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Abstract: Macroscopic fields such as electromagnetic, magnetohydrodynamic, acoustic or
gravitational waves are usually described by classical wave equations with possible additional
damping terms and coherent sources. The aim of this paper is to develop a complete macroscopic
formalism including random/thermal sources, dissipation and random scattering of waves by
environment. The proposed reduced state of the field combines averaged field with the two-point
correlation function called single-particle density matrix. The evolution equation for the reduced state
of the field is obtained by reduction of the generalized quasi-free dynamical semigroups describing
irreversible evolution of bosonic quantum field and the definition of entropy for the reduced state of
the field follows from the von Neumann entropy of quantum field states. The presented formalism
can be applied, for example, to superradiance phenomena and allows unifying the Mueller and Jones
calculi in polarization optics.

Keywords: classical field theory; quantum open systems; von Neumann entropy; Mueller Jones calculi

1. Introduction

It is generally believed that low frequency waves appearing in the macroscopic world such as
various types of mechanical waves including acoustic ones, magnetohydrodynamic, radio-frequency
electromagnetic or gravitational waves can be successfully described using classical wave equations
with external sources [1]. This is certainly true for coherent deterministic sources while the case of
thermal and generally random sources is much more problematic. It is not obvious how to incorporate
classical waves as a part of thermodynamical system where exchange of heat, entropy production
and generation of work should be taken into account. A simple addition of damping terms to wave
equations is not sufficient. In particular, the question of defining entropy for macroscopic fields and
appropriate formulation of the Second Law is still an open problem. On the other hand, it is clear that
the ultimate fundamental description of physical systems should be given by the quantum theory.
However, the full formalism of the quantum field theory is too complicated and not convenient for
practical applications. In most cases, the relevant observables (energy, mass, momentum, angular
momentum, and polarization) are given by quadratic forms of fields and the linear approximation for
dynamical equations is sufficient or can be easily amended by self-consistent non-linear corrections.
This is similar to the case of classical gas where the description in terms of particle density in the
single-particle phase-space and the dynamics given by (linear) Boltzmann equation is more useful
than the complete N-body formalism.

The aim of this paper is to propose a novel approach to macroscopic description of fields based
on the notions of single-particle density matrix and averaged field (called here reduced state of
the field). This formalism allows computing all additive quantities including the entropy of the
macroscopic field also introduced here. The definition of entropy involves maximum entropy principle
applied to the von Neumann entropy of quantum field. A new family of quantum Markovian master
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equations is proposed, generalizing the previous framework of quasi-free quantum dynamical maps
and semigroups [2–5]. It includes processes of linear damping/pumping and random scattering of
waves by an environment. The exact reduction procedure is performed leading to kinetic equations
for the reduced states of the field. For the case of purely reversible processes, these kinetic equations
reduce further to standard wave equations.

To illustrate in the simplest way the quantum features of classical fields, we begin with
the discussion of light polarization in terms of Stokes parameters and its quantum-mechanical
interpretation. Then, we present a complete description of a quantum field in terms of modes and its
First Quantization interpretation, where the classical field is treated as a (not normalized) quantum
wave function of the corresponding (quasi)particle. The further step called Second Quantization allows
describing irreversible processes in terms of Markovian Master Equations for density matrices acting
of the corresponding bosonic Fock space. In the final step, we develop the reduced state of the field
formalism and apply it to the case of thermal sources and polarization optics.

2. Jones and Mueller Formalism for Light Polarization

In optics, polarized light can be described using the Jones calculus, while the partially polarized
one is treated using Mueller calculus [6].

Consider first a monochromatic plane wave of light propagating along Axis 3 in a Cartesian frame
with the basis ε̂k, k = 1, 2, 3. The (pure) state of polarization is specified by the complex amplitudes of
the electric field, E1 and E2, in a basis (ε̂1, ε̂2) The pair (E1, E2) is called the Jones vector and contains
both amplitudes and phases of two orthogonal components of the wave electric field. The relevant
parameter is the normalization of the Jones vector

s0 = |E1|2 + |E2|2 (1)

which is proportional to the energy density of the wave, hence also to the intensity of light beam I,
and, using quantum picture of light, to the averaged photon number N. All those interpretations of
s0 can be useful in applications. With a given Jones vector, we can associate a 2× 2 complex-valued
matrix with matrix elements EkĒ`. The main idea of Stokes was to average those matrix elements with
respect to fluctuations due either to slow fluctuations in time or the contribution to the light beam
from different uncorrelated sources. Such a Stokes matrix Ŝ can be decomposed with respect to Pauli
matrices {σ̂k, k = 1, 2, 3} as

Ŝ ≡ [〈EkĒ`〉] =
1
2

3

∑
µ=0

sµσ̂µ (2)

with unite matrix σ̂0 ≡ 1. The real parameters sµ are called Stokes parameters and form a
four-dimensional Stokes vector s ≡ (s0,~s). As the Stokes matrix Ŝ is positively defined, the Stokes
vector satisfies inequality

s2
0 ≥ s2

1 + s2
2 + s2

3. (3)

Stokes anticipated that those parameters provide a complete description of polarization state of the
monochromatic light beam. This assumption lies behind the Mueller calculus, which describes the
action of any linear optical device by 4× 4 Mueller matrixM = [Mµν] acting on the input Stokes
vector S and yielding the output one S′

s′µ =
s

∑
ν=0

Mµν sν. (4)

Although the Stokes matrix/vector is constructed from classical correlations between components
of the classical electric fields, the above completeness assumption is not consistent with the classical
probabilistic scheme. Namely, by treating polarization as a classical dynamical variable, each fully
polarized state of light satisfying the equality in Equation (3) with a fixed intensity s0 corresponds
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to a pure state of the system. The set of all such pure states form the so-called Poincare sphere.
Therefore, a classical mixed state of polarization corresponding to a partially or completely polarized
monochromatic light beam with a given intensity should be described by a probability measure on the
Poincare sphere. Hence, the set of all mixed states is an infinite-dimensional simplex of all probability
measures on the Poincare sphere generated by extreme points—the Dirac measures concentrated on all
points of the sphere. On the other hand, in Stokes formalism, any mixed state of polarization is given
by the three-dimensional vector with the length smaller or equal to s0. This is completely equivalent to
the description of quantum mixed states for the two-level systems with Poincare sphere replaced by
Bloch sphere. Therefore, one can say that Stokes was the first who discovered the quantum nature of
light, but similarly to Columbus was not aware of the meaning of his discovery [7].

The equivalence mentioned above sheds a new light on the Jones and Mueller calculi, which are
useful tools in polarization optics. Namely, using the well-known results from the quantum theory of
open systems [5,8,9], we can assume that any Mueller matrix corresponds to a completely positive
map Φ such that Equation (4) is equivalent to

Ŝ′ = Φ(Ŝ) = ∑
α

V̂αŜV̂†
α (5)

where the 2 × 2 complex matrices V̂α are not uniquely defined, but one can always find the
representation of Φ with at most four such matrices. The special case is a map Φ given by a single
matrix V̂, which means that each completely polarized state is transformed into another completely
polarized one, albeit with different intensity. Therefore, one can restrict the description to map V̂ acting
on Jones vectors, which is the essence of Jones calculus.

The general Mueller map is completely positive but not trace preserving as Tr(Ŝ) = s0 and the
intensity can change under the action of linear optics device. In principle, this theory describes not
only absorption of light by the passive devices but also its amplification by active medium.

The natural question, related to the thermodynamic properties of polarized light, is the definition
of entropy for a monochromatic light beam with a given polarization state described by Ŝ. This question
is discussed in Section 4 after generalization of Stokes formalism to other degrees of freedom of the
macroscopic field.

3. First- and Second-Quantization of Classical Field

In this paper, we restrict ourselves to the classical field occupying a finite volume and hence
described by the set of complex modes fk(x), where x is the position vector and k denotes a discrete
index. The modes evolve in time according to the formula

fk(x; t) = e−iωkt fk(x) (6)

and the arbitrary solution of the corresponding wave equation can be represented by linear combination
of modes.

In the picture of first-quantization modes, { fk} correspond to (generally not normalized) energy
eigenstates of the single-particle Hamiltonian ĥ describing a single (quasi)particle associated with the
field (e.g., photon, graviton, phonon, magnon, etc.). The quantum single-particle Hilbert spaceH is
spanned by those modes, with a proper normalization such that:

(1) { fk} form an orthonormal basis inH; and
(2) the classical energy of the field mode fk equals h̄ωk.

From now on, we identify the classical field configuration represented by the linear superposition
of modes with the corresponding vector in the Hilbert space of the first quantization. Therefore, the only
mathematical difference between classical field and the first-quantization interpretation is the chosen
normalization. In the first case, we normalize field to the given energy or intensity, while in the second
case to one treating classical field as a wave function of a single particle.
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The second-quantization formalism describes the quantum field in terms of bosonic Fock spaceHF
with a set of annihilation and creation operators {âk, â†

k} corresponding to the modes { fk}. They satisfy
the canonical commutation relations

[âk, âk′ ] = [â†
k , â†

k′ ] = 0, [âk, â†
k′ ] = δkk′ . (7)

The Fock space is spanned by the vectors obtained by application of all monomials in creation
operators acting on the vacuum state (

âk1

)n1
(
â†

k2

)n2 . . .
(
â†

km

)nm |0〉. (8)

For any vector |α〉 = ∑k αk|k〉 in the single-particle Hilbert space there exists a normalized
vector (pure state) |αF〉 in the Fock space, called coherent state, which is a joint eigenvector of all
annihilation operators

âk|αF〉 = αk|αF〉. (9)

The coherent state can be explicitly written as

|αF〉 =
∞

∑
n=0

1√
n!

(
â†[α]

)n|0〉 where â†[α] ≡∑
k

αk â†
k , (10)

or, introducing the Weyl unitary operators Ŵ[α] on the Fock space, as

|αF〉 = Ŵ[α]|0〉, where Ŵ[α] = e(â[α]−â† [α]). (11)

The coherent state |αF〉 can be treated as the quantum analog of the classical field |α〉.
In the following, we restrict ourselves to two classes of operators acting on the Fock space obtained

by two different lifting procedures applied to operators acting on the single-particle Hilbert space.
The single particle observable b̂ expressed in the basis {|k〉 ≡ | fk〉} as

b̂ = ∑
k,k′

bkk′ |k〉〈k′| (12)

produces an additive observable on the Fock spaceHF of the form

B̂ = ∑
k,k′

bkk′ â
†
k âk′ . (13)

In particular, for the Hamiltonian, we have

ĥ = h̄ ∑
k

ωk|k〉〈k|, Ĥ = h̄ ∑
k

ωk â†
k âk , (14)

and the number operator is denoted by N̂ = ∑k â†
k âk.

Any unitary operator û acting on the single-particle Hilbert space extends to the Fock space
multiplicative unitary Û, which can be defined in two equivalent ways

û = eib̂, Û = eiB̂, (15)

or
ÛĈÛ† = D̂, where d̂ = ûĉû†. (16)

The action of Û can be also defined in terms of coherent states or Weyl unitaries

Û|αF〉 = |(uα)F〉, ÛŴ[α]Û† = Ŵ[uα] (17)
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where |uα〉 ≡ û|α〉.
For the non-interacting field with dynamics governed by linear field equations with possible

external classical and coherent sources, the fundamental measurable quantities, such as energy,
momentum and angular momentum are additive observables. Therefore, instead of the full density
matrix ρ̂F acting of the Fock space HF , we can use the single-particle density matrix ρ̂ acting on the
single-particle Hilbert spaceH. The reduction map ρ̂F ⇒ ρ̂ satisfies the following conditions

Tr(ρ̂F B̂) = tr(ρ̂b̂). (18)

and
Ûρ̂FÛ† ⇒ ûρ̂û†. (19)

Here, the trace Tr always refers to the Fock spaceHF and tr to theH.
The explicit form of a single-particle density matrix is given by

ρ̂ = ∑
k,k′

Tr(ρ̂F â†
k′ âk)|k〉〈k′|, (20)

which can be treated as the generalization of the idea of Stokes matrix to other degrees of freedom,
beyond polarization. Notice that the single-particle density matrix is normalized to the averaged
number of particles,

trρ̂ = N = Tr(ρ̂F N̂). (21)

The additional information about the phases of the field is contained in the averaged field |α〉,
which is a vector in the single-particle Hilbert spaceH defined as

|α〉 = ∑
k

Tr(ρ̂F âk)|k〉, (22)

generalizing the idea of Jones vector.
The definitions in Equations (13) and (20) imply that the correlation matrix given by the formula

ρ̂α = ρ̂− |α〉〈α| ≥ 0 (23)

is a positive operator on the single-particle Hilbert space.
The reduced description in terms of the pair (ρ̂, |α〉) called reduced state of the field contains sufficient

information about the most important properties of the macroscopic field interacting with environment.
The reduced state of field is called pure if ρ̂ = |α〉〈α| or, equivalently ρ̂α = 0. One can easily prove that
the reduced state of the field is pure if and only if the original state of the quantum field is coherent.

4. Quantum Entropy of Macroscopic Field

In phenomenological thermodynamics of equilibrium systems, entropy is a function of a
macroscopic state, which is characterized by a small number of controlled external parameters
and temperature. Already in this case we have a certain freedom in selecting those external
parameters related to our ability of controlling the system. The situation is more complicated
for non-equilibrium systems where, typically, thermodynamic parameters including temperature
become position-dependent and their choice is determined by the relevant time-scales of local
equilibration processes.

A similar problem appears when the notion of entropy is discussed within classical or quantum
statistical mechanics. The proper choice of the definition depends on the selected level of complexity of
our theoretical framework. This level is determined by the set of accessible observables of the system,
which can be measured and/or controlled. Again, this choice is also related to relevant time-scales.
Such “subjectivity” in the definition of entropy does not lead to any inconsistencies. Namely, the basic
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thermodynamical quantity with direct physical interpretation depending on entropy is the free energy
F = U − TS (where U is the internal energy, T is the temperature, and S is the entropy), which
determines the amount of work extractable from the system. Obviously, both extractable work and
entropy depend on the available means of control over the system.

To illustrate the problem of selection of complexity level, we consider the classical gas of N
identical particles in a finite volume.The complete microscopical and statistical description of the
state of such system is given by the N-particle probability distribution pN(~r1,~p1, . . . ,~rN ,~pN), which is
symmetric with respect to permutations.

The natural choice for the entropy of such state is the Gibbs expression

SG(pN) = −kB
∫
· · ·
∫

pN(~r1,~p1, . . . ,~rN ,~pN) log pN(~r1,~p1, . . . ,~rN ,~pN) d3~r1 d3~p1, . . . , d3~rN d3~pN . (24)

However, the typical means of control over the gas are based on additive observables which does
not involve correlations between individual particles. Therefore, for practical purposes, the statistical
description of gas in terms of marginal single-particle probability distribution p(~r,~p) is sufficient,
at least for the low density regime. The standard definition of entropy in this case is the Boltzmann
one, used in his description of gas dynamics

SB = −kBN
∫

p(~r,~p) log p(~r,~p) d3~r d3~p, (25)

which coincides with Equation (24) in the case of product probability distribution pN = uN
j=1 p(~rj,~pj).

Among the N-particle probability distributions with the same marginal p(~r,~p), the product
distribution maximizes the Gibbs entropy. Therefore, the Boltzmann choice in Equation (25) can
be treated as the instance of the Maximum Entropy Principle applied to the single-particle reduced
description [10].

We follow the analogous reasoning for the case of macroscopic field described in terms of
the reduced state of the field (ρ̂, |α〉). Here, in contrast to the low density gas where two-particle
correlations can be neglected, for the boson gas, strong correlations caused by quantum statistics
and fully accounted by the second-quantization formalism are present. They dominate over
possible interactions between (quasi)particles, which are anyway neglected in the linear (linearized)
theory. One should also remember that, paradoxically, macroscopic fields correspond to the highly
non-classical regime in the sense of the theory of quantum gases. For example, the thermal equilibrium
population number for the 1 kHz acoustic mode at room temperature is of the order 1010, while
classical theory of gases is valid for population numbers much smaller than one.

Consider first the quasi-free state on the Fock space, generated by the additive observable R̂
corresponding to the single-particle observable b̂, which has form

ρ̂′F =
e−R̂

Tre−R̂
. (26)

One can easily compute the reduced state of the field corresponding to the state in
Equation (26) obtaining

ρ̂′ =
1

er̂ − 1
, |α′〉 = 0, (27)

and its von Neumann entropy

SvN [ρ̂
′
F] = −kBTr(ρ̂′F log ρ̂′F) = kBtr

(
(ρ̂′ + 1) log(ρ̂′ + 1)− ρ̂′ log ρ̂′

)
. (28)

To include also macroscopic coherence, one can apply the Weyl unitary transformation to produce
the new state

ρ̂F = Ŵ[α]ρ̂′FŴ†[α]. (29)
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The reduced state of the field corresponding to the state in Equation (29) is now (ρ̂, |α〉) with

ρ̂ = ρ̂′ + |α〉〈α|. (30)

It is not difficult to check that ρ̂F of the form in Equation (29) maximizes von Neumann entropy
among all states on the Fock space with the given (ρ̂, |α〉). Therefore, we can define the entropy of the
reduced state of the field by the von Neumann entropy SvN [ρ̂F] = SvN [ρ̂

′
F], which yields the expression

depending on the correlation matrix ρ̂α = ρ̂− |α〉〈α| = ρ̂′

S[ρ̂; |α〉] = kBtr
(
(ρ̂α + 1) log(ρ̂α + 1)− ρ̂α log ρ̂α

)
. (31)

This entropy satisfies the natural conditions S[ρ̂; |α〉] ≥ 0 and S[ρ̂; |α〉] = 0 if and only if ρ̂ = |α〉〈α|,
i.e., the reduced state of the field is pure.

The fact that only coherent states of the quantum field produce zero entropy reduced states of
the field and all other pure states on the Fock space do not illustrates the dependence of the notion of
entropy on complexity of description, which is determined by the assumed level of control. It might
sound counterintuitive that a pure state on the Fock space, e.g., N-photon state, leads to non-zero
macroscopic entropy, while a coherent state with the same averaged photon number gives zero entropy.
However, from the point of view of joint measurement of averaged photon number and phase of the
field, N-photon state has no definite phase and hence contains less information with respect to the
selected measurement/control scheme.

5. Generalized Quasi-Free Dynamics

The so-called quasi-free dynamical semigroups are completely positive trace preserving
semigroups of dynamical maps acting on Fock space density matrices, which from the physical
standpoint describe particle decay and production processes in the approximation of independent
particles. In the following, we introduce a more general class of such dynamical semigroups,
which include, additionally, coherent classical source and individual and random scattering by the
environment. It is assumed that a single scattering process is unitary, hence does not produce a
persistent entanglement with environment. The master equation satisfying the assumptions of above
takes the form ({·, ·} denotes anticommutator)

d
dt

ρ̂F = −ih̄ ∑
k

ωk[â†
k âk, ρ̂F] + ∑

k
[(ξk â†

k − ξ̄k âk), ρ̂F]

+ ∑
k,k′

Γkk′
↓
(
âk ρ̂F â†

k′ −
1
2
{â†

k′ âk, ρ̂F}
)

+ ∑
k,k′

Γkk′
↑
(
â†

k ρ̂F âk′ −
1
2
{âk′ â

†
k , ρ̂F}

)
+
∫

µ(du)
(
Ûρ̂FÛ† − ρ̂F

)
. (32)

In the formula of above, the complex amplitudes ξk describe the coherent source of field, and the
positive matrices [Γkk′

↓ ] and [Γkk′
↑ ] contain particle annihilation and production rates for random sources.

Those rates are expressed as the eigenvalues of [Γkk′
↓ ] and [Γkk′

↑ ], respectively. The last term describes
random scattering processes parameterized by the positive measure µ(du), or more generally, positive
distribution defined on the group of all unitaries acting onH. In particular, when the Poisson process
of random scattering tends to its diffusion limit, one obtains the double commutator terms −[Q̂, [Q̂, ρ̂F]],
with an additive observable Q̂, often used to describe pure decoherence.

Equation (32) possesses the standard Gorini–Kossakowski–Lindblad–Sudarshan form [8,9,11,12]
and hence its solution is given by the completely positive trace-preserving dynamical semigroup.
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By direct calculation, one can obtain from Equation (32) the closed evolution equation for the
reduced description of the field in terms of the reduced state of the field (ρ̂, |α〉). Introducing the
single-particle positive operators representing damping and pumping

γ̂↓ = ∑
k,k′

Γkk′
↓ |k〉〈k

′|, γ̂↑ = ∑
k,k′

Γkk′
↑ |k〉〈k

′|, (33)

and the single-particle vector describing coherent source

|ξ〉 = ∑
k

ξk|k〉, (34)

one can write the equations of motion in the form of two coupled equations, which are hereafter called
reduced kinetic equations for reduced states of the field.

d
dt

ρ̂ = − i
h̄
[ĥ, ρ̂] + (|ξ〉〈α|+ |α〉〈ξ|)

+ {(γ̂↑ − γ̂↓), ρ̂}+ γ̂↑

+
∫

µ(du)
(
ûρ̂û† − ρ̂

)
. (35)

d
dt
|α〉 = − i

h̄
ĥ|α〉+ 1

2
(
γ̂↑ − γ̂↓

)
|α〉+ |ξ〉

+
∫

µ(du)
(
û− 1)

)
|α〉. (36)

The reduced kinetic equations (Equations (35) and (36)) are exact consequences of the master
equation (Equation (32)) describing linear quantum field dynamics, both reversible and dissipative.
One can include also nonlinear effects on the level of reduced states of the field by introducing the
dependence on (ρ̂, |α〉) of the operators ĥ, γ̂↑, γ̂↓ and the measure µ(du) in the spirit of self-consistent
Hartree–Fock approximation for bosons. Another generalization is needed to include the case
of varying external conditions. This can be done by introducing also time-dependence into the
operators ĥ, γ̂↑, γ̂↓, the measure µ(du) and the coherent external source |ξ〉. However, such extensions
should be justified by the phenomenological arguments. One should remember that the Markovian
approximation can be reconciled with time-dependent Hamiltonians only in the very particular
situations such as slow, adiabatic modulation or fast periodic one (Floquet formalism) [13].

In the absence of coherent source, the equations become decoupled. Notice that, only in the
absence of random source (γ̂↑ = 0) and random scattering (µ(du) = 0) and under the assumption
that the initial reduced state of the field is pure, i.e., ρ̂(0) = |α(0)〉〈α(0)|, it remains pure and satisfies
classical field equation with damping and coherent source

d
dt
|α〉 = −

( i
h̄

ĥ +
1
2

γ̂↓
)
|α〉+ |ξ〉. (37)

Although this type of equations is quite frequently used, its applicability is limited to classical
coherent sources, zero-temperature environment and the absence of random scattering.

6. Examples

To illustrate the presented formalism of reduced kinetic equations for reduced states of the field
(Equations (35) and (36)), we consider two special cases: macroscopic field in thermal environment
and linear polarization optics.
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6.1. Thermal Environment

The reduced kinetic equations proposed above with possible nonlinear and time-dependent
generalizations provide phenomenological tools to deal with macroscopic field interacting with an
environment. There exist examples where special classes of the reduced kinetic equations can be
derived from the underlying Hamiltonian models of the field interacting with the thermal bath
and using appropriate approximations. The most popular approximation scheme combines Born,
Markovian and secular ones and leads to the operators γ̂↑, γ̂↓ diagonal in energy representation
(we neglect also coherent source |ξ〉 = 0)

γ̂↓ = ∑
k

γ↓(k)|k〉〈k|, γ̂↑ = ∑
k

γ↑(k)|k〉〈k|, (38)

with the additional condition implied by the thermal character of the bath

γ↑(k) = e−(h̄ωk/kBT)γ↓(k). (39)

The rates γ↑(k), γ↓(k) can be computed using Fermi Golden Rule [14]. The random scattering
term can also be derived using the alternative low density limit for the suitable Hamiltonian model
of field—perturber elastic scattering. In this case, the measure µ(du) in Equations (35) and (36)
is concentrated on unitaries commuting with ĥ. Under the above assumptions, one obtains the
independent set of equations for the diagonal elements of a single-particle density matrix, nk = 〈k|ρ̂1|k〉
(describing particle occupation numbers), and averaged field amplitudes αk

d
dt

nk = −
(
γ↓(k)− γ↑(k)

)
nk + γ↑(k), (40)

d
dt

αk = −
(

iω′k +
1
2
(
γ↓(k)− γ↑(k)

)
+ γdec(k)

)
αk (41)

with the decoherence rate
γdec(k) = <

∫
µ(du)

(
1− 〈k|û|k〉

)
≥ 0. (42)

Here, we assume that =
∫

µ(du)
(
1− 〈k|û|k〉

)
is absorbed into renormalized frequency ω′k.

Equations (40) and (41) can be seen as the manifestation of wave–particle duality in the description
of macroscopic field. The quantum-field feature of the system is hidden in the form of energy damping
rates (γ↓(k) − γ↑(k)

)
where the minus sign by the second term is a consequence of the stimulated

emission related to bosonic character of field excitations (particles).
The quantum phenomenon of stimulated emission becomes particularly interesting for moving

heat baths interacting with the macroscopic field. The case of rotating heat baths has been discussed in
details in [15] where quantum master equations of the type in Equation (32) (with diagonal matrices
[Γ↑(↓)

kk′ ] and absent coherent sources and random scattering) were used. The only consequence of
bath rotation is the modification of the relation in Equation (39) into

γ↑(k) = e−[h̄(ωk−m(k)Ω)/kBT]γ↓(k). (43)

where m(k) is a magnetic quantum number of the mode |k〉 and Ω is the angular frequency of rotation.
The modes for which the superradiance condition

ωk < m(k)Ω (44)

holds, possess a negative energy damping rate (γ↓(k)− γ↑(k)
)
, which means that the kinetic energy

of rotating bath is pumped into these modes. Moreover, if the negative damping of the averaged
mode amplitude (γ↓(k)− γ↑(k)

)
/2 dominates over the decoherence rate γdec(k), those amplitudes

are amplified. This phenomenon is called superradiance and can be studied for various physical
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implementations: from Hawking radiation of rotating black holes to ocean wave generation by
wind [15–17].

The quantum superradiance phenomenon is related to the classical phenomenon of shock waves.
Namely, by introducing the radius R of the rotating bath, the linear velocity at its surface V = RΩ
and the geometrical bound for the wave vector k ≥ m(k)/R, we can reformulate the superradiance
condition in Equation (44) as

V > vph ≡
ωk
k

. (45)

The above inequality is a typical condition for shock wave generation, i.e., the velocity of the
source must be higher than the critical velocity given by the phase velocity vph of the wave mode.

6.2. Polarization Optics Revisited

The method for reduced description of quantum field presented above can be applied to the
polarization degrees of freedom in the case of linear optics devices. Namely, one can consider a light
beam consisting of photons occupying the modes with a narrow band of frequencies around the central
frequency ω0 and with a fixed spatial structure. Therefore, the reduced description in terms of reduced
states of the field is given by the 2× 2 positively defined Stokes matrix in Section 2, but now obtained
from averaging over the full quantum state ρ̂F of the light beam

Ŝ ≡ [Sk`], Sk` = ∑
q

Tr
(
ρ̂F â†

`q âkq
)
, k, ` = 1, 2. (46)

Here, q denotes the wave vectors of the beam modes, which are concentrated in the vicinity
of the leading wave vector q0 corresponding to the central frequency ω0 and defining the geometry
of the beam. The transmission of the beam from the entrance to the exit of the linear optics device
can be treated as the time evolution governed by the master equation of the type in Equation (35)
with the absent coherent and incoherent sources (compare to the discussion of fiber optics in [18]).
This evolution equation for the Stokes matrix reads

d
dt

Ŝ = −i[ω̂, Ŝ]− {γ̂↓, Ŝ1}+
∫

µ(du)
(
ûŜû† − Ŝ

)
. (47)

where:

(i) ω̂ is a Hermitian 2× 2 matrix describing rotation of polarization vector;
(ii) γ̂↓ is a positive 2× 2 matrix describing absorption of photons by the medium; and
(iii) û are 2× 2 unitaries describing depolarization of light by random scattering with the positive

weight µ(du).

From the discussion in the previous sections, it follows that the reduced description of a quantum
field involves also the averaged field as an observable object. For polarization of a light beam, this is a
two-dimensional complex vector |α〉 = [α1, α2], which is equivalent to the standard Jones vector with
the normalization determined by the following definition

|α〉 =
2

∑
k=1

[
∑
q

Tr
(
ρ̂F âkq

)]
|k〉. (48)

The equation of motion for the averaged Jones vector is decoupled from Equation (47), but contains
the same parameters

d
dt
|α〉 = −

(
iω̂′ +

1
2

γ̂↓ + γ̂dec

)
|α〉 (49)
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with ω̂′ = ω̂ + δ̂, where ∫
µ(du)

(
1− û

)
= iδ̂ + γ̂dec, δ̂ = δ̂†, γ̂dec ≥ 0. (50)

Integrating the equation of motion (Equation (47)) between entry and exit times, we obtain a
global dynamical map characterizing the influence of linear optics device on the polarization state.
Because the first two terms on the right hand side of Equation (47) generate pure contracting completely
positive maps and the third term generates bistochastic completely positive maps, the most general
Mueller map satisfies

Ŝ′ = Φ(Ŝ), Φ(1) ≤ 1, Φ∗(1) ≤ 1, (51)

where Φ∗ is a dual (Heisenberg picture) map. Such completely positive map can be called doubly
contracting. In terms of the explicit representation

Φ(Ŝ) = ∑
α

V̂αŜV̂†
α , Φ∗(M̂) = ∑

α

V̂†
α M̂V̂α, (52)

the conditions in Equation (51) can be written as

∑
α

V̂αV̂†
α ≤ 1, ∑

α

V̂†
α V̂α ≤ 1. (53)

The Kraus decomposition in Equation (52) is not unique, but one can always choose at most four
matrices V̂α.

Similarly, the corresponding 2× 2 matrix acting on Jones vectors is contracting

|α′〉 = V̂|α〉, V̂V̂† ≤ 1. (54)

In the most general case, the only condition which connects Φ and V̂ is that for each pair of Stokes
matrix Ŝ and Jones vector |α〉

Ŝ ≥ |α〉〈α| implies Φ(Ŝ) ≥ V̂|α〉〈α|V̂†. (55)

The condition implies that the difference of two completely positive maps Φ− V̂ · V̂† is positive.
Summarizing, in contrast to a general belief that Jones and Mueller calculi refer to physically

different situations, we argue that the complete description of the polarization state of light beam needs
a pair (Ŝ, |α〉) of Stokes matrix and averaged Jones vector satisfying Ŝ ≥ |α〉〈α|. Equivalently, one
can use Stokes parameters and explicit components of Jones vector in the given polarization basis
[s0,~s; α1, α2]. The action of any linear optics device is described by a pair (Φ, V̂) of completely positive
and doubly contracting Mueller map acting on 2× 2 matrices and the Jones contracting 2× 2 matrix
such that the map Φ− V̂ · V̂† is positive. The equivalent representation of (Φ, V̂) is given by a pair
{[Mµν], µ, ν = 0, 1, 2, 3; [Vk`, k, l = 1, 2} of Mueller and Jones matrices. We call such a set of pairs in
both representations Mueller–Jones maps.

The set of Mueller–Jones maps form a semigroup with the composition of two elements

(Φ, V̂) ◦ (Φ′, V̂′) ≡ (ΦΦ′, V̂V̂′), (56)

which physically means a new optical device composed of two aligned ones.
Finally, we can settle the question of entropy for polarization of a light beam using the definition

in Equation (31), which now takes the form

S[Ŝ; |α〉] = kBtr
(
(Ŝα + 1) log(Ŝα + 1)− Ŝα log Ŝα

1
)
, (57)

with Ŝα ≡ Ŝ− |α〉〈α|.
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7. Concluding Remarks

The mathematically consistent formalism of reduced description of quantum fields presented
in this paper has a potentially wide range of applications. It is rather surprising that quantum
features, in particular quantum statistics, have such an influence on the macroscopic behavior of
wave-like excitations. Even for such macroscopic objects such as ocean waves generated by wind or
magnetohydrodynamic waves in stellar atmospheres, the stimulated emission processes characteristic
for bosons may lead to various macroscopic phenomena such as superradiance or creation of shock
waves. The description in the form of two mathematical objects—averaged field and population
numbers (diagonal elements of the single-particle density matrix)—can be seen as a macroscopic
manifestation of particle–wave duality in the quantum world. Namely, for coherent sources, zero
temperature environment and absent random scattering, the description in terms of wave equations
with sources and pure damping is sufficient. When random/thermal effects prevail, the averaged field
tends rapidly to zero and kinetic equations for (quasi)particle population numbers govern the evolution
of the relevant observables. This is clearly visible for the case of moving sources (e.g., rotating heat
bath). When the source velocity approaches the critical value incoherent production of (quasi)particles
rapidly grows. At this moment, the classical wave description breaks down, which is interpreted as
the creation of shock waves. However, the full macroscopic formalism of the reduced state of the field
is valid. The averaged field part becomes irrelevant and the physical phenomena are described by the
dynamics of the single-particle density matrix. Such “wave–particle transition” in the modeling of
physical phenomena may explain the physical origin of singularities in purely classical theories such
as hydrodynamics or general relativity. One can speculate that in general relativity when velocities of
matter approach the speed of light, classical field description breaks down and the kinetic equations
for graviton gas should be applicable.
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