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Abstract: To improve the feature extraction of ship-radiated noise in a complex ocean environment,
fluctuation-based dispersion entropy is used to extract the features of ten types of ship-radiated noise.
Since fluctuation-based dispersion entropy only analyzes the ship-radiated noise signal in single
scale and it cannot distinguish different types of ship-radiated noise effectively, a new method of
ship-radiated noise feature extraction is proposed based on fluctuation-based dispersion entropy
(FDispEn) and intrinsic time-scale decomposition (ITD). Firstly, ten types of ship-radiated noise
signals are decomposed into a series of proper rotation components (PRCs) by ITD, and the FDispEn of
each PRC is calculated. Then, the correlation between each PRC and the original signal are calculated,
and the FDispEn of each PRC is analyzed to select the Max-relative PRC fluctuation-based dispersion
entropy as the feature parameter. Finally, by comparing the Max-relative PRC fluctuation-based
dispersion entropy of a certain number of the above ten types of ship-radiated noise signals with
FDispEn, it is discovered that the Max-relative PRC fluctuation-based dispersion entropy is at
the same level for similar ship-radiated noise, but is distinct for different types of ship-radiated
noise. The Max-relative PRC fluctuation-based dispersion entropy as the feature vector is sent into
the support vector machine (SVM) classifier to classify and recognize ten types of ship-radiated
noise. The experimental results demonstrate that the recognition rate of the proposed method
reaches 95.8763%. Consequently, the proposed method can effectively achieve the classification of
ship-radiated noise.

Keywords: ship-radiated noise; fluctuation-based dispersion entropy (FDispEn); instrinsic time-scale
decomposition (ITD); proper rotation component (PRC); feature extraction

1. Introduction

Ship-radiated noise is an important indicator to measure the performance of a ship. It is generally
believed that the ship-radiated noise is superimposed by mechanical noise, propeller noise and
hydrodynamic noise. The study of ship-radiated noise feature extraction is of great significance in
the identification and classification of underwater passive targets. Therefore, extracting effective and
reliable ship-radiated noise characteristic parameters is the focus of research in the field of underwater
acoustics. The processing of ship-radiated noise signal is a typical nonlinear, non-Gaussian and
non-stationary signal processing problem. Traditional signal processing methods such as short-time
Fourier transform, LOFAR spectral analysis, and wavelet transform finds it difficult to accurately
extract the characteristics of the ship-radiated noise [1,2]. The Second-Generation Wavelet is no longer
dependent on the frequency domain and easily implements fast algorithms. At the same time, it has
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a good ability to suppress noise components in non-stationary signals. However, it is still affected by
the wavelet basis function and decomposition level [3].

In recent years, it has been important to preprocess the signal to eliminate noise in the original signal
and to reduce the effects of aliasing between the feature information. Commonly used preprocessing
methods are: empirical mode decomposition (EMD) [4,5], ensemble empirical mode decomposition [6]
(EEMD) and other signal decomposition methods. Li Yuxing [7] used EEMD to analyze the strongest
IMF center frequency of ship-radiated noise. Among different categories of ship-radiated noise,
by comparing their characteristic parameters from strongest IMF center frequency with ones from
high and low frequencies—the same types of ships basically show a similar level of characteristic
parameters, while the different types of ships exhibit discrepancies. Intrinsic time-scale decomposition
(ITD) is a method that can effectively process nonlinear and non-stationary signals based on EMD and
local mean decomposition (LMD) methods. ITD can accurately extract the dynamic characteristics of
non-stationary signal with few numbers of iterations and small edge effect such that it is capable of
online processing in real time. Over the past decades, it has been widely used in the fault diagnosis [8],
biomedicine [9–11], geophysics [12], hydroacoustics [13], etc.

The entropy value indicates the complexity of the signal. It can be used to effectively reduce
the dimension of the feature vector and fully represent the characteristic of the signal. There are
many methods for characterizing the complexity of time series, such as Shannon entropy [14],
sample entropy [15], permutation entropy [16,17], etc., which have been successfully applied in the
field of fault diagnosis and the medical field. However, sample entropy is time consuming for long
data calculations and is susceptible to mutated signals. Although the permutation entropy is faster,
it fails to consider the relationship in signal amplitudes. In order to overcome the shortcomings
of sample entropy and permutation entropy, a new measure of complexity, the dispersion entropy,
was proposed by Mostafa Rostaghi and Hamed Azami in 2016 [18]. The dispersion entropy based on
Shannon entropy was developed to quantify the uncertainty of the time series. In [19], the fluctuation
of the signal is used to develop fluctuation-based dispersion entropy (FDispEn), which tackles the
limitations of permutation entropy and sample entropy. It takes the relationship in amplitudes into
account, but also requires modest computations and shows significant robustness.

Based on the theory of ITD and fluctuation-based dispersion entropy, we propose a method
combining ITD and fluctuation-based dispersion entropy to the feature extraction of ship-radiated
noise. Firstly, the measured different ship-radiated noise is decomposed by ITD, and then the proper
rotational components (PRCs) with high correlation are extracted and the value of the fluctuation-based
dispersion entropy of each order PRC is calculated. The fluctuation-based dispersion entropy value of
the PRC containing the main information is determined as the feature vector. Finally, the feature vector
is put into SVM for classification.

2. Methods

2.1. Intrinsic Time-Scale Decomposition (ITD)

Intrinsic Time-scale Decomposition (ITD) is a relatively new, nonlinear, non-stationary signal
processing method proposed by Frei and Osorio in 2006. It can extract the instantaneous frequency
characteristics of the signal more accurately in real time, and decompose the non-stationary signal
into a series of proper rotation components (PRCs) containing significant instantaneous frequency
component and a residual component. the ITD method is introduced as follows:

Suppose Xt is a real-valued discrete signal. Let ξ denote the baseline extraction factor of Xt,
Ht = Xt − ξXt denote a proper rotation component, where ξXt denotes as Lt, is the mean curve of the
signal. Then the ITD algorithm steps are as follows [20]:
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(1) Let Xk denote the all local extremas of Xt at time points τk(k = 1, 2, · · · , N), and define τ0 = 0.
We can define baseline signal point as:

Lk+1 = α[Xk +

(
τk+1 − τk

τk+2 − τk

)
(Xk+2 −Xk)] + (1− α)Xk+1, (k = 1, 2, 3, · · · , N − 2) (1)

where α ∈ [0, 1] and is typical selected as 0.5.
(2) We can define piecewise linear baseline extracting operator of the signal Xt as:

Lt = ξXt = Lk +

(
Lk+1 − Lk

Xk+1 −Xk

)
(Xt −Xk) (2)

(3) Using the baseline signal Lt as the original signal, repeat steps (1–2), and the original signal is
decomposed into:

Xt = ξXt + HXt =

H
p−1∑
k=0

ξk + ξp

Xt (3)

where, HξkXt is the k + 1 proper rotation component (PRC), ξpXt is monotonic trend signal.

The superiorities of ITD over EMD and other classic signal analysis methods are:

1. ITD eliminates the needs of sophisticated ‘sifting’ and spline interpolation of local extremas,
which are necessary in EMD method. Therefore, the reduction of the computational complexity
of ITD allows obtaining the instantaneous parameters of the signal in real time.

2. The various instantaneous parameters obtained by ITD decomposition can accurately express
the time-varying characteristics of the non-stationary signal frequency (the instantaneous time
resolution of the time-frequency information is equal to the time scale corresponding to the
extreme point in the input signal). It is worth noting that the time-frequency information is
not restricted by the time-frequency uncertainty comparing with one obtained by traditional
integral transform.

2.2. Fluctuation-Based Dispersion Entropy

Fluctuation-Based Dispersion Entropy (FDispEn) is a nonlinear dynamic analysis method that
characterizes the complexity and irregularity of time series. The algorithm is based on the mapping of
normal distribution functions. Therefore, the expectation and standard deviation of the data should be
considered. The calculation steps of FDispEn are summarized as follows [19]:

(1) Define time series is x =
{
x j, j = 1, 2, · · · , N

}
, x is mapped to y =

{
y j, j = 1, 2, · · · , N

}
, according

to normal distribution function, where yi ∈ (0, 1) and the normal distribution function yi is
defined as:

y j =
1

σ
√

2π

x j∫
−∞

e
−(t−µ)2

2σ2 dt (4)

where, µ and σ respectively represents expectation and standard deviation of time series.
(2) The y is linearly mapped to an integer from 1 to c.

zc
j = round

(
c · y j +

1
2

)
(5)

where zc
j shows the j-th member of the classified time series and rounding involves either

increasing or decreasing a number to the next digit.
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(3) Calculate the embedded vector zm,c
i :

zm,c
i =

{
zc

i , zc
i+d, · · · , zc

i+(m−1)d

}
, i = 1, 2, . . . , N − (m− 1)d (6)

(4) The dispersion pattern is defined as: πv0,v1,··· ,vm−1(v = 1, 2, · · · , c). Each zm,c
i is mapped to

a dispersion pattern πv0,v1,··· ,vm−1 , where zc
i = v0, zc

i+d = v1, . . . , zc
i+(m−1)d = vm−1. The number of

possible dispersion patterns assigned to each vector zm,c
i is equal to (2c− 1)m−1 since zm,c

i has m
elements and each can be one of the integers from −c + 1 to c− 1.

(5) For each dispersion pattern πv0,v1,··· ,vm−1 , relative frequency p
(
πv0,v1,··· ,vm−1

)
is defined as follows:

p
(
πv0,v1,··· ,vm−1

)
=

Nb(πv0,v1,··· ,vm−1)

N − (m− 1)d
(7)

where, Nb
(
πv0,v1,···vm−1

)
represents the number of zm,c

i mapped to πv0,v1,··· ,vm−1 . Actually,

p(πv0,v1,··· ,vm−1) shows the ratio of Nb
(
πv0,v1,···vm−1

)
to zm,c

i .

(5) According to the definition of Shannon entropy, the FDispEn of original time series x is defined as:

FDispEn(x, m, c, d) = −
(2c−1)m−1∑
π=1

p(πv0,v1,···vm−1)In(p(πv0,v1,···vm−1)) (8)

As an example, let us have a signal x = {2, 3.5, 5.2, 4.1, 2.2, 2.1, 2.5, 4.6, 3.9, 7.4},
We set d = 1, m = 3, c = 2, leading to 32 = 9 potential dispersion pattern,
(
{
(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)

}
). Then, x j( j = 1, 2, · · · , 10) are

linearly mapped into two classes with integer indices from 1 to 2 ({1, 1, 2, 1, 1, 1, 1, 1, 1, 2}). Afterwards,
a window with length 3 moves along the time series and the differences between adjacent elements
are calculated x =

{
(0, 1), (1,−1), (−1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1)

}
. Afterwards, the number of

each dispersion pattern is counted. Finally, using Equation (8) the FDispEn value of x is equal to
−( 1

8 In
(

1
8

)
+ 4

8 In
(

4
8

)
+ 2

8 In
(

2
8

)
+ 1

8 In
(

1
8

)
) = 1.2130.

2.3. Performance Analysis of FDispEn

Analyze the impact of different parameters involved in the FDispEn calculation. In the algorithm
for Shannon entropy, time delays d in Equation (8) are usually taken about 1, 2, or 3. However,
some frequency information may be lost when d > 1, so we take d = 1 in this paper. For embedding
dimensions m, if the embedding dimension m is too small, dynamic changes in the signal may not be
detected, and large m may result in small changes in the signal is invisible. We observe that m = 2 or 3
is suitable in our study. The parameter c is the number of categories of sequence dispersion in the
FDispEn algorithm, when c is too small, data with two large amplitude differences may be assigned
to the same classes. Whereas data with a small amplitude difference may be divided into different
classes when increasing c. Therefore, this indicates that the FDispEn algorithm is very sensitive to
noise. In summary, the parameters we use are d = 1, c = 3, 4, 5, 6, 7 and m = 2, 3.

(1) We compare the FDispEn values of different lengths of Gaussian white noise and 1/ f noise
under different parameter combinations, and make the mean variance diagram. Gaussian white
noise and 1/ f noise with size of 3000 are divided into 30 small groups. The results are shown in
Figure 1.
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Figure 1. Influence of different parameters on FDispEn.

The results illustrate that for different combinations of parameters, the overall trend of the FDispEn
values of the two noise is the same under different data size, and the FDispEn value increases as c
increases. If m = 2, c has little effect on the stability of FDispEn. If m = 3, the stability of FDispEn
value increases slightly with the increase of c.

(2) The influence of data size on the calculation result of FDispEn

Considering the FDispEn values of different data size of Gaussian white noise and 1/ f noise,
it can be seen from Figure 1 that the FDispEn value of Gaussian white noise is larger than one of 1/ f
noise, which is consistent with the fact that the irregularity of Gaussian white noise is higher than 1/ f
noise. It is worth note that small size of data result in instability of FDispEn, whereas, with increasing
size of data, the FDispEn values of Gaussian white noise and 1/ f noise are becoming steady around
a fixed number after the size exceeding 1000. Therefore, we choose the size of samples at least bigger
than 1000 empirically in FDispEn calculation.

(3) Compare the computational performance of FDispEn with different parameters.

This experiment is performed on Windows 7 operating system with Intel Core i7 4-core, 2.5 GHz.
and measure the time for data calculation in each small image in Figure 1. The results are shown in
Figure 2.
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As can be seen from Figure 2, the computational performance degrade with the increase of c and m,
which indicates that the smaller c and m should be selected when efficiency is the major consideration.
m is selected according to requirements, usually 2 or 3, and (2c− 1)m−1 should be less than the size of
the input (2c− 1)m−1 is the number of all potential dispersion modes, which is meaningless than the
data size). In order to balance the efficiency and accuracy, the parameters we select in this paper are
c = 3, m = 2, d = 1.

(4) Comparisons of FDispEn with sample entropy (SampEn) and permutation entropy (PE)

In fact, the concept of similar tolerance r in SampEn is also used in the algorithm of FDispEn.
Consider the effect of different size of Gaussian white noise on FDispEn, SampEn and PE. When m = 2,
the different values of r in SampEn are compared with the values of c in FDispEn, and the results
are shown in Figure 3. The data with different magnitudes in the original signal are classified into
the same classes or different classes by using FDispEn, which makes FDispEn more robust when
dealing with noisy signals than SampEn. The dispersion pattern in FDispEn is similar to the arranging
pattern in PE, but these two modes are processed differently. As shown in Figure 3, FDispEn is more
stable than PE when processing noise. Since PE only considers the ordered structure of the time series
and does not consider the amplitude of the sequence, it leads to the loss of some key information.
In summary, compared with SampEn and PE, FDispEn has the advantage of introducing class division
and alignment, making it more stable when dealing with noisy signals.
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3. Feature Extraction Method of Ship-Radiated Noise Using FDispEn and ITD

3.1. Feature Extraction Technique Using FDispEn and ITD

The basic theories of FDispEn and ITD and their respective advantages have been introduced
in Section 2. In this section, we propose a new feature extraction technique using FDispEn and ITD.
The detailed flowchart of the proposed method is shown in Figure 4. Specific steps are as follows:

1. Perform ITD decomposition on different types of ship-radiated noise, and decompose to obtain
a series of proper rotation components and one residual component.

2. Calculate the correlation between several proper rotation components obtained from the
decomposition and the original signal, and select the proper rotation component with large
correlation coefficients as the characteristic parameter to calculate the fluctuation-based dispersion
entropy value.

3. Compare the fluctuation-based dispersion entropy of ship-radiated noise without ITD
decomposition, so as to realize the feature extraction of ship-radiated noise complexity.

4. The result of Step 2 as the feature vector is input into the support vector machine for classification
to verify the effectiveness of this method.
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3.2. Application

In order to demonstrate the effectiveness of the ship-radiated noise complexity feature extraction
method based on ITD and fluctuation-based dispersion entropy, this paper uses all data of actual
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ship-radiated noise measured in a sea area of South China Sea and under the same conditions.
Ten different types of ship-radiated noise signals are selected as sample data, namely cruise ship,
small diesel ship, whining propeller ship, submarine, etc. For convenience, we respectively named the
ten ship-radiated noise as Ship-1, Ship-2, Ship-3, etc. The size of each type of ship-radiated noise is
88200. The sample rate of Ship-1, Ship-2, Ship-3, Ship-4, Ship-9 and Ship-10 are 44.1 kHz. The sample
rate of Ship-5, Ship-7 and Ship-8 are 5273 Hz. The sample rate of Ship-6 is 8 kHz. The time domain
waveforms of the normalized ship-radiated noise signals are shown in Figure 5.Entropy 2019, 21, x FOR PEER REVIEW 9 of 18 
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It can be seen from the Figures 6 and 7 that the PRCs components of the ship-radiated noise
signals after ITD decomposition are arranged from high frequency to low frequency. The first order
mode PRC1 of the ten types of signals indicates the shortest oscillation period of the signal, which is
usually the noise component, or the high frequency component of the signal. The orders of ten types
of the ship-radiated noise signals depend on the complexity of the signals, in other words, the more
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complex the signal is, the more PRCs orders are decomposed. Furthermore, we observe that most
information characteristics are concentrated in the first PRC component because the amplitudes of
these components are much higher than the others.

3.2.2. Fluctuation-Based Dispersion Entropy of Each Order PRC

After ITD decomposition, the fluctuation-based dispersion entropy of each order PRC of the ten
types of ship-radiated noise signals are calculated separately. Figure 8 shows the fluctuation-based
dispersion entropy of each order PRC of the ten types of ship-radiated noise signals, and the abscissa
is the ten types of ship-radiated noise signals from 1 to 5 order PRC, and the ordinate indicates the
fluctuation-based dispersion entropy corresponding to each order PRC.
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3.2.3. The Fluctuation-Based Dispersion Entropy of PRCs with the Highest Correlation Coefficient

The fluctuation-based dispersion entropy of the ten types of ship-radiated noise signals are
classified in order of PRCs, which are very different. We select the PRCs characterizing the main
information characteristics of the signal, and calculate the differences of the fluctuation-based dispersion
entropy to analyze their separability. After the ITD decomposition of the ten types of signals, the PRCs
are sorted in descending order in terms of frequency. Usually, because the main information
characteristics of the original signals are only concentrated in the first few orders of RPCs, we choose
five of them to calculate their correlation. Table 1 lists the correlation coefficients of the various stages
of PRCs after the noise mode have been removed from the ten types of ship-radiated noise signals.

Table 1. Correlation of various orders of proper rotation components (PRCs) for ten types of
ship-radiated noise signals.

Order Ship-1 Ship-2 Ship-3 Ship-4 Ship-5 Ship-6 Ship-7 Ship-8 Ship-9 Ship-10

PRC2 0.4754 0.7200 0.7637 0.3532 0.5062 0.6947 0.5545 0.6679 0.8094 0.5749
PRC3 0.7777 0.5563 0.5489 0.752 0.8388 0.6541 0.5006 0.6401 0.7203 0.5726
PRC4 0.7891 0.3765 0.4537 0.777 0.6489 0.2646 0.5288 0.5063 0.3332 0.5719
PRC5 0.1341 0.3501 0.2130 0.4045 0.2193 0.0176 0.3718 0.3246 0.0482 0.5568
PRC6 0.0303 0.1105 0.0882 0.0589 0.0187 0.0049 0.1372 0.0217 0.0038 0.3191

The fluctuation-based dispersion entropy of PRCs with the highest correlation coefficient can be
defined as the fluctuation-based dispersion entropy by filtering out the PRCs with the highest correlation
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coefficient. Table 2 lists the fluctuation-based dispersion entropy and distribution of PRCs with the
highest correlation coefficient in the ten types of ship-radiated noise signals. It can be seen from
Table 2 that the PRCs with the largest correlation between the different ship-radiated noise signals are
distributed in different modes, and the values of the fluctuation-based dispersion entropy of PRCs
with the highest correlation coefficients have a certain difference.

Table 2. Ten types of ship-radiated noise signals of PRC of fluctuation-based dispersion entropy
and distribution.

Parameter Ship-1 Ship-2 Ship-3 Ship-4 Ship-5 Ship-6 Ship-7 Ship-8 Ship-9 Ship-10

The order of PRC
with the highest
correlation coefficient

PRC4 PRC2 PRC2 PRC4 PRC3 PRC2 PRC2 PRC2 PRC2 PRC2

Fluctuation-based
dispersion entropy 0.0759 0.3807 0.3485 0.0376 0.1078 0.6134 0.7440 0.6528 0.3471 0.5117

4. Comparison of Feature Extraction Methods of Ship-Radiated Noise

In order to verify the generality of the characteristic parameter, which is the FDispEn of PRC
with the highest correlation coefficient, regarded as representing the difference of ten types of
signals. There are 50 pieces of sample data of each type of signal randomly selected to calculate the
fluctuation-based dispersion entropy and compare with the fluctuation-based dispersion entropy of
the original signal without ITD decomposition. In Figure 9, the abscissa is the number of samples,
and the ordinate represents the fluctuation-based dispersion entropy of the PRC with the highest
correlation coefficient. Figure 10 illustrates the complexity of the dominant PRC of the signal. The PRC
of the same ship-radiated noise signal fluctuates within a certain small range, but the value of the
ship-radiated noise varies much larger. The above manifest that the proposed feature extraction
method can distinguish ten types of ship-radiated noise.
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In order to prove the superiority of the proposed method, the fluctuation-based dispersion entropy
of original ship-radiated noise is taken as the feature vector of ship-radiated noise. As shown in
Figure 10, the fluctuation-based dispersion entropy of Ship-2, Ship-3, Ship-9 and Ship-10 are basically
between 0.4 and 0.7. The fluctuation-based dispersion entropy of Ship-1, Ship-4 and Ship-5 are
basically between 0.2 and 0.4. Therefore, it is not feasible to distinguish these ships directly by using
fluctuation-based dispersion entropy.

Table 3 provides the fluctuation range, mean and standard deviation of parameters of ten types of
ship-radiated noise with 50 samples per type. For convenience, we named the mean of the original
signal, the standard deviation of the original signal, the detailed fluctuation range of original signal,
the mean values of the fluctuation-based dispersion entropy of PRC with the highest correlation
coefficient, the standard deviation values of the fluctuation-based dispersion entropy of PRC with the
highest correlation coefficient, and the detailed fluctuation range of the fluctuation-based dispersion
entropy of the PRC with the highest correlation coefficient as Mean1, Std1, Range1, Mean2, Std2 and
Range2, respectively. It can be concluded from Table 3 that the Mean2 are different and the Range2
are not overlapped, thus the distinguishability of FDispEn of highest correlative PRC makes it very
suitable to be used as characteristic parameter while others have very close fluctuation-based dispersion
entropy and the ranges of fluctuations are severely overlapping and not non-separable. When the
number of samples increases to 100, there is no significant difference in the fluctuation-based dispersion
entropy characteristic parameters of the PRC with the highest correlation coefficient, which indicates
the corroborates the capability of generalization of this approach. The above results show that the
fluctuation-based dispersion entropy of the PRC with the highest correlation coefficient can accurately
distinguish different types of ship-radiated noise signals.
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5. Classification

To realize the automatic identification of ship-radiated noise, the extracted features are input
into the SVM [21] for training and testing. For each type of ship-radiated noise, 20 samples are
used as training samples, and the remaining 30 samples are used as test samples. To compare
classification accuracy, FDispEn of the original ship-radiated noise, PE of the original ship-radiated
noise, the EMD-PIMF-PE method [22] and ITD-FDispEn are used to classify ship-radiated noise.
The SVM outputs of these four methods are shown in Figure 11, respectively, and the recognition
rates are listed in Table 4. For each type of ship-radiated noise, the FDispEn of the original signal is
not completely classified correctly, and the classification accuracy is 54.2955%. The PE of the original
signal method is inferior to the FDispEn of the original signal method, and the classification accuracy
is 70.1031%. The EMD-PIMF-PE method is inferior to the PE of the original signals method and
classification accuracy is 83.1615%. Compared with the other three methods, the classification accuracy
of the proposed method reaches 95.8763%. The results indicate that the proposed method can better
classify the ten types of ship-radiated noise.
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Table 4. SVM classification results of different methods.

Methods Accuracy Rate

The proposed method 95.8763%
The FDispEn of original ship-radiated noise 54.2955%
The PE of original ship-radiated noise 70.1031%
The EMD-PIMF-PE method 83.1615%

6. Conclusions

A novel feature extraction technique for ship-radiated noise is proposed based on ITD and the
fluctuation-based dispersion entropy. The crucial contributions in this paper are highlighted as follows:

1. ITD method as a novel signal decomposition is introduced. ITD method accurately extract the
dynamic characteristics of non-stationary signal with fewer numbers of iterations and a small edge
effect such that it is capable of online processing in real time. It was first applied to underwater
acoustic signal decomposition.

2. Simulation experiments demonstrate that the fluctuation-based dispersion entropy has the
advantage of introducing class division and alignment, making it more robust when dealing with
noisy signals compared with SampEn and PE. Therefore, this paper applied the fluctuation-based
dispersion entropy to underwater acoustic signal processing.

3. Analysis of the separability of the fluctuation-based dispersion entropy of each order PRC, it is
often the case that only one PRC with the principal features is selected for feature extraction.
In this paper, the entropy is weighted by the highest correlation coefficient, so the importance of
each PRC is considered.

4. The method proposed in this paper can extract the characteristics of ship-radiated noise more
precisely and comprehensively. The classification recognition rate for ten types of ship-radiated
noise signals is 95.8763%.
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