have a fairly regular structure in AGNR which
results in a clear signal in the current cross-correlation. This means devices based on ZGNR have
a less well-defined operational frequency.

o  The current cross-correlations are mostly independent of the strength of the applied voltage.
The voltage may affect the shape of the curves slightly, but not the location of the main resonance.
This can be related to the group velocity of electrons crossing the GNR, vy, = dej/dk, which should
not depend on a k-independent shift in the energy dispersion ¢ [34].

e  Evidently, there is a roughly linear increase of the time-difference between the first maxima with
increasing L, due to the time taken for the propagating electron wavefront to cross the structure.
The time-difference between the first maxima T2y is related to the traversal time of information
through the GNRs via Equation (4).

e Increasing the length in the AGNR does not increase the number of resonant peaks in the
cross-correlations, but in ZGNR it leads to a broader range of resonances clustered about a mean
traversal time. This dependence on the orientation of the GNR then affects the spread of
operational device frequencies.

o  The low-frequency regions of the Fourier transforms show resonant frequencies at w = n(
where 1 is a positive integer and (2}, is some intrinsic frequency depending on the length of the
GNR. In particular, by increasing the length of the GNR more transport channels are opened in
the bias window, and therefore more peaks appear in the Fourier spectra.

e  From the full frequency ranges of the Fourier transforms (insets), we observe a high-frequency
operational cut-off which is smaller for the ZGNR case than for the AGNR case. This is itself
an interesting effect, as it sets a limit on switches built with these kind of nanoribbons [2,3].

: — V= Vr=t/10

T T
33; - Vi=—=Ve=tc/2 || (b) ZGNR
- i - VL=-Vr=tc

T
2Tlr

|CO)(t 4 1, t)| [arb. units]

| F{Re[C)]}| [arb. units]

=4

w [eV] w [eV]

Figure 2. Absolute value of the current cross-correlation C(*) (t + T, t) at long observation times
t — oo for various undisordered GNR samples with varying bias voltage and the consequent Fourier
spectra: (a) AGNR of various lengths; (b) ZGNR of various lengths; (c) the low-frequency region
of the Fourier transform of (a) for fixed bias voltage V; = —Vr = tc/2 (the inset shows the full
frequency range); and (d) the low-frequency region of the Fourier transform of (b) for fixed bias voltage
Vi, = —VRr = tc/2 (the inset shows the full frequency range).
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3.2. The Role of Disorder

As we have now established general principles for the traversal times, we concentrate our
discussion on disordered GNRs of fixed length and fixed applied (time-independent) voltage.
In Figure 3, we introduce disorder into the GNR without breaking chiral symmetry. This is done by
drawing a random number from a uniform distribution of width w around the average hopping matrix
value tc. We exclude second and third nearest neighbour hoppings, and we consider randomness
only in the hoppings, for we wish to preserve particle-hole symmetry [49,69]. We see that the disorder
appears to increase the traversal time and also has the effect of decreasing the quality of the signal,
so that multiple side-peaks are visible. These are caused by internal reflections induced by the disorder.
In addition, the intrinsic resonant frequencies for the disordered GNRs (shown by the Fourier spectra)
are red-shifted due to the hopping disorder. This finding is consistent with the idea of reduced
operational frequencies for the GNR devices due to disorder.

T T T T T T — w=0 T T T T T T T
- =tc/5
0L (a) AGNR | (b) ZGNR |
)
g
=]
=
S,
=
+
X
IS2

RN U N v
MY o e VM \ AN \ Lo e

00 05 1.0 15 20 25 30 35 40
w [eV]

| F{Re[C)]}] [arb. units]

o

Figure 3. Current cross-correlations for fixed length disordered GNRs (L = 5 nm) with fixed voltage
Vi = —Vg = tc/2. A uniformly-distributed disorder w is included in the intramolecular hopping
energies, which preserves the chiral symmetry.

In Figure 4, we break the chiral symmetry by adding a random term to the on-site energy levels
of the GNR. This is also done by drawing a random number from a uniform distribution of width f
around the zero on-site energy for the pristine GNR. In Figure 4a, we look at the AGNR case, and we
observe in this case the deterioration of a clear traversal time signal as the Anderson localisation
increases the average dwell time in the interior of the GNR. In Figure 4b, the average traversal time
is once again seen to be larger in the ZGNR case. Interestingly, there is a crossover in both GNR
configurations as the disorder destroys the coherence of the propagating wave packet around f = tc/2.
In contrast to the case of hopping disorder, here the operational frequencies of the GNR device (shown
by the Fourier spectra) remain roughly unchanged for the on-site disorder. This finding could be related
to the character of the disorder: While both types of disorder may introduce an effective tunnel barrier
around the disordered GNR that the propagating electrons must overcome, the hopping disorder
case corresponds to deformation of the lattice geometry, whereas the on-site disorder corresponds to
a change in charge neutrality or chemical potential.
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Figure 4. Current cross-correlations for fixed length disordered GNRs (L = 5 nm) with fixed voltage
VL = —VRr = tc/2. A uniformly-distributed chiral symmetry-breaking disorder f is included in the
on-site energy.

3.3. Response to an ac Drive

We finally address the full two-time character of the cross-correlation in Equation (5). Specifically,
we consider the case of ac driving by introducing a monoharmonic driving term to the voltage

V(t) = Vo + Acos(Qt) (7)

where the static part is set by Vj = tc/2 and the amplitude of the ac driving is A = tc/2 with
the driving frequency (2 = t¢/10. To reduce the computational effort, we consider only the short
nanoribbons in this case (L = 2 nm). In Figure 5, we show the propagation of the full two-time
cross-correlation from the initial time fp. AGNR data are shown in Figure 5a—c and ZNGR data are
shown in Figure 5d-f. In contrast to the previous steady state results, here we show the initial transient
(up to 50 fs), which includes relaxation effects.

We observe that the ac driving does not change the overall picture of traversal time, i.e., the time
it takes for the information to traverse through the nanoribbons can be clearly read off from the
separation of peaks along the anti-diagonal. Compared to the long-time limit in Figures 2—4, the initial
transient only shows some additional oscillations but the main features seen in the steady state data
are still visible. The two-time correlations also show the effect of disorder; as in the dc case, the signal
gets considerably disturbed for hopping disorder (cf. Figure 3) and for on-site disorder (cf. Figure 4),
but in the latter case the signal destruction is less severe. In the disorder energy scale considered
in Figure 5 (hopping and on-site disorder strength: w, f = tc/2), it is also observed that the first
traversal event peaks are more clearly visible for the case of on-site disorder (Figure 5c,f) compared to
the hopping disorder (Figure 5c,e). However, the coherence of subsequent traversal events without
disorder (shown in the side-peaks of Figure 5a,d), is strongly suppressed by either kind of disorder.
In calculations not shown here, we have checked that other types of ac driving (biharmonic drive,
faster/slower modulation, lower/higher intensity) have no effect on the qualitative behaviour of
traversal times.
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Figure 5. Two-time current cross-correlations for fixed length (L = 2 nm) GNRs with ac driving.
(a) AGNR without disorder, (b) AGNR with hopping disorder w = tc/2, (c) AGNR with on-site
disorder f = tc/2, (d) ZGNR without disorder, (¢) ZGNR with hopping disorder w = t/2, (f) ZGNR
with on-site disorder f = tc/2.

4. Conclusions

We have employed the recently developed TD-LB formalism to compute the two-time current
correlation functions for disordered GNRs. This methodology is a fast and accurate way of addressing
mesoscopic quantum transport phenomena out of equilibrium as it is well-supported by the
underlying nonequilibrium Green'’s function theory [70]. By our analysis, we confirm that the current
cross-correlation is a good measure of electron traversal time. We find that the traversal time scales
roughly linearly with the length of the GNRs, and that the traversal time also depends strongly on
the GNR orientation. In general, the results presented in our work indicate that the traversal time
can be most sensibly connected to the group velocity of noninteracting electrons passing through the
graphene nanoribbon. The distance between the first maxima in the cross-correlations corresponds
to the time for an electron with velocity v ~ 1 nm/fs to cross the ribbon. This velocity is consistent
with the value of the Fermi velocity in graphene vp = 3tca/2h where a = 1.42 A is the carbon—carbon
distance [49]. This can be related to the Biittiker-Landauer time for tunnelling [4] through a rectangular
barrier as the time it would take a particle with velocity vg to traverse the barrier.

We found that disorder in GNRs increases the traversal times, in general, and ultimately destroys
the whole picture of coherent information transfer over the GNR junction when the disorder-induced
scattering is strong. The “rule-of-thumb” character of our findings is summarised in Figure 6.
We considered two types of disorder, one that preserves (hopping disorder) and one that breaks
(on-site disorder) the chiral symmetry of the GNR. In Figure 6b, we find that the intrinsic operational
frequency of the GNR is redshifted for the hopping disorder while, in Figure 6¢c, we see that it remains
roughly unchanged for the on-site disorder. However, in the latter case, the statistical spread of 7 is
significantly enhanced as the on-site disorder is increased. To measure the current cross-correlation
and extract experimental values for Tir, there exist a range of spectroscopic techniques which relate the
field strength of photons emitted from each lead to the current. The zero- and finite-frequency current
cross-correlations can then be extracted from these current measurements [66,71].
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Figure 6. Electron traversal times estimated from the distance between the first maxima in the current
cross-correlation (cf. Equation (4) and Figure 2): (a) no disorder, fixed voltage Vi = —Vg = tc/2,
varying length L; (b) fixed length L = 5 nm, fixed voltage V; = — Vg = tc/2, varying hopping disorder
w; and (c) fixed length L = 5 nm, fixed voltage V; = —Vr = tc/2, varying on-site disorder f. The error
bars are empirically estimated from the cross-correlation peaks as the full width at half maximum.

Our noninteracting approach is sufficient for graphene structures since monolayer graphene
devices have been experimentally shown to have ballistic transfer lengths in the range from
100 nm at room temperatures to 1 pm at sub-Kelvin temperatures [2,72]. Even though our
approach is limited to noninteracting electrons, we expect the current correlations and traversal
times to be similarly related even when dealing with, e.g., electron—electron or electron-phonon
interactions [47,73-75]. 1f perturbation theory could be applied, i.e., when the interaction is weak,
current correlation or noise simulations are still feasible to perform in terms of the one-particle
Green’s function [76-81]. Disordered interacting systems have also been studied using mean-field
or density-functional theories [82-84]. Here, out-of-equilibrium dynamics only due to voltage bias
was considered but also thermal gradients could be included similarly [46,85-88]. At present, for the
case of strong interaction, these approaches cannot yet be extended to realistic device structures since
considerably more complicated and numerically expensive methods are required [89].

We also confirmed that the overall picture of electron traversal times is not qualitatively changed
by introducing an ac driving voltage compared to the response to a dc drive. Possible quantitative
differences in the response signals to an ac drive could be related to signatures of photon assisted
tunnelling on traversal time [37,65] but, for now, will be left for future work. On the other hand, it would
also be interesting to consider, e.g., a short laser pulse for exciting the system out of equilibrium [90-92]
instead of the quench of the voltage bias employed in the present work. These topics will also be
addressed more thoroughly in a forthcoming paper.
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