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Abstract: Debris flow is one of the most frequently occurring geological disasters in Jilin province,
China, and such disasters often result in the loss of human life and property. The objective of this
study is to propose and verify an information fusion (IF) method in order to improve the factors
controlling debris flow as well as the accuracy of the debris flow susceptibility map. Nine layers of
factors controlling debris flow (i.e., topography, elevation, annual precipitation, distance to water
system, slope angle, slope aspect, population density, lithology and vegetation coverage) were taken
as the predictors. The controlling factors were improved by using the IF method. Based on the
original controlling factors and the improved controlling factors, debris flow susceptibility maps
were developed while using the statistical index (SI) model, the analytic hierarchy process (AHP)
model, the random forest (RF) model, and their four integrated models. The results were compared
using receiver operating characteristic (ROC) curve, and the spatial consistency of the debris flow
susceptibility maps was analyzed while using Spearman’s rank correlation coefficients. The results
show that the IF method that was used to improve the controlling factors can effectively enhance
the performance of the debris flow susceptibility maps, with the IF-SI-RF model exhibiting the best
performance in terms of debris flow susceptibility mapping.

Keywords: debris flow susceptibility mapping; Jilin province; information fusion; statistical index;
analytic hierarchy process; random forest method; Spearman’s rank correlation coefficients

1. Introduction

A fast-moving debris flow that has a wide influence range can be defined as a transient mass
motion within the loose steep slope channel due to rainfall. Debris flow, which causes a substantial
loss of lives and property [1,2], has become one of the most dangerous geological disasters in the world
and it poses a serious threat to the living environment of humans [3].

Debris flow susceptibility mapping (DFSM) can predict the location of debris flow that is based
on terrain, as well as geological and hydrological characteristics, to prevent and reduce the impact of
debris flow disasters [4–6]. With the development of GIS and remote sensing technology an increasing
number of methods are used for DFSM.

The models for DFSM in previous studies are mainly divided into three categories: statistical
models, heuristic models, and soft computing models [7]. For statistical models, Xu et al. [8] used
the information value model to analyze the debris flow susceptibility in Sichuan province, China.
In addition, the logistic regression model [9], evidence belief function [10], weight of evidence [11],
frequency ratio [10,12], and statistical index (SI) [13] have been used extensively. Regarding heuristic
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models, Addison et al. [14] used the classifier tree to analyze debris flow. Other models, such as
multistandard analysis [15] and the heuristic fuzzy model [16], have also been used extensively. For soft
computing models, artificial neural networks [17–19], maximum entropy [20], decision tree [21], and
classification and regression trees [22] are equally common.

However, research on the selection of controlling factors, which are the foundation of DFSM and
affect the accuracy of debris flow susceptibility maps, is still rare. Previous studies have focused on
converting a group of controlling factors that may be relevant into a set of linear unrelated controlling
factors while using principal component analysis [23–27]. However, this method will reduce the
number of controlling factors that are used in the study, resulting in a reduction in the utilization of the
underlying data, which will eventually have a negative impact on the accuracy of the final debris flow
susceptibility map.

Therefore, an information fusion (IF) method that is based on the Minkovsky distance [28,29]
and the Dempster-Shafer theory [30–32] was proposed in this study to improve the rationality of the
controlling factors, the utilization of the underlying data, and the accuracy of the final debris flow
susceptibility map. Based on the original controlling factors and the improved controlling factors,
debris flow susceptibility maps were developed while using the selected models and compared using
the receiver operating characteristic (ROC) curve. To comprehensively verify the applicability of the IF
method in different types of models, the SI model was selected from the statistical models, the analytic
hierarchy process (AHP) model was chosen from the heuristic models, and the random forest (RF)
method was selected from the soft calculation models. Then, these three models were integrated to
obtain four integrated models, that is, the combination of SI and AHP (SI-AHP), the combination of SI
and RF (SI-RF), the combination of AHP and RF (AHP-RF), and the combination of SI, AHP, and RF
(SI-AHP-RF). Finally, to prove the superiority of the IF method, the spatial consistency of the debris
flow susceptibility maps was analyzed while using Spearman’s rank correlation coefficients.

2. Study Area

The research area (Jilin province) is located in the northeastern part of China (Figure 1),
from approximately 40◦52′N to 46◦18′N and from 121◦38′E to 131◦19′E, extending along the
northeast-southwest direction, and with a total area of 18.74 km2. The area is in the eastern monsoon
climate zone of China, and it has an annual average temperature between 2 and 6 ◦C and annual
precipitation in the range from 400–1000 mm, both of which gradually decrease from southeast to
northwest. The precipitation in the summer accounts for 70%–80% of the annual precipitation.Entropy 2019, 21, x FOR PEER REVIEW 3 of 22 
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The study area is 5.0 m to 2691 m above sea level, and it is located in two geomorphological units:
the eastern Changbai Mountain and the western Songliao Plain. The terrain is high in the southeast and
low in the northwest. Bounded by the latitude 42◦40′–43◦, the study area spans two major structural
units: the Tarimand-China-north Korea para platform area and the Tianshan-Xingan trough fold area.

The exposed strata are from the Archean Eon to the Cenozoic Era. The rock mass can be divided
into 13 rock groups, according to lithological characteristics. The lithology consists mainly of granite,
basalt, glutenite, clay rock, pyroclastic rock, carbonate rock, and gneiss.

The geological environmental conditions in the study area are complex, and the occurrence of
geological hazards is the result of multiple factors. After the study area enters the rainy season, debris
flow occurs frequently, causing huge economic losses every year. We selected Jilin province as the
study area, because such disasters occur frequently in this region; thus, sufficient data can be collected
to verify the IF method, which has practical value for our research.

3. Data Preparation

Data collection is the basis for subsequent analysis [33–35]. In this study, a debris flow inventory
map, including 868 debris flow events, which was compiled based on the debris flow data before
2012, as provided by the Jilin Provincial Department of Land and Resources, was combined with field
investigation data (Figure 2). Then, the debris flow events were randomly divided into training and
validation datasets: 70% (608 events) were used for training the models, and 30% (260 events) were
used for validation.
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Figure 2. Debris flow field survey: (a) Debris flow accumulation; and, (b) The image of the debris flow
ditch taken by drone.

According to the characteristics of debris flow and the results of a 1:100,000 geological disaster
investigation in the study area, the relationship between debris flow and the geological environment
was analyzed. Then, based on experience [36–41], nine layers of debris flow controlling factors
(i.e., topography, elevation, annual precipitation, distance to water system, slope angle, slope aspect,
population density, lithology, and vegetation coverage) were taken as predictors. The spatial database
for the study area is shown in Table 1.

The details of the grading standard of each controlling factor are as follows. The hierarchical
diagram of the controlling factors is shown in Figure 3.

Topography affects the formation, movement, and scale of debris flow [42]. In this study, according
to the order of the density of debris flow point in each geomorphic unit from small to large, the
topography was divided into group 1 (Songliao low plain, piedmont slope plain, high plain), group 2
(mountain basin, valley), group 3 (hills, low hills), and group 4 (medium and low mountains, terraces).
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Table 1. Spatial database for the study area.

Data Layers Data Type Scale

Topography Polygon 1:1,800,000
Elevation Grid 30 m × 30 m

Annual precipitation Polygon 1:5,000,000
Distance to water system Polygon 1:5,000,000

Slope angle Grid 30 m× 30 m
Slope aspect Grid 30 m × 30 m

Population density Polygon 1:1,800,000
Lithology Polygon 1:1,800,000

Vegetation coverage Polygon 1:1,800,000

The relative height difference determines the gravitational potential energy inside the slope [3].
According to survey statistics, the Changbai Mountain area in the eastern part of the study area is
800–1500 m above sea level: the main peak of Changbai Mountain and its surrounding peaks are above
2000 m, and the central plateau plain is 600–800 m above sea level. According to these critical values,
the elevation was divided into four classes: 0–600 m, 600–800 m, 800–1500 m, and >1500 m.

Rainfall plays an important role in slope instability [4]. Debris flow disasters are mostly caused
by continuous rainfall. Therefore, the annual precipitation, which is mainly distributed between
600–1000 mm in the study area, was selected as the controlling factor [43,44]. Then, the interval from
600–1000 mm was divided into two parts on average. Thus, annual precipitation was divided into four
categories: 0–600 mm, 600–800 mm, 800–1000 mm, and >1000 mm.

The steep slopes provide loose material for debris flow [45]. The slope angle in the northwest of
the study area is mainly 0–5◦, while the slope in the southeast is generally near 10◦, and, in a few areas,
it is more than 20◦. According to these critical values, the slope angle was divided, as follows: 0–5◦,
5–10◦, 10–20◦, and >20◦.

The slope aspect is related to precipitation and topographical trends [1]. According to the influence
of light, the slope aspect was divided into shady slope (135◦–180◦, 180◦–225◦), semi-shady slope
(45◦–90◦, 270◦–315◦), semi-sunny slope (90◦–135◦, 225◦–270◦), and sunny slope (135◦–225◦).

The population density indirectly reflects the influence of human activities on the geological
environment. Human activities can cause vegetation degradation and changes in topography and
geomorphology, indirectly increasing the possibility of debris flow. According to the number of people
per square kilometers, the population density was divided into four classes: very low (0–10), low
(10–100), moderate (100–500), and high (>500).
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The lithology controls the stability of the slope and determines the amount of material that is
available for debris flow [46,47]. According to the anti-weathering ability of rock, the lithology was
divided into four types: soil, soft rock, hard rock and extremely hard rock.

The lower the vegetation coverage is, the more easily the rock mass becomes weathered, and
the more likely it is that debris flow will occur. In this study, the vegetation coverage of the eastern
Changbai Mountains is more than 80%, while that of the western plain is less than 20%. The vegetation
coverage in the central region is mainly between 20% and 50%. According to these critical values,
vegetation coverage was divided into four classes: low (<20%), moderate (20%–50%), high (50%–80%),
and very high (>80%).

Rivers will erode the rock mass at the bottom of a slope, affecting the stability of the slope.
In general, the likelihood of debris flow decreases as the distance to the water system increases [13].
In this study, the distance to the water system was divided into six classes:0–500 m, 500–1000 m,
1000–1500 m, 1500–2000 m, 2000–2500 m, and >2500 m.

4. Methodology

The methods that were used in this study can be summarized in three parts. The first part is the IF
method for improving the controlling factors. The second part is the models for DFSM. Six models, i.e.,
SI, AHP, SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF, were used to develop the debris flow susceptibility
maps. The third part is the method that is used to verify the results. ROC curve analysis is used to
verify the success rate and prediction rate of the debris flow susceptibility maps, and the Spearman’s
rank correlation coefficients are used to verify the spatial consistency of the debris flow susceptibility
maps. Figure 4 shows the flow of the research methods.
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4.1. The Information Fusion Method

The IF method is based on the Minkowski distance and Dempster-Shafer theory. The Minkowski
distance, which is a distance function that is defined on eigenvector space [48,49] is used to measure
the similarity between the controlling factors. The Dempster-Shafer theory is used to calculate the
credibility degree of each controlling factor. The credibility degree is used as a weight to improve the
layer of each controlling factor, and it is the result of the IF method. The calculation process of the
credibility degree is as follows:

Step 1: Assign the grade of each controlling factor from small to large while using a value from 1
to 4 or a value from 1 to 6. For example, for annual precipitation, the intervals 0–600 mm, 600–800 mm,
800–1000 mm, and >1000 mm was assigned values of 1, 2, 3, and 4, respectively. Finally, the column
vector was obtained according to the values of all the disaster points in a controlling factor.

Step 2: Calculate the Minkowski distance according to column vectors of the controlling factors:

Di j =

 n∑
i

|x1i − x2i|
m

1/m

, (1)

where Di j is the Minkowski distance between controlling factor i and controlling factor j; x1i and x2i are
the values of a disaster point in a column vector; and, m is a variable parameter.

Step 3: Obtain the similarity measure Matrix, according to the Minkowski distance.

COM =


1 D12 D13

D21 1 D23
· · ·

D1n
D2n

...
. . .

...
Dn1 Dn2 Dn3 · · · 1

 (2)

Step 4: Calculate the support degree of the controlling factors:

Sup(Xi) =
n∑

j=1, j,i

Di j (3)

where Sup(Xi) is the support degree of controlling factor i; Xi is the controlling factor i; and n is the
number of controlling factors.

Step 5: Calculate the credibility degree of controlling factor i:

C f l(Xi) =
Sup(Xi)∑n

j=1 Sup
(
X j

) (4)

where C f l(Xi) is the credibility degree of the controlling factor i; Xi is the controlling factor i; X j is the
controlling factor j; Sup(Xi) is the support degree of controlling factor i; Sup

(
X j

)
is the support degree

of controlling factor j; and, n is the number of controlling factors.

4.2. The Models for DFSM

4.2.1. The Statistical Index Model

The SI model is a binary statistical method, whose result can reflect the weights of the controlling
factors. [50,51]. The weights are obtained by the following formula.

Wi j = ln
(Mi j

M

)
= ln

(Di j/DT

Pi j/PT

)
, (5)



Entropy 2019, 21, 695 8 of 22

where Wi j is the weight of grade j in controlling factor i; Mi j is the debris flow density of grade j in
controlling factor i; M is the total density of debris flow within the map; Di j is the number of debris
flow events of grade j in controlling factor i; DT is the number of debris flow events in the map; Pi j is
the number of pixels of grade j in controlling factor i; and, PT is the total number of pixels in the map.

4.2.2. The Analytic Hierarchy Process Model

The AHP model is a multistandard decision-making process and a common method for
determining subjective weight [52,53]. There will be some uncertainty results due to the evaluation of
different experts. This model can be described in four steps, as follows:

Step 1: Establish a hierarchical analysis structure model for DFSM.
Step 2: Construct a pairwise comparison matrix:

A =


a11 · · · a1n

... ai j
...

an1 · · · ann

, (6)

where A is the pairwise comparison matrix and ai j is the result of comparison between controlling
factor i and controlling factor j.

Step 3: Calculate the weight vector from the pairwise comparison matrix. Determine the weight
of each controlling factor.

Step 4: Check the consistency of the weights, and when the consistency ratio (CR) is less than or
equal to 0.1 the result is considered reasonable.

CR =
(λmax − n)/(n− 1)

RI
, (7)

where, CR is the consistency rate; λmax is the weighting and vector mean component; n is the number
of controlling factors; and, RI is the degree of freedom index.

4.2.3. The Random Forest Model

The RF model, which can analyze the importance of classification features and determine the
weight of each controlling factor, is a classification model that is composed of many decision trees [54,55].
The RF model includes two main kinds of algorithms: the GINI index algorithm and the out-of-bag
(OOB) error rate replacement algorithm. The GINI index is used to calculate the impurity of nodes to
measure the weight. The calculation process is as follows:

Step1: Calculate the GINI index of node C:

GIc = 1−
k∑

m=1

Pck
2 (8)

where GIc is the GINI index of node C; k is the K category of node C; and, Pck is the proportion of
category K in node C.

Step 2: Calculate the importance of factor j in node C:

IRFi j
GINI = GIc −GIl −GIr (9)

where IRFi j
GINI is the importance of factor j in node C; and, GIl and GIr represent the GINI values at

the two new nodes that branch down.
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Step 3: Calculate the weight of controlling factor j:

IRF j =

∑n
i=1 IRFi j

GINI∑m
s=1 IRFs

(10)

where IRF j is the weight of controlling factor j; n is the number of decision trees; and, m is the number
of controlling factors.

4.2.4. The Integrated Model

Integrated models can make up for the shortcomings of individual models because of their ability
to solve high-dimensional problems and high identification accuracy [7], which lead to more accurate
results. Therefore, in this study, the SI model, the AHP model, and the RF model were integrated to get
four integrated models: SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF. The integration of individual models
is achieved through the following steps:

Step 1: Obtain the weight of each grade of the controlling factor according to the individual models.
Step 2: Standardize these weights in the data analysis module of Statistical Product and Service

Solutions (SPSS) software.
Step 3: Obtain the new weights of each grade of the controlling factors in the integrated model by

using the following formula:
ω = ωi +ω j (11)

where ω is the new weights of each grade of the controlling factors in the integrated model and
ωi and ω j are the standardized weights of each grade of the controlling factors in the individual models.

4.2.5. Combination of the IF Method and Six Models

The credibility degree that was obtained by the IF method is regarded as the improved weight of
each controlling factor. Then, according to the standardized weight of each grade of the controlling
factors obtained by using SI, AHP, SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF models, the improved
weights of the controlling factors were obtained by the following formula:

ω′ = C f l(Xi) ×ω (12)

where ω′ is the improved weight of controlling factor i, C f l(Xi) is the credibility degree of controlling
factor i, and ω is the standardized weight of controlling factor i that was obtained by the selected model.

4.3. Validation of Debris Flow Susceptibility Maps

To compare the performance of different debris flow susceptibility maps and ensure the reliability
of the IF method, the ROC curve and the Spearman’s rank correlation coefficient were selected.

4.3.1. ROC Curve

The ROC curve is drawn from a series of two-category methods (demarcation values or decision
thresholds) and it uses sensitivity as the ordinate and specificity as the abscissa. The area under the
curve is between 0.5 and 1. The larger the area is, the better the effect of the model [41].

4.3.2. Spearman’s Rank Correlation Coefficient

Spatial consistency can be interpreted as the similarity of the debris flow susceptibility assessment
results in the spatial distribution. The Spearman’s rank correlation coefficient, which is a different
nonparametric measure of the correlation of variables, was used to evaluate the spatial consistency
between the two different debris flow susceptibility maps. The calculation process is as follows:
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Step 1: Obtain the column vectors according to the grade of debris flow susceptibility of all the
debris flow points. The grades of debris flow susceptibility were assigned values of 1 to 4 from small
to large.

Step 2: Calculate the difference D between two column vectors:

D =
N∑

i=1

∣∣∣R(Xi) −R(Yi)
∣∣∣2 (13)

where D is the difference between two column vectors; X and Y are the column vectors that were
obtained from different debris flow susceptibility maps; R(Xi) and R(Yi) are the value of the debris
flow susceptibility grade corresponding to a disaster point; and, N is the number of debris flow points.

Step 3: Calculate the correlation between two debris flow susceptibility maps:

Rs = 1−
6×D

N × (N2 − 1)
(14)

where Rs is the Spearman’s rank correlation coefficient; D is the difference between two column vectors;
and, N is the number of debris flow points.

5. Results

5.1. The Results of the Information Fusion Method

The correlation between the selected controlling factors was expressed in terms of the magnitude
of the Minkowski distance value. The smaller the Minkowski distance between the controlling factors,
the higher the similarity between them. The support degree and the credibility degree of the selected
controlling factors are shown in Table 2. The topography has the highest credibility degree value
(0.157), and the lowest credibility degree value is 0.086 for elevation.

Table 2. The Minkowski distance value.

Heading X11 X22 X33 X44 X55 X66 X77 X88 X99

X1 0 37.72 24.43 16.88 25.55 47.21 16.73 18.82 38.96
X2 37.72 0 35.81 19.29 29.43 40.32 40.09 37.96 64.24
X3 24.43 35.81 0 21.82 24.66 47.31 21.33 59.74 45.56
X4 16.88 19.29 21.82 0 21.68 52.38 4.58 63.73 35.17
X5 25.55 29.43 24.66 21.68 0 44.90 23.09 14.01 48.63
X6 47.21 40.32 47.31 52.38 44.90 0 52.58 35.45 70.32
X7 16.73 40.09 21.33 4.58 23.09 52.58 0 64.33 34.26
X8 18.82 37.96 59.74 63.73 14.01 35.45 64.33 0 85.53
X9 38.96 64.24 42.56 35.17 48.63 70.32 32.26 85.53 0

Support
degree 266.3 324.86 277.66 255.53 271.95 390.47 254.99 459.57 422.67

Credibility
degree 0.091 0.111 0.095 0.086 0.093 0.134 0.088 0.157 0.145

1 population density, 2 vegetation coverage, 3 lithology, 4 elevation, 5 slope angle, 6 slope aspect, 7 annual precipitation,
8 topography, 9 distance to water system.

5.2. DFSM using Six Models Based on Original Controlling Factors

Based on the original controlling factors, the standardized weights, which are shown in the Table 3,
were calculated by the selected six models, i.e., SI, AHP, SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF.
The debris flow susceptibility maps (Figure 5) were finally obtained by superimposing the layers of
the controlling factors according these weights in the ArcGIS software. The susceptibility of debris
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flow was divided into four grades—low, moderate, high, and very high—according to the natural
fracture method [56].

Table 3. The standardized weights of the original controlling factors.

Controlling Factor Class SI AHP SI-RF AHP-RF SI-AHP SI-AHP-RF

Topography

Group 1 −2.883 0.481 −2.029 1.335 −2.402 −1.548
Group 2 0.464 0.481 1.318 1.335 0.945 1.799
Group 3 −0.210 −0.440 0.644 0.414 −0.650 0.204
Group 4 1.152 −0.652 2.006 0.202 0.499 1.353

Elevation(m)

0–600 0.764 −0.688 2.879 1.427 0.077 2.192
600–800 −0.450 −0.688 1.665 1.427 −1.138 0.977

800–1500 −2.224 −0.440 −0.109 1.675 −2.664 −0.549
>1500 −0.390 −0.440 1.725 1.675 −0.830 1.285

Annual Precipitation(mm)

0–600 −1.217 −0.688 −1.457 −0.928 −1.904 −2.144
600–800 1.101 −0.405 0.861 −0.645 0.697 0.457

800–1000 0.168 0.162 −0.072 −0.078 0.330 0.090
>1000 −1.459 1.437 −1.699 1.197 −0.022 −0.262

Distance to Water System
(m)

>2500 0.101 −0.688 −1.092 −1.881 −0.587 −1.780
0–500 1.022 1.225 −0.171 0.032 2.247 1.054

500–1000 0.963 0.481 −0.230 −0.712 1.444 0.251
1000–1500 0.911 −0.015 −0.282 −1.208 0.896 −0.297
1500–2000 0.788 −0.369 −0.405 −1.562 0.419 −0.774
2000–2500 0.683 −0.546 −0.510 −1.739 0.137 −1.056

Slope Angle
(◦)

0◦–5◦ −0.045 −0.298 0.220 −0.033 −0.343 −0.078
5◦–10◦ 0.608 0.268 0.873 0.533 0.877 1.142

10◦–18◦ 0.178 1.473 0.443 1.738 1.650 1.915
>18◦ −0.170 3.527 0.095 3.792 3.357 3.622

Slope Aspect

Shady
Slope −0.189 −0.440 −0.891 −1.142 −0.629 −1.331

Semi-shady
Slope 0.048 −0.652 −0.654 −1.354 −0.605 −1.307

Semi-sunny
Slope 0.252 −0.652 −0.450 −1.354 −0.401 −1.103

Sunny
Slope 0.446 −0.794 −0.256 −1.496 −0.348 −1.050

Population Density
(people/km2)

Very Low 1.425 −0.263 1.536 −0.152 1.162 1.273
Low −0.344 −0.617 −0.233 −0.506 −0.961 −0.850

Moderate −1.055 −0.794 −0.944 −0.683 −1.849 −1.738
High −1.550 −0.865 −1.439 −0.754 −2.415 −2.304

Lithology

Soil 1.295 0.446 0.621 −0.228 1.741 1.067
Soft rock 0.700 −0.298 0.026 −0.972 0.401 −0.273

Hard rock 0.391 −0.688 −0.283 −1.362 −0.296 −0.970
Extremely
hard rock −1.476 −0.688 −2.150 −1.362 −2.163 −2.837

Vegetation Coverage

Low 0.604 3.031 0.070 2.497 3.635 3.101
Moderate 0.348 0.623 −0.186 0.089 0.971 0.437

High 0.258 −0.263 −0.276 −0.797 −0.005 −0.539
Very High −1.008 −0.263 −1.542 −0.797 −1.271 −1.805
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Figure 5. Debris flow susceptibility maps based on the controlling factors before information fusion
(IF): (a) debris flow susceptibility mapping (DFSM)using statistical index (SI); (b) DFSM using analytic
hierarchy process (AHP); (c) DFSM using SI-AHP; (d) DFSM using SI-random forest (SI-RF); (e) DFSM
using AHP-RF; and, (f) DFSM using SI-AHP-RF.

5.3. DFSM Using Six Models Based on Improved Controlling Factors

Based on the improved controlling factors, the new standardized weights of controlling factors,
which are shown in the Table 4, were calculated by the selected six models i.e., IF-SI, IF-AHP, IF-SI-AHP,
IF-SI-RF, IF-AHP-RF, and IF-SI-AHP-RF. The debris flow susceptibility maps (Figure 6) were finally
obtained by superimposing the layers of the improved controlling factors, according to these new
weights in the ArcGIS software.
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Table 4. The standardized weights of the improved controlling factors.

Controlling Factor Class IF-SI IF-AHP IF-SI-RF IF-AHP-RF IF-SI-AHP IF-SI-AHP-RF

Topography

Group 1 −0.453 0.076 −0.319 0.210 −0.377 −0.243
Group 2 0.073 0.076 0.207 0.210 0.148 0.282
Group 3 −0.033 −0.069 0.101 0.065 −0.102 0.032
Group 4 0.181 −0.102 0.315 0.032 0.078 0.212

Elevation(m)

0–600 0.066 −0.059 0.248 0.123 0.007 0.188
600–800 −0.039 −0.059 0.143 0.123 −0.098 0.084

800–1500 −0.191 −0.038 −0.009 0.144 −0.229 −0.047
>1500 −0.034 −0.038 0.148 0.144 −0.071 0.111

Annual
Precipitation(mm)

0–600 −0.107 −0.061 −0.128 −0.082 -0.168 −0.189
600–800 0.097 −0.036 0.076 −0.057 0.061 0.040

800–1000 0.015 0.014 −0.006 −0.007 0.029 0.008
>1000 −0.128 0.126 −0.150 0.105 −0.002 −0.023

Distance to Water
System(m)

>2500 0.015 −0.100 −0.158 −0.273 −0.085 −0.258
0–500 0.148 0.178 −0.025 0.005 0.326 0.153

500–1000 0.140 0.070 −0.033 −0.103 0.209 0.036
1000–1500 0.132 −0.002 −0.041 −0.175 0.130 −0.043
1500–2000 0.114 −0.054 −0.059 −0.227 0.061 −0.112
2000–2500 0.099 −0.079 −0.074 −0.252 0.020 −0.153

Slope Angle(◦)

0◦–5◦ −0.004 −0.028 0.021 −0.003 −0.032 −0.007
5◦–10◦ 0.057 0.025 0.081 0.050 0.082 0.106

10◦–18◦ 0.017 0.137 0.041 0.162 0.153 0.178
>18◦ −0.016 0.328 0.009 0.353 0.312 0.337

Slope Aspect

Shady
Slope −0.025 −0.059 −0.119 0.153 −0.084 −0.178

Semi-shady
Slope 0.006 −0.087 −0.088 −0.181 −0.081 −0.175

Semi-sunny
Slope 0.034 −0.087 −0.060 −0.181 −0.054 −0.148

Sunny
Slope 0.060 −0.106 −0.034 −0.200 −0.047 −0.141

Population
Density(people/km2)

Very Low 0.130 −0.024 0.140 −0.014 0.106 0.116
Low −0.031 −0.056 −0.021 −0.046 −0.087 −0.077

Moderate −0.096 −0.072 −0.086 −0.062 −0.168 −0.158
High −0.141 −0.079 −0.131 −0.069 −0.220 −0.210

Lithology

Soil 0.123 0.042 0.059 −0.022 0.165 0.101
Soft rock 0.066 −0.028 0.002 −0.092 0.038 −0.026

Hard rock 0.037 −0.065 −0.027 −0.129 −0.028 −0.092
Extremely
hard rock −0.140 −0.065 −0.204 −0.129 −0.206 −0.270

Vegetation Coverage

Low 0.067 0.336 0.008 0.277 0.403 0.344
Moderate 0.039 0.069 −0.021 0.010 0.108 0.048

High 0.029 −0.029 −0.031 −0.088 −0.001 −0.060
Very High −0.112 −0.029 −0.171 −0.088 −0.141 −0.200

Entropy 2019, 21, x FOR PEER REVIEW 13 of 22 

 

Topography 

Group 1 −0.453  0.076  −0.319  0.210  −0.377  −0.243  
Group 2 0.073  0.076  0.207  0.210  0.148  0.282  
Group 3 −0.033  −0.069  0.101  0.065  −0.102  0.032  
Group 4 0.181  −0.102  0.315  0.032  0.078  0.212  

Elevation(m) 

0–600 0.066  −0.059  0.248  0.123  0.007  0.188  
600–800 −0.039  −0.059  0.143  0.123  −0.098  0.084  
800–1500 −0.191  −0.038  −0.009  0.144  −0.229  −0.047  

>1500 −0.034  −0.038  0.148  0.144  −0.071  0.111  

Annual 
Precipitation(

mm) 

0–600 −0.107  −0.061  −0.128  −0.082  -0.168  −0.189  
600–800 0.097  −0.036  0.076  −0.057  0.061  0.040  
800–1000 0.015  0.014  −0.006  −0.007  0.029  0.008  

>1000 −0.128  0.126  −0.150  0.105  −0.002  −0.023  

Distance to 
Water 

System(m) 

>2500 0.015  −0.100  −0.158  −0.273  −0.085  −0.258  
0–500 0.148  0.178  −0.025  0.005  0.326  0.153  

500–1000 0.140  0.070  −0.033  −0.103  0.209  0.036  
1000–1500 0.132  −0.002  −0.041  −0.175  0.130  −0.043  
1500–2000 0.114  −0.054  −0.059  −0.227  0.061  −0.112  
2000–2500 0.099  −0.079  −0.074  −0.252  0.020  −0.153  

Slope Angle(°) 

0°–5° −0.004  −0.028  0.021  −0.003  −0.032  −0.007  
5°–10° 0.057  0.025  0.081  0.050  0.082  0.106  

10°–18° 0.017  0.137  0.041  0.162  0.153  0.178  
>18° −0.016  0.328  0.009  0.353  0.312  0.337  

Slope Aspect 

Shady Slope −0.025  −0.059  −0.119  0.153  −0.084  −0.178  
Semi-shady 

Slope 
0.006  −0.087  −0.088  −0.181  −0.081  −0.175  

Semi-sunny 
Slope 

0.034  −0.087  −0.060  −0.181  −0.054  −0.148  

Sunny Slope  0.060  −0.106  −0.034  −0.200  −0.047  −0.141  

Population 
Density(peopl

e/km2) 

Very Low 0.130  −0.024  0.140  −0.014  0.106  0.116  
Low −0.031  −0.056  −0.021  −0.046  −0.087  −0.077  

Moderate −0.096  −0.072  −0.086  −0.062  −0.168  −0.158  
High −0.141  −0.079  −0.131  −0.069  −0.220  −0.210  

Lithology 

Soil 0.123  0.042  0.059  −0.022  0.165  0.101  
Soft rock 0.066  −0.028  0.002  −0.092  0.038  −0.026  

Hard rock 0.037  −0.065  −0.027  −0.129  −0.028  −0.092  
Extremely hard 

rock 
−0.140  −0.065  −0.204  −0.129  −0.206  −0.270  

Vegetation 
Coverage 

Low 0.067  0.336  0.008  0.277  0.403  0.344  
Moderate 0.039  0.069  −0.021  0.010  0.108  0.048  

High 0.029  −0.029  −0.031  −0.088  −0.001  −0.060  
Very High −0.112  −0.029  −0.171  −0.088  −0.141  −0.200  

 

Figure 6. Cont.



Entropy 2019, 21, 695 14 of 22
Entropy 2019, 21, x FOR PEER REVIEW 14 of 22 

 

 

 

Figure 6.Debris flow susceptibility maps based on the controlling factors after IF: (a) DFSM using 
IF-SI; (b) DFSM using IF-AHP; (c) DFSM using IF-SI-AHP; (d) DFSM using IF-SI-RF; (e) DFSM 
using IF-AHP-RF; and, (f) DFSM using IF-SI-AHP-RF. 

5.4. Validation 

5.4.1. Results of the ROC Curve 

The success rate comes from the training dataset, and the prediction rate comes from the 
validation dataset. The pairwise comparison results between the models are show in  Figure 7;  
Figure 8shows, which reveal an improvement in the performance of the models based on the IF 
method. For the debris flow susceptibility maps based on the original controlling factors, the 
success rates of SI, AHP, SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF were 0.813, 0.801, 0.843, 0.887, 
0.854, and 0.817, and their prediction rates were 0.817, 0.803, 0.853, 0.888, 0.857, and 0.832, 
respectively. For the debris flow susceptibility maps that were based on the improved controlling 
factors, the success rates of IF-SI, IF-AHP, IF-SI-AHP, IF-SI-RF, IF-AHP-RF, and IF-SI-AHP-RF were 
0.854, 0.856, 0.900, 0.930, 0.905, and 0.870, and their prediction rates were 0.868, 0.866, 0.910, 0.940, 
0.922, and 0.903, respectively. These results reveal the better performance of the debris flow 
susceptibility maps that are based on the improved controlling factors. 
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IF-SI; (b) DFSM using IF-AHP; (c) DFSM using IF-SI-AHP; (d) DFSM using IF-SI-RF; (e) DFSM using
IF-AHP-RF; and, (f) DFSM using IF-SI-AHP-RF.

5.4. Validation

5.4.1. Results of the ROC Curve

The success rate comes from the training dataset, and the prediction rate comes from the validation
dataset. The pairwise comparison results between the models are show in Figure 7; Figure 8 shows,
which reveal an improvement in the performance of the models based on the IF method. For the
debris flow susceptibility maps based on the original controlling factors, the success rates of SI, AHP,
SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF were 0.813, 0.801, 0.843, 0.887, 0.854, and 0.817, and their
prediction rates were 0.817, 0.803, 0.853, 0.888, 0.857, and 0.832, respectively. For the debris flow
susceptibility maps that were based on the improved controlling factors, the success rates of IF-SI,
IF-AHP, IF-SI-AHP, IF-SI-RF, IF-AHP-RF, and IF-SI-AHP-RF were 0.854, 0.856, 0.900, 0.930, 0.905,
and 0.870, and their prediction rates were 0.868, 0.866, 0.910, 0.940, 0.922, and 0.903, respectively.
These results reveal the better performance of the debris flow susceptibility maps that are based on the
improved controlling factors.
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5.4.2. Results of Spatial Consistency Analysis

The smaller the Spearman’s rank correlation coefficient is, the greater the spatial consistency
between the two debris flow susceptibility maps. As shown in Table 5, the Spearman’s rank correlation
coefficients between the debris flow susceptibility maps that were obtained by the same models, such
as SI and IF-SI, are obviously smaller than the coefficients between other maps. This phenomenon
indicates that there was a high spatial consistency between the debris flow susceptibility maps that
were obtained by the same models, which proves that the IF method is indeed effective. In addition,
the results show that there is also a high degree of spatial consistency between IF-SI-AHP-RF, IF-SI-RF,
and IF-AHP-RF, and low spatial consistency between the remaining maps.

Table 5. The Spearman’s rank correlation coefficients between the debris flow susceptibility maps.

Head IF-SI IF-AHP IF-SI-RF IF-AHP-RF IF-SI-AHP IF-SI-AHP-RF SI AHP SI-RF AHP-RF SI-AHP SI-AHP-RF

IF-SI 0 0.056 0.025 0.067 0.038 0.035 0.002 0.017 0.971 0.021 0.076 0.016
IF-AHP 0.056 0 0.670 0.013 0.864 0.016 0.071 0.001 0.021 0.032 0.780 0.056
IF-SI-RF 0.025 0.670 0 0.006 0.146 0.003 0.011 0.747 0.003 0.700 0.145 0.012

IF-AHP-RF 0.067 0.013 0.006 0 0.631 0.004 0.356 0.231 0.561 0.007 0.178 0.037
IF-SI-AHP 0.038 0.864 0.146 0.631 0 0.043 0.031 0.447 0.213 0.158 0.005 0.066

IF-SI-AHP-RF 0.035 0.016 0.003 0.004 0.043 0 0.063 0.039 0.059 0.231 0.321 0.004
SI 0.002 0.071 0.011 0.356 0.031 0.063 0 0.561 0.286 0.032 0.026 0.095

AHP 0.017 0.001 0.747 0.231 0.447 0.039 0.561 0 0.625 0.158 0.368 0.142
SI-RF 0.971 0.021 0.003 0.561 0.213 0.059 0.286 0.625 0 0.039 0.067 0.023

AHP-RF 0.021 0.032 0.700 0.007 0.158 0.231 0.032 0.158 0.039 0 0.159 0.067
SI-AHP 0.076 0.780 0.145 0.178 0.005 0.321 0.026 0.368 0.067 0.159 0 0.065

SI-AHP-RF 0.016 0.056 0.012 0.037 0.066 0.004 0.095 0.142 0.023 0.067 0.065 0

6. Discussion

6.1. Comparison of Debris Flow Susceptibility Maps

As shown in Figures 7 and 8, the success rate and the prediction rate of the twelve debris flow
susceptibility maps are more than 0.8, which indicates that the debris flow susceptibility maps are
credible. The IF-SI-RF model, which has the highest success and prediction rates, can be considered to
be the best model. The results of the best IF-SI-RF model show that the area ratios of low, moderate,
high, and very high were 37.7%, 21.4%, 25.5%, and 15.4%, respectively, and the areas with high
susceptibility are distributed mainly in the middle and low mountain areas in the east of the study area.

The success and prediction rates of debris flow susceptibility maps that are based on the improved
controlling factors are significantly better than those that are based on the original controlling factors.
As shown in Table 6, the success rates of SI, AHP, SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF increased by
4.1%, 5.5%, 5.7%, 4.3%, 5.1%, and 5.3%, respectively, and the prediction rates increased by 5.1%, 6.3%,
5.7%, 5.2%, 6.5%, and 7.1%, respectively, which proves that the IF method can improve the rationality
of the controlling factors. In addition, the results of six different types of models were significantly
improved, which shows that the scope of application of the IF method is extensive.

Table 6. Improvement of success rate and prediction rate.

Models SI AHP SI-AHP SI-RF AHP-RF SI-AHP-RF

Improved Success Rate 4.1% 5.5% 5.7% 4.3% 5.1% 5.3%
Improved Prediction Rate 5.1% 6.3% 5.7% 5.2% 6.5% 7.1%

6.2. Why the IF Method Can Improve the Controlling Factors

It is also necessary to analyze the reasons why the IF method can improve the controlling factors.
First, there is an inevitable correlation between the selected controlling factors, because a controlling
factor will have an impact on other controlling factors. For example, in the plain area, the slope angle
is relatively small. In addition, when the study area is relatively large, the geological environment
conditions are complex and diversified, and the same controlling factors will play different roles
in different areas. Thus, there will be conflicts between the controlling factors. The IF method can
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weaken the correlations and conflicts between the controlling factors. In addition, when the principal
component analysis method is used to analyze the controlling factors, the number of controlling factors
will be reduced. However, the IF method can make full use of the original data, therefore, it can improve
the controlling factors, further improving the performance of the debris flow susceptibility maps.

6.3. Spatial Consistency Analysis of Debris Flow Susceptibility Maps

The improvement in the success rate and prediction rate of debris flow susceptibility maps is
not enough to show the effectiveness of the IF method. Therefore, the spatial consistency of the
debris flow susceptibility maps is further analyzed. When the two debris flow susceptibility maps,
which were obtained by the same model that was based on the original controlling factors and the
improved controlling factors, show high spatial consistency, the improvement in the controlling factors
is persuasive. In contrast, if the spatial consistency varies greatly, the improvement in the controlling
factors is incorrect. Therefore, to ensure the reliability of the IF method, it is necessary to test the spatial
consistency between the debris flow susceptibility maps. The final analysis results show that there
is good spatial consistency between the two debris flow susceptibility maps that were based on the
original controlling factors and the improved controlling factors, which further proves that the IF
method is effective.

7. Conclusions

The IF method is proposed and verified for DFSM by taking Jilin province, China, as a study area.
Based on field investigations and historical data, nine debris flow controlling factors were selected and
improved by the IF method. The SI, AHP, SI-AHP, SI-RF, AHP-RF, and SI-AHP-RF models were used to
develop debris flow susceptibility maps, and the results were compared and verified. The conclusions
are as follows.

The success and prediction rates of debris flow susceptibility maps that are based on improved
controlling factors are significantly better than those based on the original controlling factors.
In addition, according to the results of spatial consistency analysis, the two debris flow susceptibility
maps, which were obtained by the same model based on the original controlling factors and the
improved controlling factors, have a high spatial consistency. Therefore, the conclusion that the IF
method can improve the controlling factors for DFSM is trustworthy.

Regarding the results of the best IF-SI-RF model, areas with high susceptibility are mainly
distributed mainly in middle and low mountain areas in the east of the study area. The results of this
study can provide reliable information for the prevention and management of debris flow disasters
in the study area and they have significance for reducing and avoiding the losses that are caused by
debris flow.
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Abbreviations

IF Information fusion
SI Statistical index
AHP Analytic hierarchy process
RF Random forest
SI-RF Statistical index model and the random forest model combination
SI-AHP Statistical index model and the analytic hierarchy process combination
AHP-RF Analytic hierarchy process and the random forest model combination

SI-AHP-RF
Statistical index model with the analytic hierarchy process and the random forest
model combination

IF-SI Statistical index model based on controlling factors after Information fusion
IF-AHP Analytic hierarchy process model based on controlling factors after Information fusion

IF-SI-AHP
Statistical index model and the analytic hierarchy process combination based on
controlling factors after Information fusion

IF-SI-RF
Statistical index model and the random forest model combination based on controlling
factors after Information fusion

IF-AHP-RF
Analytic hierarchy process and the random forest model combination based on
controlling factors after Information fusion

IF-SI-AHP-RF
Statistical index model with the analytic hierarchy process and the random forest
model combination based on controlling factors after Information fusion

DEM Digital elevation model
ROC Receiver operating characteristic
DFSM Debris flow susceptibility mapping
AUC Area under the ROC curve
OOB Out of bag
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