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Abstract: To mitigate the negative effect of classification bias caused by overfitting, semi-naive
Bayesian techniques seek to mine the implicit dependency relationships in unlabeled testing instances.
By redefining some criteria from information theory, Target Learning (TL) proposes to build for
each unlabeled testing instance P the Bayesian Network Classifier BNCP , which is independent and
complementary to BNCT learned from training data T . In this paper, we extend TL to Universal Target
Learning (UTL) to identify redundant correlations between attribute values and maximize the bits
encoded in the Bayesian network in terms of log likelihood. We take the k-dependence Bayesian classifier
as an example to investigate the effect of UTL on BNCP and BNCT . Our extensive experimental results
on 40 UCI datasets show that UTL can help BNC improve the generalization performance.

Keywords: information theory; universal target learning; Bayesian network classifier

1. Introduction

Supervised learning is a machine learning paradigm that has been successfully applied in many
classification tasks [1,2]. Supervised learning has widespread deployment in applications including
medical diagnosis [3–5], email filtering [6,7], and recommender systems [8–10]. The mission of supervised
classification is to learn a classifier, such as neural network propagation and decision tree, from labeled
training set T and then use it to assign class label c to some testing instance x = {x1, · · · , xn}, where xi
and c respectively denote the value of attribute Xi and class variable C. Bayesian Network Classifiers
(BNCs) [11] are such tools for indicating the probabilistic dependency relationships graphically and
inferring under uncertainty conditions. They supply a framework to compute the joint probability, which
can be written as the individual conditional probabilities of attributes given their parents, that is:

P(c, x) = P(c|πc)
n

∏
i=1

P(xi|πi) (1)

where πi and πc respectively denote the parents of attribute Xi and that of class variable C.
Learning unrestricted BNCs is often time consuming and quickly becomes intractable as the number

of attributes in a research domain grows. Moreover, inference in such unrestricted models has been
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shown to be NP-hard [12]. The success of Z-dependence Naive Bayes (NB) [13] has led to learning
restricted BNCs or BNCT from labeled training data T , e.g., one-dependence Tree Augmented Bayesian
classifier (TAN) [14] and k-Dependence Bayesian classifier (KDB) [12]. Among them, KDB can generalize
from one-dependence to an arbitrary k-dependence network structure and has received great attention
from researchers in different domains. These BNCs attempt to extract from labeled training data the
significant dependencies implicated, whereas overfitting may result in classification bias. For example,
patients with similar symptoms sometimes may have diverse kinds of diseases, for example, VM (viral
myocarditis) [15] is often diagnosed as influenza due to the low incidence rate.

Semi-supervised learning methods generally apply unlabeled data to either reprioritize or modify
hypotheses learned from labeled data alone [16–18]. These methods efficiently combine the expressed
classification information of the labeled data with the information concealed in the unlabeled data [19].
These algorithms generally assume that The general assumption of this class of algorithms is that data
points in high density regions likely belong to the same class simultaneously as decision boundary
exists in low density regions [20]. However, the information carried by one single unlabeled instance
may be overwhelmed by mass training data, and a wrongly-assigned class label may result in “noise
propagation”. To address this problem, we presented the Target Learning (TL) framework [21], in which
an independent Bayesian model BNCP learned from testing instance P can work jointly with BNCT and
effectively improve BNCT ’s generalization performance with minimal additional computation. In this
paper, we present an expanded presentation of TL, Universal Target Learning (UTL), through dynamically
adjusting dependency relationships implicated in one single testing instance at classification time to
explore the most appropriate network topology. Conditional entropy is introduced as the loss function to
measure the bits encoded in BNC in terms of log likelihood.

The remainder of the paper is organized as follows: Section 2 reviews the state-of-the-art-related
BNCs. Section 3 shows the theoretical justification of the UTL framework and describes the learning
procedure of KDB within UTL. The extensive experimental studies on 40 datasets are revealed in Section 4.
To finalize, the final section shows the conclusions and the future work.

2. Preliminaries

A pair with < G, Θ > can formalize a Bayesian Network (BN). G represents the structure containing
nodes and arcs with a directed acyclic graph. Nodes symbolize the class or attribute variable, and arcs
correspond to dependency relationships existing between the child nodes and parent nodes. Θ represents
the parameter set, which includes the conditional probability distribution of each node in G, namely
PB(c|πc) or PB(xi|πi), where πi and πc respectively denote the parents of attribute Xi and that of class
variable C in structure G. Facts proved that it is an NP-hard problem to learn an optimal BN [22].
To deal with the sticky complexity, some learning of restricted network structures is under research [23].
Thus, the joint probability distribution is defined as:

PB(c, x) = P(c)
n

∏
i=1

PB(xi|c, πi). (2)

Taking advantage of the underlying network topology of B and Equation (2), a BNC computes
PB(c|x) by:

PB(c|x) =
PB(c, x)
PB(x)

=
PB(c, x)

∑c∈ΩC
PB(c, x)

=
P(c)∏n

i=1 PB(xi|c, πi)

∑c∈ΩC
P(c)∏n

i=1 PB(xi|c, πi)
. (3)
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Among numerous restricted BNCs, NB is an extremely simple and remarkably effective approach
with a zero-dependence structure (see Figure 1a) for classification [24,25]. It uses a simplifying assumption
that given the class label, the attributes are independent of each other [26,27], i.e.,

PNB(x|c) =
n

∏
i=1

P(xi|c). (4)

However, in the real-world, NB’s attribute independence assumption is often violated and sometimes
affects its classification performance. There has been generous prior work that explored methods
to improve NB’s classification performance. Information theory, which was proposed by Shannon,
has established a mathematical basis for the rapid development of BN. Mutual Information (MI) I(Xi; C)
is the most commonly-used criterion to rank attributes for attribute sorting or filtering [28,29], and
Conditional Mutual Information (CMI) I(Xi; Xj|C) is used to find conditional dependence between
attribute pair Xi and Xj for identifying possible dependencies. I(Xi; C) and I(Xi; Xj|C) are defined
as follows, 

I(Xi; C) = ∑
xi∈ΩXi

∑
c∈ΩC

P(xi, c)log P(xi, c)
P(xi)P(c)

I(Xi; Xj|C) = ∑
xi∈ΩXi

∑
xj∈ΩXj

∑
c∈ΩC

P(xi, xj, c)log
P(xi, xj|c)

P(xi|c)P(xj|c)
.

(5)

The independence assumption may not hold for all attribute pairs, but may hold for some attribute
pairs. Two categories of learning strategies have been proven effective based on NB. The first category aims
at identifying the independency relationships to approximate NB’s independence assumption. Langley
and Sage [27] proposed the wrapper-based Selective Bayes (SB) classifier, which carries out a greedy
search through the space of attributes to accommodate redundant ones within the prediction process.
Some methods relieve the violations of the attribute independence assumption through deleting strong
related attributes (such as Backwards Sequential Elimination (BSE) [30] and Forward Sequential Selection
(FSS) [31]). Some attribute weighting methods also achieve competitive performance. The earliest methods
of weighted naive Bayes were proposed by Hilden and Bjerregaard [32], which used a single weight, then
Ferreira [33] improved this by weighting each attribute value rather than each attribute. Hall [34] assigned
the weight, which is in reverse ratio to the minimum depth at first tested in an uncorrected decision tree to
each attribute. The other group introduced various categories to NB. Kwoh and Gillies [35] proposed a
method that introduces one hidden variable to NB’s model as a child of the class label and as the parent of
all predictor labels. Kohavi [36] described a hybrid approach that attempts to utilize the advantages of
both decision trees and naive Bayes. Yang [37] proposed to fit NB’s conditional independence assumption
by discretization.

The second category aims at relaxing the independence assumption by introducing the significant
dependency relationships. TAN relaxes the independence assumption, as well as extends NB from the
zero-dependence to the one-dependence maximum weighted spanning tree [14] (see Figure 1b). Based
on this, Keogh and Pazzani [38] proposed to construct TAN by choosing the augmented arcs, which
maximized the improvement of classification accuracy. ATAN [39] predicts by averaging each built
TAN’s estimated class-membership probabilities. Weighted Averaged Tree-Augmented Naive Bayes
(WATAN) [39] applies the aggregation weight by the mutual information between the class variable
and root attribute. To represent more dependency relationships, an ensemble of one-dependence
BNCs or high-dependence BNC is a feasible solution. RTAN [40] generates TAN, which describes the
dependency relationships within a certain attribute sub-spaces. As a consequence, BaggingMultiTAN [40]
trains these RTAN as component classifiers and is generated by the most votes. Averaged
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One-Dependence Estimators (AODE) [41] assumes that every attribute relies on the class and a
shared attribute and only uses one-dependence estimators. To handle continuous variables, in every
model, HAODE [42] considers a super-parent attribute’s discrete version, so that it can estimate
the previous relationships by a univariate Gaussian distribution. As shown in Figure 1c (KDB with
four attributes when k = 2), KDB can represent the arbitrary degree of dependency relationships
and also achieve similar computational efficiency of NB [21]. Bouckaert proposed to average all
of the possible network structures for the fixed value of k (containing lower orders) [43]. Rubio
and Gámez presented a variant of KDB, which provided a hill-climbing algorithm to build a KDB
incrementally [44].

To avoid high variance and classification bias caused by overfitting, how to mine the information
existing in testing instance P is an interesting issue and has attracted more attention recently.
Some algorithms try to combine P into training data T , which can help refine the network structure
of classifier BNCT , which is learned from T only. The recursive Bayesian classifier [31] captures each
predicted label provided by NB, and if misclassified, it induces a new NB from the cases that have the
predicted label. A random oracle classifier [45] splits the labeled training data into two subsets using the
random oracle and respectively trains two sub-classifiers. The testing instance then uses the random oracle
to select one sub-classifier for classification. Other algorithms, though few, seek to explore the dependency
relationships implicated in P only. Subsumption Resolution (SR) [46] identifies pairs of attribute-values in
P , and if one is a generalization of the other, SR will delete the generalization. Target learning [21] extends
P to a pseudo training set and then builds an independent BNCP for it, which is complementary to BNCT
in nature.

X 0 X 1 X 2 X 3

C

X 0 X 1 X 2 X 3

C

X 0 X 1 X 2 X 3

C

(a) NB (b) TAN (c) KDB (k=2)

Figure 1. (a) NB; (b) Tree Augmented Bayesian classifier (TAN); (c) k-Dependence Bayesian classifier (KDB)
(k = 2) with four attributes.

3. UKDB: Universal Target Learning

3.1. Target Learning (TL)

Relaxing the independence assumption by adding augmented edges to NB is a feasible approach
to refining NB and increasing the confidence level of the estimate of joint probability P(x, c). However,
from Equation (5), we can see that, to compute MI or CMI, the (conditional) probability distributions
needed are learned from labeled training dataset T only. Thus, as the structure complexity increases,
the corresponding BNC may overfit the training data and underfit the unlabeled testing instance. This may
lead to classification bias and high variance. To address the issue, we proposed the TL framework to
build a specific BNCP for any testing instance P at classification time to explore possible conditional
dependencies that exist in P only. The BNCP applies the same learning strategy as that of BNCT learned
from T . Thus, BNCP and BNCT are complementary to each other and can work jointly.
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We take KDB as an example to illustrate the basic idea of TL. Given training dataset T , the learning
procedure of KDBT is shown in Algorithm 1.

Algorithm 1: The learning procedure of KDBT .
Input: Training data T , parameter k.
Output: KDBT .

1 Calculate I(Xi; C) by Equation (5), where C is the class.
2 Calculate I(Xi; Xj|C) by Equation (5) for each pair of attributes, where i 6= j and C is the class.
3 Let the used attributes list, S, be empty.
4 Let the Bayesian network that is to be constructed, KDBT , start from a single class node, C.
5 while (S contains all attribute values) do
6 Select an attribute value xmax that has the highest value I(xmax; C) and is not in S.
7 Add a node to KDBT standing for xmax.
8 Add an arc from C to xmax.
9 Add min(|S|, k) arcs from distinct attribute values xj with the highest I(xmax; xj|C), where

xj ∈ S.
10 Add xmax to S.
11 end
12 return KDBT

From the viewpoint of information theory, MI or I(Xi; C) can measure the mutual dependence
between C and Xi. From Equation (5), we can see that I(Xi; C) is the expected value of mutual information
over all possible values of C and Xi. Thus, although the dependency relationships between attributes may
vary for different instances to a certain extent [21], the structure of traditional KDB cannot automatically
fit diverse instances. To address the issue, for unlabeled testing instance {x1, · · · , xn}, Local Mutual
Information (LMI) and Conditional Local Mutual Information (CLMI) are introduced as follows to measure
the dependency relationship between attribute values [21]:

Î(Xi; C) = ∑
c∈ΩC

P(xi, c)log P(xi, c)
P(xi)P(c)

Î(Xi; Xj|C) = ∑
c∈ΩC

P(xi, xj, c)log
P(xi, xj|c)

P(xi|c)P(xj|c)
.

(6)

Given training set T, KDBT sorts attributes by comparing I(Xi; C) and chooses conditional
dependency relationships by comparing I(Xi; Xj|C). In contrast, given testing instance P =

{x1, x2, · · · , xn}, KDBP sorts attributes by comparing Î(Xi; C) and chooses conditional dependency
relationships by comparing Î(Xi; Xj|C). The learning procedure of KDBP is shown in Algorithm 2
as follows.
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Algorithm 2: The learning procedure of KDBP .

Input: Training data T , testing instance x = {x1, · · · , xn}, parameter k.
Output: KDBP .

1 Calculate Î(Xi; C) by Equation (6) for each attribute value xi ∈ x where Cis the class.
2 Calculate Î(Xi; Xj|C) by Equation (6) for each pair of attributes, where i 6= j and C is the class.
3 Let the used attributes list, S, be empty.
4 Let the Bayesian network that is to be constructed, KDBP , start from a single class node, C.
5 while (S contains all attribute values) do
6 Select an attribute value xmax that has the highest value Î(xmax; C) and is not in S.
7 Add a node to KDBP standing for xmax.
8 Add an arc from C to xmax.
9 Add min(|S|, k) arcs from distinct attribute values xj with the highest Î(xmax; xj|C), where

xj ∈ S.
10 Add xmax to S.
11 end
12 return KDBP

3.2. Universal Target Learning

Generally speaking, the aim of BNC learning is to find a network structure that can facilitate the
shortest description of the original data. The length of this description considers the description of the
BNC itself and the data applying the BNC [38]. Such a BNC represents a probability distribution PB(x)
over the instance x appearing in the training data T.

Given training data T with N instances T = {d1, · · · , dN}, the log likelihood of classifier B given T is
defined as:

LL(B|T) =
N

∑
i=1

log PB(di), (7)

which represents how many bits are required to describe T on account of the probability distribution
PB . The log likelihood has a statistical interpretation as well: the higher the log likelihood, the closer the
classifier B is to model the probability distribution in T . The label of testing instance U = {x1, · · · , xn}
may take any one of the |C| possible values of variable C. Thus, TL assumes that U is equivalent to a
pseudo training set P that consists of |C| instances as follows,

U = {x1, · · · , xn} ⇔ P =


P1 = {x1, · · · , xn, c1}
P2 = {x1, · · · , xn, c2}
· · ·
P|C| = {x1, · · · , xn, c|C|}

(8)

Similar to the definition of LL(B|T), the log likelihood of classifier B given P is defined as:

LL(B|P) =
|C|

∑
i=1

log PB(Pi), (9)

By applying different CMI criteria as shown in Equations (5) and (6), BNCP and BNCT provide two
network structures to describe possible dependency relationships implicated in testing instances. These
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two CMI criteria cannot directly measure the bits that are needed to describe P based on PB , whereas
LL(B|P) can. From Equation (2),

LL(B|P) =
|C|

∑
i=1

log PB(Pi) =
|C|

∑
i=1

log{P(ci)
n

∏
j=1

PB(xj|ci, πj)}

=
|C|

∑
i=1

log P(ci) +
n

∑
j=1

|C|

∑
i=1

log PB(xj|ci, πj)

= Ĥ(C) +
n

∑
j=1

Ĥ(Xj|C, Πj)

(10)

If there exist strong correlations between the values of parent attributes, we may choose to replace
these correlations with meaningful dependency relationships. For example, let Gender and Pregnant be two
attributes. If Pregnant = “yes”, it follows that Gender = “female”. Thus, Gender = “female” is a generalization
of Pregnant = “yes” [46] and P(Gender = “ f emale′′, Pregnant = “yes′′) = P(Pregnant = “yes′′). Given some
other attribute values x̂ = {x1, · · · , xm}, we can also have P(Gender = “ f emale′′, Pregnant = “yes′′, x̂) =
P(Pregnant = “yes′′, x̂). Correspondingly,

P(xm+1|Gender = “ f emale′′, Pregnant = “yes′′, x̂) =
P(Gender = “ f emale′′, Pregnant = “yes′′, x̂, xm+1)

P(Gender = “ f emale′′, Pregnant = “yes′′, x̂)

=
P(Pregnant = “yes′′, x̂, xm+1)

P(Pregnant = “yes′′, x̂)
= P(xm+1|Pregnant = “yes′′, x̂)

(11)

Obviously, for specific instances in which such correlations hold, the parent attribute Gender
can not provide any extra information to Xm+1 and should be removed. To maximize LL(B|P),
Xm+1 may select another attribute, e.g., Xp, as its parent to take the place of attribute Gender; thus,
the dependency relationship between Xp and Xm+1 that was neglected before can be added into the
network structure. Many algorithms only explore improving the performance by removing redundant
dependency relationships in the network structure, without considering to search for more meaningful
dependency relationships. Because of the constraint of computational complexity that is closely related
to structure complexity, each node in BNC can only take a limited number of attributes as parents.
For example, KDB demands that at most k parents can be chosen for each node. Similarly, the proposed
algorithm also follows this rule.

The second term in Equation (10), i.e., Ĥ(Xj|C, Πj), is the log likelihood of conditional dependency
relationships in B given P . To find proper dependency relationships implicated in each testing instance
and maximize the estimate of LL(B|P), we need to maximize Ĥ(Xj|C, Πj) for each attribute Xj in
turn. We argue that LL(B|P) provides a more intuitive and scalable measure for a proper evaluation.
Based on the discussion presented above, in this paper, we propose to refine the network structures
of BNCP and BNCT based on Universal Target Learning (UTL). In the following discussion, we take
KDB as an example and apply UTL to KDBT and KDBP in similar ways, then we have UKDBT and
UKDBP correspondingly. For testing instance P , UKDBT or UKDBP will recursively check all possible
combinations of candidate parent attributes and attempt to find Πj, which corresponds to the maximum
of Ĥ(Xj|C, Πj), that is Πj may contain less than min{i − 1, k} attributes. By minimizing Ĥ(Xj|C, Πj)

for each attribute Xj, UKDBT and UKDBP are supposed to be able to seek more proper dependency
relationships implicated in specific testing instance P and that may help to maximize the estimate of
LL(B|P). For example, suppose that the attribute order of KDBT is {X0, X1, X2, X3} and k = 2, then for
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attribute X2, its candidate parents are {X0, X1}. Given testing instance P , we will compare and find Π2

where Ĥ(X2|C, Π2) = max{Ĥ(X2|C, X0), Ĥ(X2|C, X1), Ĥ(X2|C, X0, X1)}, and Π2 ⊂ {X0, X1, (X0, X1)}.
Thus, UKDBT dynamically adjusts dependency relationships for different testing instances at classification
time. Similarly, UKDBP applies the same learning strategy to refine the network structure of KDBP .

Given n attributes, we can have n! possible attribute orders, and among them, the orders respectively
determined by I(Xi; C) and Î(Xi; C) have been proven to be feasible and effective. Thus, for attribute
Xi, its parents can be selected from two sets of candidates. The final classifier is also an ensemble of
UKDBT and UKDBP . UTL retains the characteristic of target learning, that is UKDBT and UKDBP are
complementary, and they can work jointly to make the final prediction. The learning procedures of UKDBT
and UKDBP , which are respectively shown in Algorithms 3 and 4 as follows, are almost the same, except
the pre-determined attribute orders.

In contrast to TL, UTL can help BNCP and BNCT encode the most possible dependency relationships
implicated in one single testing instance. The linear combiner is appropriate to be used for models that
output real-valued numbers, so it is applicable for BNC. For testing instance x, the ensemble probability
estimate for UKDBT and UKDBP is,

P̂(y|x) = α.P(y|x, UKDBT ) + β.P(y|x, UKDBP ) (12)

For different instances, the weights, α and β, may differ greatly, and there is no effective way to
address issue. Thus, in fact, we simply use the uniformly- rather than non-uniformly-weighted average of
the probability estimates. That is, we set α = β = 0.5 for Equation (12).

Algorithm 3: UKDBT .
Input: Training data T , testing instance x = {x1, · · · , xn}, parameter k.
Output: UKDBT .

1 Let S be a list of attributes in descending order of I(Xi; C), and suppose S = {X̂1, · · · , X̂n}.
2 Let the Bayesian network that is to be constructed, UKDBT , start from the class node and n

attributes.
3 for i = 1 to n do
4 Calculate Ĥ(Xi|C, Πi), where Πi ⊆ {X̂1, · · · , X̂i−1} and |Πi| ≤ min{i− 1, k}.
5 Select Π̂ where Π̂ = arg max Ĥ(Xi|C, Πi).
6 Add |Π̂| arcs from |Π̂| distinct attributes Xi in Π̂ to Xi.
7 end
8 return UKDBP
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Algorithm 4: UKDBP .
Input: Testing instance x = {x1, · · · , xn}, parameter k.
Output: UKDBP .

1 Let S be a list of attributes in descending order of Î(Xi; C), and suppose S = {X̂1, · · · , X̂n}.
2 Let the Bayesian network that is to be constructed, UKDBP , start from the class node and n

attributes.
3 for i = 1 to n do
4 Calculate Ĥ(Xi|C, Πi), where Πi ⊆ {X̂1, · · · , X̂i−1} and |Πi| ≤ min{i− 1, k}.
5 Select Π̂ where Π̂ = arg max Ĥ(Xi|C, Πi).
6 Add |Π̂| arcs from |Π̂| distinct attributes Xi in Π̂ to Xi.
7 end
8 return UKDBP

4. Results and Discussion

All algorithms for the experimental study ran on a C++ system (GCC 5.4.0). For KDB and its variations,
as k increased, the time complexity and the structure complexity always increased exponentially. The k
with larger values may contribute to promoting the classification accuracy in contrast to the smaller value
of k. There are some requirements on k due to the constraint of currently available hardware resources.
When k = 3, UKDB’s experimental results on some large-scale datasets can not be tested due to the
amount of CPU available. Thus, we only chose to select k = 1 and k = 2 in the following experimental
study. To demonstrate the effectiveness of the UTL framework, the following algorithms (including three
single-structure BNCs and an ensemble BNC) will be compared with ours,

• NB, the standard Naive Bayes.
• TAN, Tree-Augmented Naive Bayes.
• K1DB, k-dependence Bayesian classifier with k = 1.
• K2DB, k-dependence Bayesian classifier with k = 2.
• AODE, Averaged One-Dependence Estimators.
• WATAN, the Weighted Averaged Tree-Augmented Naive Bayes.
• TANe, an ensemble Tree-Augmented Naive Bayes applying target learning.
• UK1DB, k-dependence Bayesian classifier with k = 1 in the framework of UTL.
• UK2DB, k-dependence Bayesian classifier with k = 2 in the framework of UTL.

We randomly selected 40 datasets from the UCI machine learning repository [47] for our experimental
study. The datasets were divided into three categories, i.e., large datasets with the number of instances
>5000, medium datasets with the number of instances >1000 and <5000, and small datasets with the number
of instances <1000. The above datasets are described in Table 1 in detail, including the number of instances,
attributes, and classes. All the datasets are ordered in ascending order of dataset size. The number of
attributes ranged widely from 4–56, convenient for evaluating the effectiveness of the UTL framework
to mine dependency relationships between attributes. Meanwhile, we can examine the classification
performance with various sizes from 24 instances to 5,749,132 instances. Missing values were replaced
with distinct values. We used Minimum Description Length (MDL) discretization [48] to discretize the
numeric attributes.
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Table 1. Datasets.

Index Dataset Instance Attribute Class Index Dataset Instance Attribute Class
1 contact-lenses 24 4 3 21 tic-tac-toe 958 9 2
2 lung-cancer 32 56 3 22 german 1000 20 2
3 post-operative 90 8 3 23 car 1728 6 4
4 zoo 101 16 7 24 mfeat-mor 2000 6 10
5 echocardiogram 131 6 2 25 hypothyroid 3163 25 2
6 lymphography 148 18 4 26 kr-vs-kp 3196 36 2
7 iris 150 4 3 27 dis 3772 29 2
8 teaching-ae 151 5 3 28 abalone 4177 8 3
9 wine 178 13 3 29 waveform-5000 5000 40 3
10 autos 205 25 7 30 phoneme 5438 7 50
11 glass-id 214 9 3 31 wall-following 5456 24 4
12 hungarian 294 13 2 32 page-blocks 5473 10 5
13 heart-disease-c 303 13 2 33 thyroid 9169 29 20
14 primary-tumor 339 17 22 34 sign 12,546 8 3
15 horse-colic 368 21 2 35 nursery 12,960 8 5
16 house-votes-84 435 16 2 36 seer_mdl 18,962 13 2
17 cylinder-bands 540 39 2 37 adult 48,842 14 2
18 balance-scale 625 4 3 38 localization 164,860 5 11
19 credit-a 690 15 2 39 poker-hand 1,025,010 10 10
20 pima-ind-diabetes 768 8 2 40 donation 5,749,132 11 2

To validate the effectiveness of UTL, the proposed UKDB are contrasted with three single-structure
BNCs (NB, TAN, and KDB), as well as three ensemble BNCs (AODE, WATAN, TANe) in terms of zero-one
loss, RMSE, and F1-score in Section 4.1. Then, we introduce the criteria, goal difference, and relative
zero-one loss ratio, to measure the classification performance of UKDB while dealing with different
quantities of training data and different numbers of attributes in Sections 4.2 and 4.3, respectively.
In Section 4.4, we compare the time cost for training and classifying. At last, we conduct the global
comparison in Section 4.5.

4.1. Comparison of Zero-One Loss, RMSE, and F1-Score

4.1.1. Zero-One Loss

The experiments were tested by applying 10 rounds of 10-fold cross-validation. We used
Win/Draw/Loss (W/D/L) to clarify the experimental results. To compare the classification accuracy,
Table A1 in Appendix A reports the average zero-one loss for each algorithm on different datasets. The
corresponding W/D/L records are summarized in Table 2.
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Table 2. Win/Draw/Loss (W/D/L) of zero-one loss on 40 datasets. AODE, Averaged One-Dependence
Estimators; WATAN, Weighted Averaged Tree-Augmented Naive Bayes; UK, k-dependence Bayesian
classifier with Universal Target Learning (UTL).

W/D/L NB TAN K1DB K2DB AODE WATAN TANe UK1DB

TAN 20/9/11
K1DB 22/9/9 9/26/5
K2DB 19/11/10 17/13/10 15/16/9
AODE 20/15/5 12/15/13 12/15/13 15/11/14
WATAN 21/8/11 2/36/2 5/27/8 8/17/15 13/14/13
TANe 21/16/3 26/9/5 17/17/6 13/14/13 10/24/6 16/22/2
UK1DB 24/12/4 18/15/7 21/12/7 16/12/12 15/18/7 19/16/5 13/20/7
UK2DB 26/12/2 26/12/2 28/8/4 28/8/4 24/13/3 24/14/2 18/18/4 16/22/2

As shown in Table 2, for the single-structure classifier, UK1DB performed significantly better than
NB and TAN. Most importantly, UK1DB achieved significant advantage over K1DB in terms of zero-one
loss with 21 wins and only seven losses, providing convincing evidence for the validity of the proposed
algorithm. For large datasets, the advantage was even stronger. Simultaneously, UK2DB achieved
significant advantage over K2DB with a W/D/L of 28/8/4. That is, K2DB only achieved better results
of zero-one loss over UK2DB on four datasets (contact-lenses, lung-cancer, sign, nursery); thus,
UK2DB seldom performed worse than KDB. In contrast, UK2DB performed better than K2DB more often
on many datasets, such as car, poker-hand, primary-tumor, waveform-5000. When compared with
the ensemble algorithms, UK1DB and UK2DB still enjoyed an advantage over AODE, WATAN, and TANe.
Moreover, the comparison results of UK2DB with AODE and WATAN were almost significant (24 wins
and only three losses, 24 wins and only two losses, respectively). Based on the discussion above, we argue
that UTL is an effective approach to refining BNC.

4.1.2. RMSE

The Root Mean Squared Error (RMSE) is used to measure the deviation between the observed value
and the true value [49]. Table A2 in Appendix A reports the RMSE results for each algorithm on different
datasets. The corresponding W/D/L records are summarized in Table 3. The scatter plot between UK2DB
and K2DB in terms of RMSE is shown in Figure 2. The X-axis shows the RMSE results of K2DB, and the
Y-axis shows the RMSE results of UK2DB. We can observe that there are generous datasets under the
diagonal line, such as labor-negotiations, lymphography and poker-hand, which shows that UK2DB
has some advantages over K2DB. Simultaneously, except credit-a and nursery, the other datasets
approach close to the diagonal line, which means UK2DB rarely performed worse than K2DB. For many
datasets, UTL substantially helped reduce the classification error of K2DB, for example the reduction from
0.4362 to 0.3571 on dataset lymphography. As shown in Table 3, for the single-structure classifiers, UK1DB
performed significantly better than NB and TAN. Moreover, UK1DB achieved significant advantages over
K1DB with 10 wins and four losses and UK2DB over K2DB with 14 wins and the losses, which provides
convincing evidence for the validity of the proposed framework. When compared with the ensemble
group, UK1DB and UK2DB still had a significant advantage. UK1DB and UK2DB had obvious advantage
with W/D/L of 10/24/6 and 24/13/3 when compared with AODE. UK2DB also achieved relatively
significant advantage when coming to WATAN and TANe (14 wins and only two losses, 15 wins and
only three losses). UK2DB reduced RMSE more substantially. UKDB not only performed better than
single-structure classifiers, but also was shown as an effective ensemble model when compared with
AODE in terms of RMSE.
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Table 3. W/D/L of RMSE on 40 datasets.

W/D/L NB TAN K1DB K2DB AODE WATAN TANe UK1DB

TAN 20/14/6
K1DB 20/17/3 6/33/1
K2DB 18/14/8 16/20/4 13/22/5
AODE 20/18/2 11/21/8 7/23/10 13/15/12
WATAN 20/16/4 2/38/0 1/35/4 4/22/14 8/24/8
TANe 21/15/4 10/28/2 8/27/5 12/15/13 8/26/6 9/29/2
UK1DB 19/19/2 12/25/3 10/26/4 10/21/9 10/24/6 9/28/3 9/26/5
UK2DB 24/14/2 17/21/2 15/23/2 14/23/2 24/13/3 14/24/2 15/21/4 19/17/4
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Figure 2. The scatter plot of UK2DB and K2DB in terms of RMSE.

4.1.3. F1-Score

Generally speaking, zero-one loss can roughly measure the classification performance of BNC, but it
cannot evaluate whether the BNC can work consistently while dealing with different parts of imbalanced
data. In contrast, precision gives the ratio of the true classification in all test data predicted to be true, and
recall gives the ratio of the true classification in all test data actually to be true [50]. Precision and recall
sometimes have contradictory situations; therefore, we employed the F1-score, the harmonic average of
the precision and recall, to measure the performance of our algorithm. In order to apply the multiclass
classification problem, we employed the confusion matrix to measure the F1-score. Suppose that there
exists a dataset to be classified with the classes {C1, C2, · · · , Cm}. The confusion matrix as follows shows
the classification results: N11 · · · N1m

...
. . .

...
Nm1 · · · Nmm


Each entry Nii of the matrix presents the number of instances, whose true class is Ci that are actually

assigned to Ci (where 1 ≤ i ≤ m). Each entry Nij presents the number of instances, whose true class is Ci,
but nevertheless are actually assigned to Cj (where i 6= j and 1 ≤ i, j ≤ m). Given the confusion matrix,
precision, recall, and F1-score are computed as follows:
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Precisioni =
Nii

∑m
j=1 Nji

(13)

Recalli =
Nii

∑m
j=1 Nij

(14)

F1 − scorei = 2 · Precisioni · Recalli
Precisioni + Recalli

(15)

F1 − score =
m

∑
i=1

F1 − scorei
m

(16)

Table A3 in Appendix A reports the F1-score for each algorithm on different datasets. Table 4
summarizes the W/D/L of the F1-score. Several points in this table are worth discussing:

As shown in Table 4, for the single-structure classifiers, UK1DB performed significantly better than
NB and TAN. When compared with the ensembles, UK1DB and UK2DB still had a slight advantage
over AODE and achieved significant advantages over WATAN and TANe. Most importantly, UK1DB
performed better than K1DB and UK2DB better than K2DB, although the advantage was not significant,
which provides solid evidence for the effectiveness of UTL.

Table 4. W/D/L of the F1-score on 40 datasets.

W/D/L NB TAN K1DB K2DB AODE WATAN TANe UK1DB

TAN 12/22/6
K1DB 15/19/6 7/31/2
K2DB 15/16/9 7/29/4 6/31/3
AODE 15/24/1 7/28/5 7/29/4 10/23/7
WATAN 13/22/5 2/34/4 7/31/2 7/29/4 7/26/7
TANe 15/20/5 2/32/6 3/29/8 6/26/8 6/28/6 2/33/5
UK1DB 19/17/4 10/27/3 8/30/2 9/26/5 6/30/4 10/27/3 10/30/0
UK2DB 24/14/2 12/25/3 9/26/5 8/26/6 7/28/5 11/27/2 19/17/4 4/33/3

4.2. Goal Difference

To further compare the performance of UKDB with other mentioned algorithms in terms of data size,
the Goal Difference (GD) [51,52] was introduced. Suppose for two classifiers A, B, we compute the value
of GD as follows:

GD(A; B|T ) = |win| − |loss|. (17)

where T represents the datasets for comparison and |win| and |loss| are respectively the numbers of
datasets on which the classification performance of A is better or worse than that of B.

Figures 3 and 4 respectively show the fitting curve of GD(UK1DB; K1DB|St) and GD(UK2DB;
K2DB|St) in terms of the zero-one loss. The X-axis represents the indexes of datasets described in
Table 1 (referred to as t), and the Y-axis respectively represents the values of GD(UK1DB; K1DB|St) and
GD(UK2DB; K2DB|St), where St denotes the collection of datasets, i.e., St = {Dm|m ≤ t} and Dm is the
dataset with index m.

From Figure 3, we can see that UK1DB achieved significant advantage over K1DB, and only on a
few large datasets (nursery, seer-mdl, adult), the advantage was not obvious. Similarly, from Figure 4,
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we can see that there was an obvious positive correlation between the values of GD(UK2DB; K2DB|St)
and the dataset size. The advantage of UK2DB over K2DB was much more obvious than that of UK1DB
over K1DB on small and medium datasets. This superior performance is owed to the ensemble learning
mechanism of UTL. UTL played a very important role in discovering proper dependency relationships that
exist in testing instances. Since UTL replaces redundant dependency relationships with more meaningful
ones, we can infer that UKDB retains the advantages of KDB, i.e., the ability to represent an arbitrary
degree of dependence and to fit training data. This demonstrates the feasibility of applying UTL to search
for proper dependency relationships. When dealing with large datasets, overfitting may lead to high
variance and classification bias; thus, the advantage of UKDB over KDB was not obvious when k = 1 or
k = 2.
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Figure 3. Goal Difference (GD(UK1DB; K1DB|T )) in terms of zero-one loss.
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Figure 4. GD(UK2DB; K2DB|T ) in terms of zero-one loss.

For imbalanced datasets, the number of instances with different class labels will vary greatly, and
that may lead to the estimate bias of the conditional probability. In this paper, the entropy function of
class variable C, i.e., H(C), is introduced to measure the extent to which the datasets are imbalanced.
UTL refines the network structure of BNCT and BNCP according to the attribute values rather than the
class label of testing instance U. The negative effect caused by the imbalanced distribution of C will be
mitigated to a certain extent. From Figures 5 and 6, we can see that the advantage of UKDB over KDB
becomes more and more significant as H(C) > 0.8. Thus, these datasets with H(C) > 0.8 are supposed to
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be relatively imbalanced and highlighted in Tables A1–A3. Table 5 reports the corresponding H(C) values
of these 40 datasets.
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Figure 5. GD(UK1DB; K1DB|H(C)) in terms of zero-one loss.
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Figure 6. GD(UK2DB; K2DB|H(C)) in terms of zero-one loss.
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Table 5. The H(C)values for the 40 datasets.

Index Dataset H(C) Index Dataset H(C)
1 contact-lenses 1.0536 21 tic-tac-toe 0.9281
2 lung-cancer 1.5522 22 german 0.8804
3 post-operative 0.9679 23 car 1.2066
4 zoo 2.3506 24 mfeat-mor 3.3210
5 echocardiogram 0.9076 25 hypothyroid 0.2653
6 lymphography 1.2725 26 kr-vs-kp 0.9981
7 iris 1.5846 27 dis 0.1147
8 teaching-ae 1.5828 28 abalone 1.5816
9 wine 1.5664 29 waveform-5000 1.5850
10 autos 2.2846 30 phoneme 4.7175
11 glass-id 1.5645 31 wall-following 1.7095
12 hungarian 0.9579 32 page-blocks 0.6328
13 heart-disease-c 0.9986 33 thyroid 1.7151
14 primary-tumor 3.7054 34 sign 1.5832
15 horse-colic 0.9533 35 nursery 1.7149
16 house-votes-84 0.9696 36 seer_mdl 0.9475
17 cylinder-bands 0.9888 37 adult 0.7944
18 balance-scale 1.3112 38 localization 2.7105
19 credit-a 0.9911 39 poker-hand 0.9698
20 pima-ind-diabetes 0.9372 40 donation 0.0348

4.3. Relative Zero-One Loss Ratio

The criterion relative zero-one loss ratio can measure the extent of which classifier A1 performs
relatively better or worse than A2 on different datasets. For instance, on dataset D1, the zero-one losses
of classifier A1 and A2 were respectively 55% and 50%; whereas on dataset D2, the zero-one losses of
classifier A1 and A2 were respectively 0% and 5%. Although the zero-one loss difference were always 5%
for both cases, A1 performed relatively better on dataset D2 than A2 on dataset D1. Given two classifiers
A, B, the relative zero-one loss ratio, referred to as RZ (·), is defined as follows:

RZ (A|B) = 1− ZA
ZB

. (18)

where ZA(orB) denotes the value of the zero-one loss of classifier A(or B) on a specific dataset. The higher
the value of RZ (A|B), the better the performance of classifier A relative to classifier B.

Figure 7 presents the comparison results of RZ (·) of UK2DB and K2DB, UK1DB, and K1DB. The X-axis
represents the index of the dataset, and the Y-axis shows the value of RZ (·). As we can observe intuitively,
on most datasets, the values of RZ(UK2DB|K2DB) and RZ(UK1DB|K1DB) were positive, which demonstrates that
UKDB achieved significant advantages over KDB no matter k = 1 or k = 2. Generally, in many cases, the
difference between RZ(UK2DB|K2DB) and RZ(UK1DB|K1DB) was not obvious; thus, the working mechanism
of UTL makes it insensitive to the structure complexity. For the first 10 datasets, the effectiveness of
UTL was less significant. UK1DB beat K1DB on six datasets and lost on four, and UK2DB performed
similarly. From Table 1, among these datasets on which UTL performed poorer, contact-lenses (No. 1),
echocardiogram (No. 5), and iris (No. 7) had a small number of attributes, i.e., respectively 4, 6, and 4
attributes. A small dataset may lead to low confidence estimate of the probability distribution and then
low-confidence estimate of Ĥ(Xj|C, Πj). A small number of attributes makes it more difficult for UTL
to adjust the dependency relationships dynamically. However, as the size of datasets increased, UKDB
generally achieved more significant advantages over KDB. For the last 30 datasets, UTL only performed
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poorer on a few datasets, e.g., hypothyroid (No. 25), and among theses datasets, UK2DB worked much
better than UK1DB. From the above discussion, we can come to the conclusion that the UTL framework
was effective at identifying significant conditional dependencies implicated in testing instance, whereas
enough data for assuring high-confidence probability estimate was a necessary prerequisite.
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Figure 7. The comparison results of the relative zero-one loss ratio between UKDB and KDB when k = 1
and k = 2.

4.4. Training and Classification Time

The comparison results of time for training and classifying are respectively displayed in
Figures 8 and 9. Each bar shows the sum time of 40 datasets.
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Figure 8. Training time of NB, TAN, K1DB, K2DB, AODE, WATAN, TANe, UK1DB, and UK2DB.
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Figure 9. Classification time of NB, TAN, K1DB, K2DB, AODE, WATAN, TANe, UK1DB, and UK2DB.

From Figure 8, we can observe that our proposed algorithms UK1DB and UK2DB substantially
needed more training time than the rest of the classifiers considered, i.e., NB, TAN, K1DB, K2DB, AODE,
WATAN, and TANe. UK2DB spent slightly more training time than UK1DB on account of more dependency
relationships existing in UK2DB. On the other hand, as shown in Figure 9, due to the ensemble learning
strategy of UTL, NB, TAN, AODE, K1DB, and K2DB consumed less classification time than UKDB when
k = 1 or k = 2. This was due to the fact that during the learning process, UTL recursively tries to find the
stronger dependency relationships for each testing instance based on log likelihood. UK1DB and UK2DB
had similar time cost for classifying. Although UKDB generally had more training time and classification
time than other BNCs, it had higher classification accuracy. Compared to KDB, UKDB delivered markedly
lower zero-one loss, also causing too much average computation overhead. The advantage of UTL for
improving classification accuracy came at a cost in training time and classification time.
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4.5. Global Comparison

We performed the comparison of our algorithm and other algorithms with the Nemenyi test in
Figure 10 proposed by Demšar [53]. If two classifiers’ average ranks are diverse by at least the Critical
Difference (CD), their performance differs significantly. The value of CD can be calculated as follows:

CD = qff

√
t(t + 1)

6N
. (19)

where the critical value qα for α = 0.05 and t = 9 is 3.102 [53]. Given nine algorithms and 40 datasets, the
critical difference (CD) is CD = 3.102×

√
9× (9+ 1)/(6× 40) = 1.8996. We plot the algorithms on the left

line according to their average ranks, which are indicated on the parallel right line. Critical Difference (CD) is
also presented in the graphs. The lower the position of algorithms, the lower the ranks will be, and hence
the better the performance. The algorithms are connected by a line if their differences are not significant. As
shown in Figure 10, UK2DB achieved the lowest mean zero-one loss rank, followed by UK1DB. The average
rank of UK2DB and UK1DB was significantly better than NB, TAN, K1DB, and K2DB, demonstrating the
effectiveness of the proposed universal target learning framework. Compared with the ensemble models
AODE, WATAN, and TANe, UK2DB and UK1DB also achieved lower ranks, but not significantly.
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Figure 10. Zero-one loss comparison with the Nemenyi test.

5. Conclusions and Future Work

BNCs can graphically represent the dependency relationships implicit in training data and they have
been previously demonstrated to be effective and efficient. On the basis of analyzing and summarizing
the state-of-the-art BNCs in terms of log likelihood, this paper proposed a novel learning framework for
BNC learning, UTL. Our experiments showed its advantages from the comparison results of zero-one loss,
RMSE, F1-score, etc. UTL can help refine the network structure by fully mining the significant conditional
dependencies among attribute values in a specific instance. The application of UTL is time-consuming, and we
will seek methods to make it more effective. The research work on extending TL will be very promising.
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Appendix A

Table A1. Zero-one loss results of NB, TAN, AODE, WATAN, TANe, K1DB, K2DB, UK1DB, and UK2DB.

Index Datasets NB TAN AODE WATAN TANe K1DB K2DB UK1DB UK2DB

1 contact-lenses 0.3750 0.3750 0.3750 0.4583 0.3750 0.2917 0.2500 0.3333 0.3333
2 lung-cancer 0.4375 0.5938 0.5000 0.6250 0.6563 0.5938 0.5625 0.5625 0.5938
3 post-operative 0.3444 0.3667 0.3333 0.3667 0.3444 0.3444 0.3778 0.3556 0.3333
4 zoo 0.0297 0.0099 0.0297 0.0198 0.0099 0.0495 0.0495 0.0198 0.0297
5 echocardiogram 0.3359 0.3282 0.3206 0.3282 0.3282 0.3053 0.3435 0.3206 0.3282
6 lymphography 0.1486 0.1757 0.1689 0.1689 0.1689 0.1757 0.2365 0.1486 0.1554
7 iris 0.0867 0.0800 0.0867 0.0800 0.0867 0.0867 0.0867 0.0867 0.0733
8 teaching-ae 0.4967 0.5497 0.4901 0.5364 0.5166 0.5430 0.5364 0.4702 0.4503
9 wine 0.0169 0.0337 0.0225 0.0337 0.0337 0.0393 0.0225 0.0225 0.0169
10 autos 0.3122 0.2146 0.2049 0.2146 0.2000 0.2146 0.2049 0.2049 0.2000
11 glass-id 0.2617 0.2196 0.2523 0.2196 0.2103 0.2243 0.2196 0.2150 0.2056
12 hungarian 0.1599 0.1701 0.1667 0.1735 0.1599 0.1701 0.1803 0.1633 0.1463
13 heart-disease-c 0.1815 0.2079 0.2013 0.2046 0.1881 0.2079 0.2244 0.1914 0.2013
14 primary-tumor 0.5457 0.5428 0.5752 0.5428 0.5575 0.5693 0.5723 0.5457 0.5339
15 horse-colic 0.2174 0.2092 0.2011 0.2120 0.2038 0.2174 0.2446 0.2065 0.2092
16 house-votes-84 0.0943 0.0552 0.0529 0.0529 0.0552 0.0690 0.0506 0.0552 0.0391
17 cylinder-bands 0.2148 0.2833 0.1889 0.2463 0.1833 0.2278 0.2259 0.1815 0.1815
18 balance-scale 0.2720 0.2736 0.2832 0.2736 0.2784 0.2816 0.2784 0.2640 0.2640
19 credit-a 0.1406 0.1507 0.1391 0.1507 0.1391 0.1551 0.1464 0.1348 0.1377
20 pima-ind-diabetes 0.2448 0.2383 0.2383 0.2370 0.2383 0.2422 0.2448 0.2357 0.2331
21 tic-tac-toe 0.3069 0.2286 0.2651 0.2265 0.2724 0.2463 0.2035 0.2317 0.1733
22 german 0.2530 0.2730 0.2480 0.2760 0.2590 0.2760 0.2890 0.2560 0.2680
23 car 0.1400 0.0567 0.0816 0.0567 0.0579 0.0567 0.0382 0.0741 0.0723
24 mfeat-mor 0.3140 0.2970 0.3145 0.2980 0.3050 0.2990 0.3060 0.3080 0.3070
25 hypothyroid 0.0149 0.0104 0.0136 0.0104 0.0092 0.0107 0.0107 0.0098 0.0101
26 kr-vs-kp 0.1214 0.0776 0.0842 0.0776 0.0566 0.0544 0.0416 0.0485 0.0454
27 dis 0.0159 0.0159 0.0130 0.0154 0.0162 0.0146 0.0138 0.0141 0.0127
28 abalone 0.4762 0.4587 0.4472 0.4582 0.4554 0.4633 0.4563 0.4539 0.4554
29 waveform-5000 0.2006 0.1844 0.1462 0.1844 0.1650 0.1820 0.2000 0.1598 0.1642
30 phoneme 0.2615 0.2733 0.2392 0.2345 0.2429 0.2120 0.1984 0.1901 0.1841
31 wall-following 0.1054 0.0554 0.0370 0.0550 0.0462 0.0462 0.0401 0.0389 0.0295
32 page-blocks 0.0619 0.0415 0.0338 0.0418 0.0342 0.0433 0.0391 0.0364 0.0358
33 thyroid 0.1111 0.0720 0.0701 0.0723 0.0726 0.0693 0.0706 0.0835 0.0669
34 sign 0.3586 0.2755 0.2821 0.2752 0.2713 0.2881 0.2539 0.2713 0.2572
35 nursery 0.0973 0.0654 0.0730 0.0654 0.0617 0.0654 0.0289 0.0702 0.0555
36 seer_mdl 0.2379 0.2376 0.2328 0.2374 0.2332 0.2367 0.2555 0.2363 0.2367
37 adult 0.1592 0.1380 0.1493 0.1380 0.1326 0.1385 0.1383 0.1382 0.1347
38 localization 0.4955 0.3575 0.3596 0.3575 0.3610 0.3706 0.2964 0.3319 0.3112
39 poker-hand 0.4988 0.3295 0.4812 0.3295 0.0763 0.3291 0.1961 0.0618 0.0752
40 donation 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
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Table A2. RMSE results of NB, TAN, AODE, WATAN, TANe, K1DB, K2DB, UK1DB, and UK2DB.

Index Datasets NB TAN AODE WATAN TANe K1DB K2DB UK1DB UK2DB

1 contact-lenses 0.5017 0.6077 0.5258 0.5737 0.5736 0.5024 0.4996 0.5136 0.5033
2 lung-cancer 0.6431 0.7623 0.6915 0.7662 0.7069 0.7523 0.7313 0.6942 0.7391
3 post-operative 0.5103 0.5340 0.5215 0.5358 0.5157 0.5289 0.5632 0.5256 0.5289
4 zoo 0.1623 0.1309 0.1536 0.1341 0.1313 0.1984 0.1815 0.1426 0.1428
5 echocardiogram 0.4896 0.4886 0.4903 0.4890 0.4852 0.4846 0.4889 0.4878 0.4891
6 lymphography 0.3465 0.3813 0.3556 0.3857 0.3761 0.3726 0.4362 0.3614 0.3571
7 iris 0.2545 0.2441 0.2544 0.2435 0.2505 0.2435 0.2447 0.2628 0.2407
8 teaching-ae 0.6204 0.6300 0.6117 0.6242 0.6191 0.6332 0.6286 0.6286 0.6262
9 wine 0.1134 0.1746 0.1245 0.1748 0.1583 0.1761 0.1501 0.1355 0.1374
10 autos 0.5190 0.4475 0.4397 0.4420 0.4362 0.4460 0.4399 0.4252 0.4385
11 glass-id 0.4353 0.4109 0.4235 0.4087 0.4036 0.4223 0.4205 0.4179 0.4020
12 hungarian 0.3667 0.3429 0.3476 0.3418 0.3315 0.3380 0.3552 0.3534 0.3444
13 heart-disease-c 0.3743 0.3775 0.3659 0.3783 0.3583 0.3810 0.3963 0.3802 0.3877
14 primary-tumor 0.7084 0.7170 0.7155 0.7166 0.7154 0.7190 0.7262 0.7085 0.7048
15 horse-colic 0.4209 0.4205 0.4015 0.4215 0.3951 0.4131 0.4348 0.4164 0.4247
16 house-votes-84 0.2997 0.2181 0.1994 0.2181 0.2126 0.2235 0.1969 0.2221 0.1779
17 cylinder-bands 0.4291 0.4358 0.4080 0.4277 0.3973 0.4435 0.4431 0.4077 0.4083
18 balance-scale 0.4431 0.4344 0.4350 0.4344 0.4414 0.4384 0.4323 0.4279 0.4286
19 credit-a 0.3350 0.3415 0.3271 0.3407 0.3300 0.3416 0.3480 0.3336 0.3355
20 pima-ind-diabetes 0.4147 0.4059 0.4078 0.4059 0.4044 0.4054 0.4074 0.4095 0.4082
21 tic-tac-toe 0.4309 0.4023 0.3995 0.4023 0.4216 0.4050 0.3772 0.4134 0.3421
22 german 0.4204 0.4367 0.4161 0.4373 0.4206 0.4389 0.4665 0.4364 0.4531
23 car 0.3395 0.2405 0.3022 0.2406 0.2565 0.2404 0.2031 0.2426 0.2358
24 mfeat-mor 0.4817 0.4657 0.4710 0.4660 0.4686 0.4665 0.4707 0.4673 0.4652
25 hypothyroid 0.1138 0.0955 0.1036 0.0951 0.0933 0.0956 0.0937 0.0931 0.0928
26 kr-vs-kp 0.3022 0.2358 0.2638 0.2358 0.2417 0.2159 0.1869 0.1992 0.1866
27 dis 0.1177 0.1103 0.1080 0.1098 0.1084 0.1072 0.1024 0.1059 0.1021
28 abalone 0.5871 0.5638 0.5559 0.5637 0.5596 0.5653 0.5646 0.5654 0.5625
29 waveform-5000 0.4101 0.3611 0.3257 0.3610 0.3417 0.3618 0.3868 0.3474 0.3568
30 phoneme 0.4792 0.5048 0.4689 0.4676 0.4796 0.4385 0.4195 0.4055 0.4091
31 wall-following 0.3083 0.2245 0.1829 0.2223 0.1989 0.2050 0.1930 0.1884 0.1642
32 page-blocks 0.2331 0.1894 0.1629 0.1895 0.1646 0.1940 0.1811 0.1739 0.1696
33 thyroid 0.3143 0.2443 0.2425 0.2431 0.2403 0.2414 0.2423 0.2493 0.2331
34 sign 0.5270 0.4615 0.4702 0.4614 0.4682 0.4759 0.4370 0.4581 0.4387
35 nursery 0.2820 0.2194 0.2503 0.2194 0.2252 0.2193 0.1776 0.2177 0.2003
36 seer_mdl 0.4233 0.4131 0.4112 0.4132 0.4071 0.4131 0.4340 0.4214 0.4219
37 adult 0.3409 0.3076 0.3245 0.3076 0.3024 0.3071 0.3089 0.3167 0.3132
38 localization 0.6776 0.5656 0.5856 0.5656 0.5776 0.5767 0.5106 0.5471 0.5169
39 poker-hand 0.5801 0.4987 0.5392 0.4987 0.4390 0.4987 0.4055 0.3736 0.3500
40 donation 0.0123 0.0050 0.0114 0.0050 0.0079 0.0050 0.0046 0.0064 0.0055
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Table A3. F1-score results of NB, TAN, AODE, WATAN, TANe, K1DB, K2DB, UK1DB, and UK2DB.

Index Datasets NB TAN AODE WATAN TANe K1DB K2DB UK1DB UK2DB

1 contact-lenses 0.4540 0.3778 0.3856 0.3377 0.3619 0.5748 0.6875 0.4878 0.4878
2 lung-cancer 0.5699 0.4211 0.5030 0.3922 0.3545 0.4163 0.4359 0.4188 0.3799
3 post-operative 0.2658 0.2981 0.3065 0.2981 0.3025 0.3185 0.3068 0.3154 0.2898
4 zoo 0.9237 0.9948 0.9296 0.9756 0.9824 0.8879 0.8805 0.9622 0.9364
5 echocardiogram 0.5631 0.5406 0.5658 0.5406 0.5406 0.5774 0.5078 0.5563 0.5507
6 lymphography 0.8720 0.7221 0.6856 0.5614 0.5618 0.7896 0.5281 0.8054 0.6357
7 iris 0.9133 0.9200 0.9133 0.9200 0.9133 0.9133 0.9133 0.9133 0.9267
8 teaching-ae 0.5011 0.4515 0.5051 0.4649 0.4832 0.4588 0.4660 0.5263 0.5481
9 wine 0.9832 0.9664 0.9780 0.9664 0.9664 0.9606 0.9780 0.9773 0.9832
10 autos 0.7825 0.8457 0.5792 0.8482 0.8606 0.8482 0.8596 0.8691 0.8685
11 glass-id 0.7400 0.7863 0.7564 0.7863 0.7968 0.7807 0.7864 0.7880 0.7994
12 hungarian 0.8224 0.8115 0.8148 0.8082 0.8232 0.8132 0.8033 0.8215 0.8390
13 heart-disease-c 0.8169 0.7894 0.7972 0.7926 0.8095 0.7897 0.7738 0.8070 0.7961
14 primary-tumor 0.3185 0.3307 0.2924 0.3139 0.2894 0.2848 0.2891 0.2880 0.2949
15 horse-colic 0.7701 0.7730 0.7849 0.7704 0.7781 0.7645 0.7391 0.7784 0.7706
16 house-votes-84 0.9021 0.9419 0.9444 0.9444 0.9419 0.9276 0.9468 0.9422 0.9591
17 cylinder-bands 0.7628 0.6799 0.7979 0.7310 0.8041 0.7570 0.7588 0.8084 0.8088
18 balance-scale 0.5051 0.5041 0.4974 0.5041 0.5007 0.4985 0.5020 0.5108 0.5107
19 credit-a 0.8565 0.8469 0.8586 0.8470 0.8591 0.8424 0.8515 0.8639 0.8607
20 pima-ind-diabetes 0.7287 0.7317 0.7327 0.7334 0.7290 0.7311 0.7272 0.7319 0.7365
21 tic-tac-toe 0.6358 0.7300 0.6847 0.7330 0.6283 0.7131 0.7649 0.6853 0.7825
22 german 0.6880 0.6647 0.6824 0.6599 0.6569 0.6507 0.6451 0.6578 0.6509
23 car 0.6607 0.9175 0.7569 0.9175 0.8903 0.9175 0.9354 0.8685 0.8464
24 mfeat-mor 0.6759 0.7001 0.6797 0.6994 0.6927 0.6988 0.6905 0.6863 0.6874
25 hypothyroid 0.9251 0.9424 0.9299 0.9424 0.9488 0.9409 0.9405 0.9469 0.9447
26 kr-vs-kp 0.8782 0.9223 0.9154 0.9223 0.9432 0.9455 0.9583 0.9514 0.9546
27 dis 0.7460 0.5674 0.7799 0.5818 0.4959 0.6196 0.6870 0.6610 0.7041
28 abalone 0.5047 0.5367 0.5476 0.5372 0.5338 0.5334 0.5384 0.5396 0.5400
29 waveform-5000 0.7886 0.8159 0.8532 0.8159 0.8351 0.8182 0.8002 0.8395 0.8350
30 phoneme 0.6971 0.6778 0.6551 0.7235 0.7087 0.7838 0.7908 0.7823 0.7781
31 wall-following 0.8742 0.9333 0.9564 0.9337 0.9445 0.9440 0.9514 0.9526 0.9613
32 page-blocks 0.7530 0.8219 0.8324 0.8199 0.8300 0.8130 0.8174 0.8189 0.8317
33 thyroid 0.6103 0.6065 0.6897 0.5947 0.6108 0.6114 0.5752 0.6503 0.6426
34 sign 0.6373 0.7228 0.7163 0.7230 0.7275 0.7099 0.7456 0.7269 0.7412
35 nursery 0.5709 0.6130 0.6047 0.6131 0.6134 0.6131 0.7053 0.6138 0.6509
36 seer_mdl 0.7363 0.7283 0.7364 0.7285 0.7303 0.7284 0.7082 0.7316 0.7292
37 adult 0.7986 0.8063 0.8070 0.8063 0.8092 0.8052 0.8028 0.8112 0.8133
38 localization 0.2396 0.3955 0.3686 0.3953 0.3707 0.3817 0.4742 0.4060 0.4383
39 poker-hand 0.0668 0.1919 0.0789 0.1920 0.1920 0.1912 0.2552 0.2749 0.2826
40 donation 0.9872 0.9977 0.9878 0.9977 0.9973 0.9977 0.9983 0.9947 0.9975
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