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Abstract: There are two components in this work that allow for solutions of the turbulent channel flow
problem: One is the Galilean-transformed Navier-Stokes equation which gives a theoretical expression
for the Reynolds stress (u′v′); and the second the maximum entropy principle which provides the
spatial distribution of turbulent kinetic energy. The first concept transforms the momentum balance
for a control volume moving at the local mean velocity, breaking the momentum exchange down to
its basic components, u′v′, u′2, pressure and viscous forces. The Reynolds stress gradient budget
confirms this alternative interpretation of the turbulence momentum balance, as validated with DNS
data. The second concept of maximum entropy principle states that turbulent kinetic energy in
fully-developed flows will distribute itself until the maximum entropy is attained while conforming to
the physical constraints. By equating the maximum entropy state with maximum allowable (viscous)
dissipation at a given Reynolds number, along with other constraints, we arrive at function forms
(inner and outer) for the turbulent kinetic energy. This allows us to compute the Reynolds stress,
then integrate it to obtain the velocity profiles in channel flows. The results agree well with direct
numerical simulation (DNS) data at Reτ = 400 and 1000.

Keywords: turbulence; energy distribution; maximum entropy principle

1. Introduction

Analytical solutions to turbulence problems have become a rarified genre, in part due to rapid
advances in numerics that can solve many problems of fundamental and practical significance. We have
taken an alternate route for solving turbulence problems with some modest success, in deriving the
turbulence energy spectra from the maximum entropy principle [1] and in determining the Reynolds
stress from the first principles [2–4]. Turbulence can be considered as a large ensemble of energetic
eddies which achieves dissipative equilibrium state due to its rapid mixing properties, so that it is an
opportune phenomenon to apply the maximum entropy principle. In particular, we have shown that
the maximum entropy principle leads to the derivation of the turbulence energy spectra [1]. In this
regard, finding solutions to any turbulence problem from the first principles, including the maximum
entropy principle, represents a unique advance in turbulence research. Currently available turbulence
models perform reasonably well for specific type of flows, for which the models have been developed
and fine-tuned over the years. However, a generalized, physics-based approach has a potential to
supply a universally applicable model, with minimal empiricism or variations when flow geometry is
altered, for complex phenomena ranging from turbulence to spray atomization [5].

In this work, we present a related unorthodox, but functional, method for solving the turbulence
channel flow problem. The method is based on the first principles, Lagrangian momentum balance
and the maximum entropy principle, and involves no ad-hoc modeling common in turbulence models.
In that regard, the current approach has no similar precedents other than those referenced above [1–4].
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The starting point is the Galilean-transformed Navier-Stokes equations [2]. To illustrate, for simple
boundary layer flows, we have:

∂
(
u2

)
∂x

+
∂(uv)
∂y

= −
1
ρ

dp
dx

+
1
v
∂2u
∂y2 (1)

The instantaneous velocities, u and v, are typically decomposed into the time mean (U,V) and
fluctuating (u′,v′) components, u = U + u′, and v = V + v′, which leads to cross-products of u′ and v′

(the Reynolds stress). A simplification in the Reynolds-averaged Navier-Stokes equation occurs when
Galilean transform, U + u′→ u′ and V + v′→ v′, is applied. Under this transform, Equation (1) gives
the Reynolds stress (u′v′). Some intermediate steps are shown in the Appendix A, while the constant
C1 is a measure of the displacement effect in the boundary layer [1].
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Note that the Galilean invariance means that the laws of physics are universal under any
non-accelerating coordinate frame. The fluid itself can have acceleration, but since the coordinate is
taken at the local flow speed the transform does not involve acceleration.

Similarly, if one wishes to solve for the diagonal component, u′2, then we have:
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In Equations (2) and (3), the variables can be Reynolds-averaged, except that u′ is interpreted as
u′rms. Any gradient in the fluctuating velocity can cause viscous shear force in the mean, and u′rms is a
representation of this momentum distribution. Also, d/dx has been replaced with C1Ud/dy to account
for the displacement effect. This concept of converting d/dx was derived from consideration of control
volume moving at the mean velocity in boundary layer flows with displacement effects [2–4], but it
also works for channel flows as well (see Appendix A). Lagrangian methods have been used in analysis
of turbulence data [6,7], and also in pdf-modeling [8]. However, the above treatment of turbulence
momentum to obtain directly the Reynolds stress is a unique development, and similar to the use of
the maximum entropy principle below provides a viable physics-based approach to solving one of the
most difficult problems in (fluid) physics.

Using Equation (2), Reynolds stress can be directly computed using root fluid dynamic variables,
U, u′2 and P as shown in Figure 1, where the Reynolds stress gradient budget is plotted using the
DNS data of Graham et al. [9] at Reτ = 1000. The Reynolds stress gradient can then be integrated
for u′v′ and the mean velocity, which yields von Karman constants very close to the accepted value
of 4.56 [4]. Conversely, the u′2 gradient can be calculated as a function of the remaining variables,
u′v′, U and P, from Equation (3), as shown in Figure 2. The spiked shape of the u′2 profile, or its
sharp gradient near the wall, is correctly tracked by Equation (3). Figures 1 and 2 show that the
Reynolds stress tensor can be expressed in terms of root turbulence variables which are related to one
another through a relatively simple momentum balance (Equations (2) and (3)). We just need sufficient
number of equations or information to solve for the Reynolds stress tensor. In addition, Equations
(2) and (3) and the momentum terms plotted in Figures 1 and 2 reveal the exchange of momentum
where the u′2 and u′v′ are the principal carrier of u′ momentum, one in the streamwise and the other
cross-stream, respectively. The force terms, pressure and viscous, modify this primary momentum
exchange. Equations (2) and (3) allow for physics-based “modeling” of turbulent flows; however, we
can do a little better and solve for the turbulent channel flows if we had the turbulent kinetic energy,
u′2 and v′2.
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Figure 1. Reynolds stress gradient budget. DNS channel flow data (circle symbol) for  
Reτ = 1000 [9] are used. Bold line is the RHS side of Equation (2), with u2-transport, pressure 
and the viscous terms combined. 

 
Figure 2. u’2 profile obtained from Equation (3). Reynolds stress gradient budget. DNS 
channel flow data (circle symbol) for Reτ = 1000 [9] are used. Bold line is the RHS side of 
Equation (3), with u’v’-transport, pressure and the viscous terms combined. 

Equation (2) is an expression that relates the off-diagonal Reynolds stress term, u’v’, with other 
turbulence variables, but for closure we still need the diagonal components, u’2 and v’2. For channel 
flows, P = −ρv’2 (see Appendix), thus v’2 is used for the pressure gradient term in Equation (2). From 
the spiked shape of u’2 profiles at high Reynolds numbers, both in channel and boundary layer flows, 
we can anticipate that finding a direct mathematical solution of u’2 will not be an easy matter. In 
comparison, u’v’ exhibits rather benign behavior, as seen in Figure 1. However, we have shown that 
the turbulence energy spectra in wavenumber space can be derived and deduced from the maximum 
entropy principle [1], and here we demonstrate that spatial distribution of turbulent kinetic energy 
(u’2, v’2 and w’2) can also be constructed following the same principle. These profiles can then be used 
in Equation (2) for theoretical solutions for turbulence channel flows. Even though we are currently 

Figure 1. Reynolds stress gradient budget. DNS channel flow data (circle symbol) for Reτ = 1000 [9]
are used. Bold line is the RHS side of Equation (2), with u2-transport, pressure and the viscous
terms combined.
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Figure 2. u′2 profile obtained from Equation (3). Reynolds stress gradient budget. DNS channel
flow data (circle symbol) for Reτ = 1000 [9] are used. Bold line is the RHS side of Equation (3), with
u′v′-transport, pressure and the viscous terms combined.

Equation (2) is an expression that relates the off-diagonal Reynolds stress term, u′v′, with other
turbulence variables, but for closure we still need the diagonal components, u′2 and v′2. For channel
flows, P = −ρv′2 (see Appendix A), thus v′2 is used for the pressure gradient term in Equation (2).
From the spiked shape of u′2 profiles at high Reynolds numbers, both in channel and boundary layer
flows, we can anticipate that finding a direct mathematical solution of u′2 will not be an easy matter. In
comparison, u′v′ exhibits rather benign behavior, as seen in Figure 1. However, we have shown that
the turbulence energy spectra in wavenumber space can be derived and deduced from the maximum
entropy principle [1], and here we demonstrate that spatial distribution of turbulent kinetic energy
(u′2, v′2 and w′2) can also be constructed following the same principle. These profiles can then be used
in Equation (2) for theoretical solutions for turbulence channel flows. Even though we are currently at
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the canonical geometry stage, extensions of the current method to more complex geometry, such as
backward-facing step and swirl flows, are ongoing, and will be discussed as this work evolves.

2. Maximum Entropy Principle and Turbulence

Turbulence can be considered as a large ensemble of energetic eddies having a spectrum of energy
and length scales. Due to the size of ensemble, it will come to an equilibrium state of maximum entropy
under the imposed physical constraints. For turbulence energy spectra (so-called power spectra), the
energy is zero at the boundary points with asymmetrical descent. The reason for this asymmetry is the
physical length scale suddenly imposed on the flow at the low wavenumber and viscous dissipation at
the high end. Therefore, the mechanisms for the descent to zero energy are quite different: at the low
wavenumber, no further flow features exist beyond the largest length scale, while at high wavenumber
the flow energy becomes zero due to viscous dissipation. Using this as the starting point, we have used
the maximum entropy principle to derive the full turbulent energy spectra, which have a lognormal
form with k2 viscous dissipation at the high wavenumbers [1]. This result agrees quite well with the
experimental data over nearly the entire range of Reynolds number, length and energy scales [1]. Here,
we assert that the maximum entropy principle can also be applied for determination of the spatial
distribution of turbulent kinetic energy, in channel flows. In channel flows, the flow evolves to the
fully-developed state, which is an equilibrium state from the entropy perspective where the flow has
had time to reach the maximum entropy state under the imposed physical constraints. The maximum
entropy state is identified as the state where the turbulence kinetic energy is distributed in a way to
achieve the maximum viscous dissipation under the physical constraints, the logic being that it is the
viscous dissipation that is the primary and sole production term for entropy in isothermal flows.

Let us consider the physical attributes of the spatial energy distribution in channel flows. First,
the boundary points are u′2(0) = 0, and u′2(d) = u′2c, where d is the channel half-width. In addition, u′2

integrated over the half-width (= E) is very close to being constant, when normalized by the friction
velocity (uτ), as shown in Figure 4.

E =

∫ 1

0
u′+2(y)d

( y
d

)
(4)

This is a very useful feature of the normalized variable, u+2 = u′2/u2
τ. Moreover, other important

variables are scalable as a function of the Reynolds number. The dissipation (= ε) is a linearly increasing
function of the Reynolds number as shown in Figure 4, again when normalized by the friction velocity
and integrated over the y-direction.

ε =

∫ 1

0

(
du′+

dy

)2

d
( y

d

)
(5)

This appears to be a common phenomenon in wall-bounded flows, where there is a linear increase
in the dissipation as a function of the Reynolds number. This is due to the fact that viscosity is the
limiting factor in viscous dissipation rate, and the higher the Reynolds number (small viscosity relative
to the fluid momentum) the flow can accommodate more dissipation since the multiplicative factor,
viscosity, is small, relatively. The location of the peak in u+2(y) also scales with Reτ with an inverse
dependence, as shown in Figure 3. A similar dependence of the peak production location on Reτ has
been observed by Noor at el. [10]. The entropy interpretation of these scaling is that the turbulence
energy (represented by u′+2 or u′2) distributes itself in space so that it reaches the maximum dissipation
(entropy) allowable at the given Reynolds number. In order to achieve high dissipation at high
Reynolds numbers it develops a sharp peak which moves closer to the wall (the smaller the distance to
the wall, the higher the gradient), which is the first attainable maximum entropy state. This is a lot of,
and sufficient, “information” about the nature of turbulence kinetic energy in channel flows, and the
maximum entropy principle is a format to combine and synthesize the available information so that
the most probable energy distribution, whether in physical or wavenumber space, can be determined.
Therefore, we seek u′2 distribution that are consistent and unique with the above physical constraints.



Entropy 2019, 21, 675 5 of 11

Entropy 2018, 20, x FOR PEER REVIEW  5 of 11 

 

can be determined. Therefore, we seek u’2 distribution that are consistent and unique with the above 
physical constraints.  

 
Figure 3. Total integrated u’2(E) and dissipation (ε) as a function of the Reynolds numbers, 
from the DNS data [9,11]. 

 
Figure 4. The location of the u’2 peak as a function of the Reynolds numbers, from the DNS 
data [9,11]. 

Figure 5 show such u’2 profiles, constructed from the above physical constraints. For example, a 
combination of sharply-peaked lognormal for the inner and a beta function for the outer region works 
reasonably well. This is an implicit and legitimate procedure to apply the maximum energy  
principle [12]: Select the distribution with the maximum entropy that satisfies the physical 
constraints. Here, the maximum entropy state is equated with that with specified dissipation, ε, at 
the given Reynolds number. The procedure is to construct the lognormal and beta functions that 
converges at the (y/d)peak location (Figure 4). Then, both E and ε are computed until sufficient accuracy 
is achieved, relative to the data in Figure 3. Figure 5 show that this procedure is functional in 
reconstruction of u’2 profile at a given Reynolds number for channel flows. Both the integrated 
energy, E, and dissipation, ε, are within 4% of the Reτ-dependent values from Figure 3, and the peak 
is located at the position specified from Figure 4. The accuracy can be improved by using a series of 
lognormal functions or function optimization method, which would then be continuous over the 

Figure 3. The location of the u′2 peak as a function of the Reynolds numbers, from the DNS data [9,11].

Entropy 2018, 20, x FOR PEER REVIEW  5 of 11 

 

can be determined. Therefore, we seek u’2 distribution that are consistent and unique with the above 
physical constraints.  

 
Figure 3. Total integrated u’2(E) and dissipation (ε) as a function of the Reynolds numbers, 
from the DNS data [9,11]. 

 
Figure 4. The location of the u’2 peak as a function of the Reynolds numbers, from the DNS 
data [9,11]. 

Figure 5 show such u’2 profiles, constructed from the above physical constraints. For example, a 
combination of sharply-peaked lognormal for the inner and a beta function for the outer region works 
reasonably well. This is an implicit and legitimate procedure to apply the maximum energy  
principle [12]: Select the distribution with the maximum entropy that satisfies the physical 
constraints. Here, the maximum entropy state is equated with that with specified dissipation, ε, at 
the given Reynolds number. The procedure is to construct the lognormal and beta functions that 
converges at the (y/d)peak location (Figure 4). Then, both E and ε are computed until sufficient accuracy 
is achieved, relative to the data in Figure 3. Figure 5 show that this procedure is functional in 
reconstruction of u’2 profile at a given Reynolds number for channel flows. Both the integrated 
energy, E, and dissipation, ε, are within 4% of the Reτ-dependent values from Figure 3, and the peak 
is located at the position specified from Figure 4. The accuracy can be improved by using a series of 
lognormal functions or function optimization method, which would then be continuous over the 
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DNS data [9,11].

Figure 5 show such u′2 profiles, constructed from the above physical constraints. For example,
a combination of sharply-peaked lognormal for the inner and a beta function for the outer region
works reasonably well. This is an implicit and legitimate procedure to apply the maximum energy
principle [12]: Select the distribution with the maximum entropy that satisfies the physical constraints.
Here, the maximum entropy state is equated with that with specified dissipation, ε, at the given
Reynolds number. The procedure is to construct the lognormal and beta functions that converges at
the (y/d)peak location (Figure 3). Then, both E and ε are computed until sufficient accuracy is achieved,
relative to the data in Figure 4. Figure 5 show that this procedure is functional in reconstruction of u′2

profile at a given Reynolds number for channel flows. Both the integrated energy, E, and dissipation,
ε, are within 4% of the Reτ-dependent values from Figure 4, and the peak is located at the position
specified from Figure 3. The accuracy can be improved by using a series of lognormal functions
or function optimization method, which would then be continuous over the entire channel width.
For boundary layer flow over flat plates, function series approach is being tested, as the u′2 profiles
are also sharply-peaked in such flows. For now, we use separate inner and outer functions for u′2 as
shown in Figure 5, in order to demonstrate the solution method. For v′2 and w′2 profiles, they are not
subject to intense dissipation near the wall so that a single lognormal distribution complies with the
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constraints of zero at the wall with finite energy content and continuous decrease toward the centerline
value, as shown in Figure 6.
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In this way, the maximum entropy principle can be used to obtain the diagonal components of
the Reynolds stress, and now we have sufficient number of equations to solve for u′v′ and U through
Equation (2) and the RANS. For fully-developed channel flows, the RANS is simplified to:

Inner:

µ
d2U
dy2 =

dP
dx

+ ρ
d(u′v′)

dy
(6)

Outer:
µ

dU
dy

= ρ(u′v′) (7)

The solution algorithm is: we assume a reasonable (e.g., quadratic) U(y) with U(0) = 0 and U(d) = Uc

and insert into Equation (2) along with u′2 and P = −ρv′2 available from the maximum entropy method
above. This will give us d(u′v′)/dy, which can be integrated to u′v′, using Equation (2). This is input in
Equations (6) and (7) to obtain an updated U(y). This cycle is repeated until U(y) converges.
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The results for the Reynolds stress are shown in Figure 7. For Reτ = 400, the agreement with
the DNS data is quite good. At Reτ = 1000, the Reynolds stress exhibits a rapid decrease near the
wall, followed by a gradual, nearly straight, approach to zero at the centerline, which is typical
of wall-bounded turbulent flows at high Reynolds numbers. The current solution deviates from
this straight line, since it has been obtained from outer beta function, which has a varying slope.
In addition, lognormal function is a good approximation for the v′2 profile (Figure 6), but it still has
a different slope in the middle part of the channel half-width. This in turn affects the pressure term
in Equation (2). Again, this is where the accuracy can be improved by finding function series that
satisfies the physical constraints for u′2 and v′2. However, this is subject to improvements through
mathematical experimentation, and not a fundamental limitation of the solution method, because
sufficient constraint conditions exist to determine the turbulent kinetic energy distributions.
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For the mean velocity, the outer solutions are in very good agreement with DNS data for both Reτ
= 400 and 1000, as shown in Figure 8. In the outer region, the mean velocity is essentially the integral of
the Reynolds stress (times a multiplicative factor), and the integration is forgiving of minor deviations
in the Reynolds stress. The mean velocity does begin to overshoot in the “overlap” region, since that is
where the inner and outer functions for u′2 are discontinuous. For the inner solutions, initially the
solution is laminar; however, the Reynolds stress starts to exert its influence as one approaches the
overlap region and the mean velocity begins to bend toward the outer solution. We can also see that
the convergence between the inner and outer solutions is reasonable for Reτ = 400, leaving only a
small gap where the solution is not available. For Reτ = 1000, the inaccuracy in reconstructing the u′2

is propagated to u′v′, and then to the mean velocity, leaving a larger gap in the solution. Thus, the
accuracy of the solution is obviously dependent on achieving u′2 profiles that are fully compliant on
the constraints discussed above.
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Figure 8. The mean velocity inner and outer solutions, compared with DNS data [9,11].

3. Conclusions

We have used (1) the Galilean-transformed Navier-Stokes equation which gives a theoretical
expression for the Reynolds stress gradient, and (2) the maximum entropy principle for the spatial
distribution of turbulent kinetic energy, to obtain the inner and outer solutions to the turbulent channel
problem. The Reynolds stress gradient budgets confirm the transform method, while the maximum
entropy principle along with the physical constraints generate the turbulent kinetic energy profiles
that are in good agreement with DNS data. This allows us to compute the Reynolds stress, which can
then be integrated to obtain the velocity profiles in channel flows. The results agree well with direct
numerical simulation (DNS) data at Reτ = 400 and 1000. The overlap region has not been accessed in
the current inner/outer function method, but function series or function optimization can generate a
single continuous function (series) which can lead to full and accurate solutions. This approach is a
subject of further study in wall-bounded flows, exhibiting similar physical constraints on the turbulent
energy distribution.

This work shows that the maximum entropy principle can be an instrument in solving for the
energy distribution in turbulence flows. Since the current method is based on the first principles,
including the maximum entropy principle, it represents a unique advance in turbulence research.
Turbulence can be considered as a large ensemble of energetic eddies which achieves dissipative
equilibrium state due to its rapid mixing properties, so that it is an opportune phenomenon to apply the
maximum entropy principle and other concepts related to entropy [1]. The generality of this approach
is being investigated in more complex flows, but thus far shows a potential to supply a universally
applicable model, with minimal empiricism or variations when flow geometry is altered.
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Appendix A

The conversion, d/dx → C1Ud/dy, was based on the boundary layer displacement effect for a
moving control volume as shown in Figure A1.
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In order to derive Equation (2), we can start from the Navier-Stokes equation for simple channel
flow (Equation (1)).

Here, u = U + u′ and v = V +v′, where U, V are the mean velocities, and u′, v′, turbulent fluctuation
velocities. Galilean transform, U + u′→ u′ and V + v′→ v′, converts Equation (1) to:

∂
(
u′2

)
∂x

+
∂(u′v′)
∂y

= −
1
ρ

dP
dx

+
1
v
∂2u′

∂y2 (A1)

Using the differential transform, d/dx → C1Ud/dy, from above and rearranging, we obtain
Equation (2). In the subsequent equations, all the variables are Reynolds-averaged.

d(u′v′)
dy

= −C1U

d
(
u′2

)
dy

+
1
ρ

d|P|
dy

+ 1
v

d2u′

dy2 (A2)

C1 is a constant with a unit of inverse velocity, and prescribes the rate of displacement of turbulence
parameters in the boundary layer [1]. Also, the local velocity in steady-state fully-developed channel
flows has zero acceleration, so that the coordinate transform does not involve any acceleration.

For channel flows the flow is bounded and there is no displacement of the turbulence variables as
one travels in the streamwise direction. However, the Galiean transform can be performed at any line
of motion, and if we choose a slightly mis-directed path (U* and v*) for the control volume as shown in
Figure A2, we obtain the same transform as shown below. In Figure A2, x* and y* axes are aligned in
the same direction as U* and v*, respectively.

For a small angle, θ << 1, v* << U and U∗ ≈ U. Then,

∂
∂x

=
1

cosθ
∂
∂x∗
≈

∂
∂x∗

(A3)

∂
∂y

=
1

cosθ
∂
∂y∗
≈

∂
∂y∗

(A4)

For variable, f, we have
∂ f
∂y∗

∂ f
∂x∗

≈

∂ f
∂y∗

∂ f
∂x∗

= tanθ =
v∗
U∗
≈

v∗
U

(A5)

Thus, using this offset transform, we obtain

∂ f
∂x

=
U∗
v∗
∂ f
∂y
≈ C1U

∂ f
∂y

(A6)

C1 is a constant in the order and unit of v*.
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The v-momentum equation is used in a different way, to obtain the mean pressure.
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∂
(
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For fully-developed flow, the x-derivatives in the Eulerian coordinate frame become zero.

∂
(
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dp
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For constant density, P = −ρv2 [9,11,13,14].
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