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Abstract: This study presents a comprehensive fault diagnosis method for rolling bearings. The
method includes two parts: the fault detection and the fault classification. In the stage of fault
detection, a threshold based on refined composite multiscale dispersion entropy (RCMDE) at a local
maximum scale is defined to judge the health state of rolling bearings. If the bearing is in fault,
a generalized multi-scale feature extraction method is developed to fully extract fault information by
combining fast ensemble empirical mode decomposition (FEEMD) and RCMDE. Firstly, the fault
vibration signals are decomposed into a set of intrinsic mode functions (IMFs) by FEEMD. Secondly,
the RCMDE value of multiple IMFs is calculated to generate a candidate feature pool. Then, the
maximum-relevance and minimum-redundancy (mRMR) approach is employed to select the sensitive
features from the candidate feature pool to construct the final feature vectors, and the final feature
vectors are fed into random forest (RF) classifier to identify different fault working conditions. Finally,
experiments and comparative research are carried out to verify the performance of the proposed
method. The results show that the proposed method can detect faults effectively. Meanwhile, it has a
more robust and excellent ability to identify different fault types and severity compared with other
conventional approaches.

Keywords: fault diagnosis; rolling bearing; fast ensemble empirical mode decomposition; refined
composite multiscale dispersion entropy; max-relevance and min-redundancy; random forest

1. Introduction

Rotating machinery is a major part of mechanical equipment, including many engineering fields
such as power, chemical, metallurgy, and machinery manufacturing [1–4]. Its working condition
directly affects the safety and stability of mechanical operation. Bearings are one of the most common
and fragile general parts in rotating machinery, and their health is directly related to whether the
machine can operate normally. Therefore, it is necessary to execute health monitoring and fault
diagnosis of the bearing, and it has drawn considerable attention and research.

As bearings operate, they unavoidably suffer from cracks, corrosion, spalling and other factors,
which cause the vibration signals to exhibit nonlinear dynamic characteristic. Therefore, how
to effectively extract and detect fault characteristics of bearings is crucial in fault diagnosis [5].
Data-driven based methods are the mainstream methods for solving various problems [6,7], including
statistical methods, signal processing methods, and artificial intelligence-based methods. For instance,
Santos [8] employed a data-driven system based on dynamic principle components to detect faults.
However, it cannot extract non-linear characteristics. Recently, with the development of nonlinear
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dynamic technologies, nonlinear dynamic methods have been widely applied in many areas, such
as biomedicine and image processing [9,10]. Due to their extraordinary advantages in extracting
nonlinear characteristics of vibration signals, many entropy-based methods, such as approximate
entropy [11], sample entropy [12], and permutation entropy (PE) [13,14], are widely applied for fault
diagnosis. However, the quality of the approximate entropy result depends on the length of data.
It will result in bad estimate values when analyzing short datasets. Sample entropy has addressed
the shortcoming of approximate entropy, but it brings a high computational complexity. Different
from approximate entropy and sample entropy, PE has a simple concept and fast computing speed.
However, it drops some information of amplitudes while mainly concerning the order of amplitude
values. Therefore, a recent entropy-based method called dispersion entropy (DE) was introduced by
Azami [15] to overcome these shortcomings, and it has been adopted to detect bearing faults due to its
excellent performance in measuring the complexity and randomness of vibration signals [16].

However, the above entropy-based methods extract fault characteristics only at a single scale.
It does not always get the desired results as it will lose some important information. To overcome
the drawback, multi-scale sample entropy (MSE) and multi-scale permutation entropy (MPE) were
proposed by Costa [17,18] and Aziz [19], respectively. They can analyze vibration signals over multiple
scales by introducing a coarse-graining time series. Accordingly, multi-scale dispersion entropy
(MDE) and refined composite MDE (RCMDE) were further developed by Azami [20] to overcome
the shortcomings of MSE and MPE. Compared with single-based entropy methods, multi-scale
entropy-based methods have greatly improved the performance and achieved growth applications in
fault diagnosis [21–23]. Therefore, RCMDE is exploited to measure the complexity and randomness of
vibration signals in this study, and it will be considered as a tool to detect the health of bearings in
the study.

Nevertheless, RCMDE directly acts on the original signal, which cannot reveal the inherent
characteristic of vibration signals. The diagnosis results may be not ideal when the bearing fault is of
different type and severity. Considering the nonlinear and non-stationary characteristics of vibration
signals, entropy-based methods are often combined with the time–frequency analysis technique to
extract the fault information from bearings [24]. The typical time–frequency analysis technique,
such as wavelet transform (WT) [25], variational mode decomposition (VMD) [26], empirical mode
decomposition (EMD) [27] and local mean decomposition (LMD) [28,29], is firstly to decompose
complicated signals into a set of components which represent its intrinsic characteristic. Then, the
entropy-based approach is adopted to measure the complexity of the components. For instance, Li [30]
combined LMD and MPE to extract features from rolling bearings. Zhang [31] employed ensemble
empirical mode decomposition (EEMD) and PE to identify fault type and severity. Tan [32] applied
VMD and fuzzy entropy to construct fault feature vectors, but they extracted fault information only
according to a single component or single scale [30–33]. The potential fault information hidden in
other scales or other components also play important roles for fault diagnosis. Thus, we present a
generalized multi-scale feature extraction method to extract fault features from different components as
well as multiple scales. EMD is one of most popular and widely used time–frequency tools, but mode
mixing problems exist. EEMD is an advanced version of EMD that mitigates the mode-mixing problem
of EMD. However, its computational cost is too high when the number of samples is large. Fast EEMD
(FEEMD), presented by Wang and Yeh [34], is an effective time–frequency tool. Compared with EEMD,
it is considerably faster while both decomposition results are nearby and reliable [35–37]. Therefore,
FEEMD is adopted to decompose original vibration signals into multiple components (IMFs). Then,
RCMDE values of multiple IMFs are calculated to formulate candidate feature pools. To reduce the
computational burden and increase classification accuracy, minimum-redundancy maximum-relevancy
(mRMR) [38] is employed to select sensitive features to generate the final feature vector. Then, the
random forest (RF) classifier [39–42] is adopted to train and test the final feature vectors to identify
different fault working conditions.
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The contribution of this work is the development of a multi-step comprehensive fault diagnosis
method including fault detection and fault classification. The preliminary fault detection is based
on statistical analysis of RCMDE, which is fast and can be easily applied to judge the health state of
bearings. If the bearing is detected to be healthy, the program outputs “Normal” and is terminated.
Otherwise, the proposed generalized multi-scale feature extraction method based on FEEMD and
RCMDE is employed for fault diagnosis, which can fully extract fault information. Subsequently,
to further improve the efficiency and diagnostic accuracy, the mRMR is adapted for feature selection
and the RF classifier for fault classification. The proposed fault diagnosis model is applied to the
vibration signals of bearings, and the diagnosis results show its robust diagnosis performance for
different types and severities of faults. Moreover, compared with the conventional single-step diagnosis
approach, this stepwise diagnostic strategy is more in line with practical engineering applications.

The rest of this paper is organized as follows: Section 2 presents the basic theory of FEEMD, DE,
RCMDE, and mRMR. Section 3 gives details of the proposed method. Section 4 provides the analysis
and results of the experiments. Finally, the conclusion is reported in Section 5.

2. Basic Theory

2.1. Fast Ensemble Empirical Mode Decomposition (FEEMD)

FEEMD, developed by Wang [34], is an improved version of EEMD, which can decompose
vibration signals into a series of IMFs and a residue according its inherent structure. It not only speeds
up the computational speed of EEMD, but also achieves the same good decomposition results as
EEMD, which has been verified in the literature [36,37]. The accelerated calculation of FEEMD is
implemented by optimizing the program of EMD. Similar to EEMD, the procedure of FEEMD can be
briefly described as follows:

(1) Add a white noise series n j(t) to the original signal s(t) (repeated M realizations),

s j(t) = s(t) + n j(t), (1)

where n j(t) represents the added noise in the j-th realization.
(2) Decompose the noise-added signal s j(t) into n IMFs and a residue using EMD,

s j(t) =
n∑

i=1

ci j(t) + r j(t), (2)

where ci j(t) and r j(t) represent the i-th IMF and residue in the j-th realization, respectively.
(3) Compute the ensemble mean as follows:

ci(t) =
1
M

M∑
j=1

ci j(t), (3)

r(t) =
1
M

M∑
j=1

r j(t), (4)

where ci(t) represents the i-th IMF of FEEMD, and r(t) represents the residue of FEEMD.

2.2. Dispersion Entropy and Refined Composite Multiscale Dispersion Entropy

2.2.1. Dispersion Entropy

For a given time series: x = x1, x2, . . . , xN, the dispersion entropy (DE) can be described as
follows [15]:
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(1) Firstly, xj (j = 1,2, . . . , N) are mapped into y = {y1, y2, . . . , yN} from 0 to 1 by a normal cumulative
distribution function (NCDF), and each yj are assigned to an integer from 1 to c by linear algorithms.
The mapped signal can be denoted as follows:

zc
j = round(c.y j + 0.5), (5)

where zc
j denotes the j-th member of the classified time series.

(2) Define the embedding vector zm,c
j with embedding dimension m and time delay d following

the equation:

zm,c
i =

{
zc

i , zc
i+d, . . . , zc

i+(m−1)d

}
, (6)

where i = 1,2, . . . , N − (m − 1)d, each time series zm,c
i is mapped to a dispersion pattern, and

zc
i = v0, zc

i+d = v1, . . . , zc
i+(m−1)d = vm−1.

(3) The relative frequency of each potential dispersion patterns can be given by:

p(πv0 v1 . . .vm−1) =
Number

{
i
∣∣∣i ≤ N − (m− 1)d, zm,c

i has type πv0 v1 . . .vm−1

}
N − (m− 1)d

, (7)

(4) Finally, the DE can be computed as follows:

DE(x, m, c, d) = −
cm∑
π=1

p(πv0 v1 . . .vm−1)· ln(p(πv0 v1 . . .vm−1)), (8)

where m is the embedding dimension and d is the time delay.

2.2.2. Refined Composite Multiscale Dispersion Entropy (RCMDE)

RCMDE, developed by Azami in 2017 [20], is an improved method based on DE. The RCMDE
value is calculated as the Shannon entropy of the coarse-graining time series. The progress of RCMDE
is as follows:

(1) Construct multiple coarse-graining series:

xτk, j =
1
τ

k+ jτ−1∑
i=k+( j−1)τ

xi, 1 ≤ j ≤
N
τ

, 1 ≤ k ≤ τ, (9)

where τ is the scale factor and xτk, j denotes the k-th coarse-grained time series of x.
(2) For each scale factor, RCMDE is defined as follows:

RCMDE(x, m, c, d, τ) = −
cm∑
π=1

p(πv0 v1 . . .vm−1)· ln(p(πv0 v1 . . .vm−1)), (10)

where p(πv0 v1 . . .vm−1) = 1
τ

∑τ
1 p(τ)k with the relative frequency of the dispersion pattern π

in x(τ)k (1 ≤ k ≤ τ).

2.2.3. Parameter Settings of RCMDE

In RCMDE, four essential parameters need to be set: embedding dimension m, the number of
classes c, time delay d and scale factor τ. For embedding dimension m, if it is too small, the dynamic
change of the signal is hard to detect. If it is too large, small variations are not noticed. For the number
of classes c, it ought to be larger than one to avoid only one dispersion pattern existing. If it is too
small, distant amplitude values may be classified into the same class. If it is too large, their class may
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be changed due to a small difference, and the DE method is easily disturbed by noise. It is generally set
from 4–8. Moreover, if c or m is too large, the calculation cost will increase, and the result will be more
trustworthy. cm must be smaller than the length of the signal. For time delay d, it is suggested that
d = 1. For scale factor τ, if it is too small, the fault information cannot be extracted effectively. If it is
too large, the computational cost will increase. It is suggested that the maximum scale factor τmax = 20.
In this study, we set m = 4, c = 6, d = 1 and τmax = 20 according to the literature [15,16,20].

2.3. Max-Relevance And Min-Redundancy (mRMR)

In pattern recognition, the computational cost will be large and the classification accuracy will
also be reduced if the number of features is too large. The mRMR is proposed by Peng et al. [38] to
select superior features based on mutual information. The basic idea of mRMR is as follows:

Given two random variables x and y, their similarity can be measured by mutual information
I(X; Y):

I(X; Y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (11)

where p(x), p(y), p (x, y) denotes the probability of X, probability of Y, and probabilistic density functions
of X and Y, respectively.

Feature selection aims to seek a feature set S with features X, which has large mutual information
on the target class C based on max-relevance criterion:

maxD(S, c), D =
1
|S|

∑
xi∈S

I(xi; c), (12)

where |S| is the number of features in subset S.
To avoid redundancy in selected features, the min-redundancy is to eliminate the features which

have a large dependency and minimal redundancy. The min-redundancy is defined as follows:

minR, R =
1

|S|2
∑

xi,x j∈S

I(xi; x j), (13)

Thus, the mRMR is based on both the criterion of max-relevance criterion and min-redundancy.
The operator can be optimized as:

maxφ(D, R), φ = D−R, (14)

maxφ(D, R), φ = D/R, (15)

Suppose we have found a feature set Sm−1 with m − 1 features, and the mRMR is seeking the
m-th feature from feature set {X − Sm−1}. Using an incremental search method. it should meet the
following equations:

max
x j∈X−Sm−1

[I(x j; c) −
1

m− 1

∑
xi∈Sm−1

I(x j; xi)], (16)

max
x j∈X−Sm−1

[I(x j; c)
/ 1

m− 1

∑
xi∈Sm−1

I(x j; xi)], (17)

3. The Proposed Method

In this study, based on advantages of FEEMD, RCMDE, mRMR, and RF, a comprehensive fault
diagnosis method is proposed for fault diagnosis of rolling bearings. The method includes fault
detection and fault classification.
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3.1. Fault Detection

DE is able to measure the complexity and randomness of signals. Similar to PE and approximate
entropy, DE has the capability of detecting faults [16]. However, when many types of faults exist, the
DE values between normal and certain fault working conditions are very close. It cannot effectively
distinguish between the normal and all fault working conditions.

As with the increase of scale factor, the RCMDE values of normal vibration signals change slowly,
while RCMDE values of fault vibration signals rapidly decrease. When the scale factor is large enough,
the differences of RCMDE values between normal and fault workings will be very apparent. Thus,
based on different sensitivities to the scale factor, RCMDE values at a large scale can be employed to
distinguish between normal and fault working conditions. To achieve a better discrimination effect, a
threshold is defined based on RCMDE values at a local maximum scale factor τmax = 20 to detect faults
in this study.

3.2. Fault Classification

If the bearing is detected to be faulty, the faulty vibration signals will be further analyzed to
classify all fault working conditions. In order to fully extract the fault information of bearings, we
presented a generalized multi-scale feature extraction method based on FEEMD and RCMDE. Different
from traditional multi-scale methods that extract nonlinear features either by calculating multi-scale
entropy of a single component [30,33], or single entropy of multiple components [31,43], we extracted
fault features via different components as well as multiple scales. The basic idea is to decompose the
fault vibration signals into multiple IMFs that represent its inherent oscillations, then RCMDE was
applied to extract the fault characteristic of the IMFs. Thus, a candidate feature pool is formed by these
multi-scale features, which can completely extract non-linear fault characteristics. Next, the mRMR is
employed to select superior and sensitive features from the candidate feature pool. Finally, the RF
classifier was used to classify different fault working conditions.

The flowchart of the proposed method is presented in Figure 1, and the general steps of the
ensemble fault diagnosis method are presented as follows:

(1) Collect the vibration signals under different working conditions of rolling bearings.
(2) Divide the vibration signals into non-overlapped samples.
(3) Calculate the RCMDE values of vibration signals at different scale factors. Find out a threshold

based on RCMDE to judge the health status of a bearing. If it is healthy, output normal to present
the working condition of the bearing. Otherwise, identify the faults of different types and severity
in the next steps.

(4) The fault vibration signals are decomposed into multiple IMFs by FEEMD.
(5) The RCMDE values of the first several IMFs are calculated to construct the candidate feature pool.
(6) The mRMR is employed to select the sensitive features from the candidate feature pool to generate

the final feature vectors.
(7) The final feature vectors are fed into the random forest classifier to identify different fault types

and severity.

The pseudocode of the proposed fault diagnosis algorithm (see Algorithm 1) is presented
as follows:
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Algorithm 1. The Pseudocode of the Fault Diagnosis Algorithm

1 Input the vibration signals of N different working conditions
2 Calculate the RCMDE values Ri of different working conditions at scale factor τmax

3 Define a threshold §
4 If Ri > §
5 Output “Normal”
6 Else
7 Decompose the fault vibration signals of L different fault working conditions into m IMFs
8 Calculate the RCMDE values of the first k IMFs at scale factor τ, (τ = 1,2, . . . , τmax)
9 Then, for fault working conditions, the candidate feature pool is formed with a size of E × F, (E is number of fault
sample, F = k × τmax)
10 For training samples Etrain × F, training label Ltrain, select s features from ranked features by mRMR, obtain Etrain × Strain
11 For testing samples Etest × F, select s features according to ranking results of training samples, obtain Etest × Stest

12 Put Etrain × Strain, Ltrain and Etest × Stest into RF classifier
13 Obtain test label Ltest

14 Output fault working conditionEntropy 2019, 21, x FOR PEER REVIEW 2 of 7 

 

Figure 1. The flowchart of proposed method. 
Figure 1. The flowchart of proposed method.
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4. Experiment Results

4.1. Experimental Data

To research the potential application of the proposed method, experimental data of bearings
provided by Case Western Reserve University [44] were used in this study. The motor operated under
0 horsepower with a speed of 1797 rpm. The vibration data was collected from drive end bearings at a
sampling frequency of 12,000 Hz. It mainly contains one normal and nine fault working conditions.
The fault working conditions include three fault types: ball fault, inner raceway fault and outer
raceway fault (located at three o’clock). Each fault types have different severities with fault diameters
of 0.001 inches, 0.014 inches and 0.021 inches. In the study, the vibration data of each working condition
was divided into 110 non-overlapped samples, and each sample consisted of 1024 data points. To agree
with the actual engineering application, 20 percent of each working condition sample was randomly
selected for training, and the remains were used as test samples to validate the effectiveness of the
presented method. The experiments were performed in MATLAB 2013a and tested on a computer
with Intel Core 2.6 GHz central processing unit (CPU) and 4.0 GB random access memory (RAM). The
details of the experimental data are presented in Table 1.

Table 1. The details of the experimental data.

Working
Conditions

Severity
(Inches) Abbreviation Number of Training

Samples (20%)
Number of Testing

Samples (80%)
Classification

Label

Normal None N 22 88 0

Ball fault
0.007 B007 22 88 1
0.014 B014 22 88 2
0.021 B021 22 88 3

Inner race fault
0.007 IR007 22 88 4
0.014 IR014 22 88 5
0.021 IR021 22 88 6

Outer race fault
0.007 OR007 22 88 7
0.014 OR014 22 88 8
0.021 OR021 22 88 9

4.2. Result and Analysis

The time domain waveforms of all 10 work conditions of bearings are displayed in Figure 2. It is
difficult to identify different working conditions according their raw vibration signals. In the previous
study, the single scale entropy value is usually considered as a measure to detect faults of bearings
(such as PE value in [31,42]). Figure 3 presents the DE values of all samples. As Figure 3 shows, the DE
values cannot effectively distinguish between normal and fault working conditions. The DE values
of normal working conditions is very close to that of OR007 and OR021. Figure 4 shows the average
RCMDE values of the original sample data as a function of the scale factor for all 10 working conditions.
It appears that the interval of the RCMDE values between normal and fault conditions gradually
became larger as the scale factor increases. When the scale factor is larger than four, the RCMDE values
of normal and fault working conditions show differences, which can be used to detect the health status
of bearings. When the scale factor reaches 20, the RCMDE values of different faults remain consistent
and reach lower values. At this time, the RCMDE value of normal working conditions remains high,
which is significantly different from fault working conditions. Thus, RCMDE values at scale factor 20
were considered and selected as a measure to detect faults of bearings. The RCMDE distribution of all
samples at scale factor τ = 20 is displayed in Figure 5. From Figure 5, the RCMDE value of normal
conditions was significantly higher than that of fault conditions. The threshold value (4.38) at the red
dotted line can clearly distinguish the normal and fault working conditions. To evaluate the effect of
the proposed method in the stage of fault detection, the indicator of fault detection rate (FDR) and false
alarm rate (FAR) is adopted in this paper. From Figure 5, all normal samples are distributed above
the threshold line, while all fault samples are below the threshold line. From the results of statistical
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analysis, the indicator of FDR achieves 100% and the FAR is 0%. The larger the FDR and the smaller
the FAR, the better the performance. Obviously, the proposed method has an excellent performance in
detecting faults.
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Judging the health state of the rolling bearing is the first step in fault diagnosis. Once the bearings
were in fault, the proposed fault diagnosis model was utilized to discriminate different fault types
and fault severities. According to the flowchart of the presented approach, displayed in Figure 1, the
raw vibration signals were firstly decomposed into a set of IMFs by FEEMD. In FEEMD, the ensemble
number M = 100, and the standard deviation of added white noise sd = 0.2 Then, the RCMDE was
employed to measure the complexity of each IMF. Figure 6 presents RCMDE values as a function of
IMF for all fault working conditions at four different scale factors. As Figure 6 shows, the RCMDE
values of different fault working conditions are distinct at each of the IMFs, which can be applied to
identify faults of different types and severities. The RCMDE values of the first several IMFs are higher
than that of latter IMFs. The reason for this is that when the bearing is in fault, the fault information is



Entropy 2019, 21, 680 10 of 19

mainly reflected in the high frequency components (that is, the first several IMFs). Meanwhile, from
Figure 6a–d, it appears the RCMDE values of the first three IMFs show more differences between
fault conditions, whereas the latter IMFs are quite consistent in RCMDE values. Thus, the first three
IMFs of each samples are selected to calculate the RCMDE values as they contributed a lot to fault
classification. Moreover, from Figures 4 and 6, the fault information hidden at different scale factors
also plays an important role for classification, which will improve the accuracy and reliability of fault
classification. In the study, we set maximum scale factor τmax = 20. For all fault samples, we can obtain
a candidate feature pool with a size of 990 × 60. However, the preliminary feature vector formed by
the candidate feature pool is high-dimensional, which will enlarge the computational cost and reduce
the classification accuracy. Hence, the mRMR technique was used to extract 12 sensitive features to
generate the final feature vectors. Finally, the selected sensitive feature vectors were presented into a
multi-classifier RF for fault classification.
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Figure 6. IMF-RCMDE of different fault working conditions at four scale factors τ: (a) τ = 1, (b) τ = 2
(c) τ = 3, (d) τ = 4.

Figure 7 shows the classification results of nine fault working conditions for one trial by the
presented method. The experimental analysis is a nine-level classification problem. Among the 792
test samples, one B014 (label 2) sample was misclassified into OR021 (label 9), two B014 samples were
misclassified into B007 (label 1), and one OR021 sample was misclassified into IR014 (label 5). The
confusion matrix is a standard format for accuracy evaluation, which can reflect the details of predicted
results and actual results in model assessment. Figure 8 shows the confusion matrix of the presented
method. It is obvious that the accuracy of the second fault working condition (B014) and the ninth
fault working condition (OR021) is 96.6% and 98.9%, respectively, and the accuracies of the other
fault working conditions achieves 100%. The classification accuracy of the proposed method for all
fault working conditions reaches as high as 99.49%, showing a robust recognition ability for faults of
different categories and severities.

In order to prove the superiority of the proposed method, several other typical multi-scale
entropy-based methods such as MDE, MPE and MSE were also performed to identify different fault
types and severities. To remain consistent with the proposed method, similarly, FEEMD was firstly
used to decompose the raw vibration signals into multiple IMFs, and the above three multi-scale
entropy-based methods were employed to measure the complexity of raw vibration signals. Then,
the important features were selected by mRMR and presented into RF for fault identification. For
FEEMD-MDE, parameters were set as follows: M = 100, sd = 0.2, m = 4, c = 6, t = 1, τmax = 20. For
FEEMD-MPE, M = 100, sd = 0.2, m = 6, t = 1, τmax = 20. For FEEMD-MSE, M = 100, sd = 0.2, m = 2,
t = 1, rd = 0.15, τmax = 20. Here, M is the ensemble number of FEEMD, sd is the standard deviation
of added white noise in FEEMD, m is the embedding dimension, c is the number of classes, τ is time
delay, rd is the tolerance of the signal and τmax is the largest scale factor. To reduce the impact of
randomness, the trial of each method was repeated 20 times. The classification accuracies of different
methods are shown in Figure 9 and Table 2. It is obvious that the accuracy of the presented method
is better than that of the other three methods. Meanwhile, the highest classification accuracy of the
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proposed method reaches 100%, and the average accuracy is also higher than the others, showing its
robust ability for fault classification.
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Figure 8. The confusion matrix of the presented method.
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Figure 9. The diagnosis results of four methods for 20 trials. MDE = multi-scale dispersion entropy;
MSE = multi-scale sample entropy; MPE = multi-scale permutation entropy.

Table 2. The classification accuracies of different methods.

Different Methods
Accuracy (%)

Max Min Mean

The proposed method 100 98.36 99.27
FEEMD-MDE and mRMR 98.99 96.72 97.93
FEEMD-MPE and mRMR 97.10 94.44 95.69
FEEMD-MSE and mRMR 98.23 93.42 96.43

To validate the superiority of preprocessing the vibration signals by the presented method, we
mainly compared the diagnosis performance of FEEMD-RCMDE with the following three feature
extracting methods: single-scale DE acting on raw vibration signals, RCMDE acting on raw vibration
signals and the method based on IMFs and DE (IMF-DE). The IMF-DE method is to calculate the DE
of each IMF decomposed by FEEMD, the details of which can be found in the literature [31]. The
features extracted by the above methods are presented into the RF classifier to identify all nine fault
conditions. The proportion of training and test samples are the same as FEEMD-RCMDE, and the
other conditions remain consistent. The confusion matrixes of different feature extraction methods for
one trial are displayed in Figure 10. The classification accuracy of three methods DE, RCMDE and
IMF-DE are 52.40%, 93.69%, 88.01%, respectively, which is far lower than the presented approach in
Figure 8. The explanation for this is that DE is just a single-scale method. It can distinguish between
normal and fault states under a certain scale factor as shown in Figure 4, but it struggles to identify
different types of faults. RCMDE is a multi-scale method based on raw data, which can achieve a
better classification result than the single-scale method. IMF-DE is an entropy-based method combined
with the time–frequency analysis technique, but it merely measures the complexity of signals from a
single scale. Compared with the above method, the generalized multi-scale feature extraction method
FEEMD-RCMDE is a multi-scale entropy-based method combined with the time–frequency technique.
It can reflect more fault information hidden in the raw vibration signals via different frequency
components and different scales, which can better distinguish faults of different types and severities.
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Figure 10. The confusion matrix of different feature extraction methods: (a) DE acting on raw vibration
signals; (b) RCMDE acting on raw vibration signals; (c) IMF-DE method.



Entropy 2019, 21, 680 15 of 19

In order to investigate the necessity of the mRMR approach, we randomly selected 12 features of
different methods to train the RF classifier for fault diagnosis. The classification accuracies of different
methods are displayed in Table 3. Evidently, FEEMD-RCMDE achieves the best classification results,
and the classification accuracies of different methods without mRMR are lower than that in Table 2.
The three-dimensional view of three FEEMD-RCMDE features for all fault working conditions are
presented in Figure 11. Figure 11a shows the selected features using mRMR, while Figure 11b shows
the random selected features. The result indicates that different fault working conditions are better
separated in Figure 11a compared with Figure 11b. Meanwhile, it can be found that some samples of
different fault working conditions overlap in Figure 11a, such as B007 and B014. The findings agree
with the result of misclassification in Figure 7. The reason is that it is not enough to distinguish all
fault working conditions by only three selected features. Thus, to further study the advantages of the
mRMR approach and explore the optimal number of feather two typical feature selection methods,
Laplacian score (LS) [45] and Relief-F [46], are also performed for comparison. LS is a widely applied
unsupervised learning approach, in which the importance of a feature is assessed by scoring the ability
of locality preserving. Relief-F is a supervised approach that judges the importance of a feature by
the value of neighborhood data samples. The diagnosis results of three feature selection methods
are presented in Figure 12. As Figure 12 shows, the classification result by the mRMR approach is
better than the other two feature selection approaches. Moreover, as the number of selected features
increases, the classification accuracy becomes higher. When it reaches 12, the accuracy by the mRMR
approach achieves over 99%. It will not contribute too much to classification accuracy by increasing
the number of features, but will waste the computational cost. Therefore, considering the efficiency
and effectiveness, the number of selected features in this study is set to 12.

Table 3. The classification accuracies of different methods without mRMR.

Different Methods
Accuracy (%)

Max Min Mean

FEEMD-RCMDE 95.08 91.16 93.41
FEEMD-MDE 91.16 87.37 89.58
FEEMD-MPE 85.28 79.49 82.27
FEEMD-MSE 82.95 78.79 80.81

To analyze the influence of different classifiers on the diagnosis results, the features by the
proposed method were sent into support vector machine (SVM) and extreme learning machine (ELM)
classifiers for comparison. The output classification results and average CPU time are listed in Table 4.
As Table 4 shows, the SVM classifier achieved the best classification results, but its model parameters
are difficult to determine and the CPU time is significantly larger than the other two methods. The RF
classifier achieved a relatively high accuracy, which is just slightly lower than SVM, and its CPU time
is also much lower. Taking into account efficiency and effectiveness, the RF classifier was presented for
fault diagnosis in this study.

Table 4. The classification accuracies of the proposed method with different classifiers for 20 trials.

Different
Classifier

Accuracy (%)
CPU Time (s)

Max Min Mean

RF 100 98.36 99.27 0.29
ELM 99.31 96.54 97.96 0.11
SVM 100 98.75 99.42 12.90
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5. Conclusions

In this study, a comprehensive fault diagnosis approach is proposed to detect faults and identify
different fault working conditions of bearings. In the progress of fault detection, the distribution of
RCMDE values with the change of scale factor under different working conditions is investigated, and
thus a threshold is defined which can effectively judge the health state of bearings. If the fault was
detected, the generalized multi-scale feature extraction method FEEMD-RCMDE was employed to
extract fault features to generate the candidate feature pool. Then, the sensitive features were selected
by mRMR and presented into an RF classifier for pattern classification. The comparison results of the
experiment among RCMDE, IMF-DE and FEEMD-RCMDE indicate that the proposed method can
fully extract the fault information of vibration signals. Meanwhile, compared with other widely used
entropy-based method such as MPE, MSE and MDE, the experimental results validate the superiority
and effectiveness of the proposed method. Moreover, if the bearings work normally, the existence of
fault detection can avoid unnecessary implementation of pattern classification. Thus, it can improve
the efficiency and effectiveness of fault diagnosis, which is more appropriate for practical applications.
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