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Abstract: This study considers the minimum error discrimination of two quantum states in terms of
a two-party zero-sum game, whose optimal strategy is a minimax strategy. A minimax strategy is
one in which a sender chooses a strategy for a receiver so that the receiver may obtain the minimum
information about quantum states, but the receiver performs an optimal measurement to obtain
guessing probability for the quantum ensemble prepared by the sender. Therefore, knowing whether
the optimal strategy of the game is unique is essential. This is because there is no alternative if
the optimal strategy is unique. This paper proposes the necessary and sufficient condition for an
optimal strategy of the sender to be unique. Also, we investigate the quantum states that exhibit
the minimum guessing probability when a sender’s minimax strategy is unique. Furthermore, we
show that a sender’s minimax strategy and a receiver’s minimum error strategy cannot be unique
if one can simultaneously diagonalize two quantum states, with the optimal measurement of the
minimax strategy. This implies that a sender can confirm that the optimal strategy of only a single
side (a sender or a receiver but not both of them) is unique by preparing specific quantum states.

Keywords: quantum state discrimination; quantum minimax; uniqueness of strategy; guessing
probability

1. Introduction

Quantum information processing can be achieved by discriminating quantum states, where
classical information is encoded. Quantum states which are orthogonal to each other can be perfectly
distinguishable. However, non-orthogonal quantum states cannot be perfectly discriminated. Therefore,
one needs to have a discrimination strategy for non-orthogonal quantum states, and there are various
strategies [1–4] such as minimum error discrimination (MD) [4–7], unambiguous discrimination [8–12],
maximum confidence discrimination [13], and discrimination of fixed rate inconclusive result [14–18].
Unambiguous discrimination is a strategy where there is no error in the conclusive result by allowing
an inconclusive result. Maximum confidence is a strategy where one maximizes the confidence of a
conclusive result. Discrimination of fixed rate inconclusive result is a strategy where one may fix the
rate of an inconclusive result. Among these strategies, the MD strategy can conclusively discriminate
quantum states with a prior probability.

The MD strategy is employed for quantum states with a given prior probability, and the quantum
states are optimally measured. MD strategy is that one maximizes the probability that the result of
measurement of a receiver correctly points out the quantum state that a sender transmitted when only
a conclusive result is permitted. The maximum probability is called guessing probability. One can
investigate the behavior of MD in terms of a prior probability when quantum states are given.

Because the guessing probability is obtained based on prior probability, a change in prior
probability results in different guessing probabilities, which implies that prior probabilities can be
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considered as a strategy of a sender. Even though one has discussed the uniqueness of measurement
strategy in discrimination of two quantum states, the strategy of preparation such as a prior probability,
which can be a strategy of a sender, has not been discussed in terms of identical guessing probability
and optimal measurement strategy.

Quantum minimax approach is obtained by applying the minimax approach of a statistical
decision to quantum state discrimination. Von Neumann, the inventor of game theory, showed that
there exists a solution to the minimax problem when sender and receiver can choose a finite number of
strategies in a two-person zero-sum game. Wald proved that the necessary and sufficient condition to
the existence of a solution to the minimax problem is that the set of strategy for sender and receiver
is countable [19]. Hirota and Ikehara discussed quantum minimax theorem, using the fact that the
set of measurement strategy satisfies compactness [20]. They suggested the necessary and sufficient
condition for minimax strategy in quantum state discrimination.

Further, by mean value theorem D’Ariano showed that there exists a quantum minimax strategy
for two quantum state discrimination and provided a sufficient condition for the strategy [21]. However,
in spite of these studies, the necessary and sufficient condition for uniqueness of minimax strategy in
two quantum state discrimination is not known yet. Even more, the uniqueness of minimax strategy in
two quantum state discrimination is not understood in terms of sender’s strategy, which is a selection
of prior probability.

This study investigates a two-person zero-sum game where the payoff is defined by the correct
probability of two quantum states [19–22]. The optimal strategy of the game is a minimax strategy,
where the minimax strategy of a receiver is to select the optimal measurement providing MD and the
minimax strategy of a sender is to choose the prior probability providing the minimum of guessing
probability, which is displayed in Figure 1.

Figure 1. The strategy of the sender(Alice) and the receiver(Bob) in two-person zero-sum quantum
game. The strategy of Alice is to choose the optimal prior probability q, which is the probability of
quantum states prepared in the quantum system, to minimize the payoff. The strategy of Bob is to
choose the optimal measurement to maximize payoff.

In this scenario, the prior probability and the measurement in MD are constructed as the strategy
of a sender Alice and a receiver Bob [20,21]. First, Alice sends the quantum states, where classical
information (x = 1, 2) is encoded, to Bob. Because the quantum states are not orthogonal to each other,
a single measurement of Bob cannot perfectly discriminate the quantum states. Therefore, a suitable
strategy is needed. Here Bob should choose a measurement strategy that can perform MD.

Meanwhile, a suitable selection of prior probability can be obtained by Alice, as a sender’s
strategy. Alice’s strategy is to interfere with the minimum error strategy of Bob to minimize the
guessing probability. Because Bob should perform MD without noticing Alice’s strategy, Bob tries to
find an optimal strategy to obtain a payoff. Therefore, the minimum of guessing probability implies
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that a suitable selection of prior probability lets Bob obtain the minimum of guessing probability when
Bob performs an optimal measurement. Furthermore, if Bob cannot perform an optimal measurement,
he obtains a probability less than the guessing probability.

The quantum minimax theorem [20,21] can be used to prove that Alice and Bob can set up an
optimal strategy on both sides. However, it is not known whether the minimax strategy is unique
or not. The uniqueness of the optimal strategy of the game is important in performing the game.
There is no alternative to a unique optimal strategy. Therefore, a strategy cannot be optimal if an
error occurs when performing the strategy. However, a strategy can still be optimal if it is not unique,
even though an error occurs in the strategy. In this light, it is crucial to know whether the minimax
strategy is unique, when the strategy is optimal in the game. Here, we investigate the condition for
uniqueness of the optimal strategy of a sender. The condition is described by the quantum states and
the minimax strategy of a receiver. More explicitly, we study the necessary and sufficient condition
for the uniqueness of a sender’s strategy. Using the condition, we investigate the quantum states that
exhibit the minimum of guessing probability when a sender’s minimax strategy is unique.

Also, we show that a sender’s minimax strategy and a receiver’s minimum error strategy cannot
be unique if two quantum states are simultaneously diagonalized with the optimal measurement
of minimax strategy. Therefore, a sender can make the optimal strategy of only a single side unique
by preparing specific quantum states. Our investigation can be applied to various fields. As the first
example of our investigation, we explain how the BB84 protocol [23] with equal prior probability is
optimal in terms of the minimax strategy. We also discuss how the results of this study can be applied
to building a quantum random number generator(QRNG) [24–26].

This paper is organized as follows. In Section 2, we explain the necessary background of our
investigation. In Section 3, for the minimax strategy of a sender, we provide the necessary and sufficient
condition for uniqueness of the optimal strategy. We investigate the uniqueness of the strategy of the
sender for some quantum states by using this condition. Furthermore, we obtain the condition under
which both the sender’s minimax strategy and the receiver’s optimal minimum error strategy cannot
be unique. Finally, we discuss the results and conclusions in Section 4.

2. Preliminaries

For two quantum states ρ1 and ρ2, the minimal subspaceH for discriminating ρ1 and ρ2 should
satisfy H = Supp(ρ1 + ρ2). In this study, we assume that the rank of quantum state is finite. Then,
by the relation dimH ≤ rank(ρ1) + rank(ρ2), a quantum state or an optimal measurement can be
represented as an operator on finite dimensional Hilbert space.

The MD of two quantum states ρ1 and ρ2 is a strategy to determine the maximum value of
correct probability Pcorr = qtr(ρ1 M1) + (1− q)tr(ρ2 M2), which is called guessing probability, by
performing an optimal measurement. The maximum value of the correct probability is known as
Helstrom bound [27].

Assuming that the prior probabilities of two quantum states ρ1 and ρ2 are q and 1− q, respectively,
one can obtain the following lemma in the MD of the two quantum states. (The proof can be found in
the Appendix A).

Lemma 1 (Optimal condition of MD for two quantum states [27,28]). The necessary and sufficient
condition for optimal measurement {Mx}2

x=1 is given by

(−1)x ((1− q)ρ2 − qρ1) Mx ≥ 0 ∀x ∈ {1, 2}. (1)

In general, the optimal measurement in MD is not unique. If the nullity of operator Λ ≡ (1−
q)ρ2 − qρ1 is d, there exist at least 2d number of optimal extreme POVMs. A convex combination
of these POVM also provides an optimal measurement of MD. When Λ has full rank, the optimal
measurement is unique. Quantum minimax theorem tells that among optimal MD strategies there
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is at least a POVM of minimax strategy in a prior probability providing the minimum of guessing
probability [20,21].

Theorem 1 (Quantum minimax theorem [20,21]). There exists an a priori probability q? = (q?, 1− q?) for
the states ρ1 and ρ2, and a measurement M? = (M?

1 , M?
2) such that

minqmaxMPcorr(q, M) = Pcorr(q?, M?) = maxMminqPcorr(q, M) (2)

where q? ∈ (0, 1), Pcorr(q, M) =
2

∑
x=1

qxtr(ρx Mx).

Note that when quantum states are prepared in a prior probability q, maxMminqPcorr(q, M) =

Pcorr(q?, M?) implies that the measurement of M? is optimal and minqmaxMPcorr(q, M) =

Pcorr(q?, M?) implies that the prior probability of q? provides the minimum of guessing probability.
However, every optimal MD in the prior probability of q? is not a minimax strategy of Bob. Suppose
that a measurement of N = (N1, N2) in the prior probability of q? is an optimal strategy of MD,
satisfying tr(ρ1N1) > tr(ρ2N2) > 0. Then, the strategy of Alice in q? cannot be a prior probability for
the minimax strategy, as q̃ = (0, 1) of Alice’s strategy provides a lower guessing probability than that
of q?:

Pcorr(q?, N) = q?tr(ρ1N1) + (1− q?)tr(ρ2N2) > tr(ρ2N2) = Pcorr(q̃, N). (3)

Therefore, the first condition that the minimax strategy M? of Bob should satisfy is tr(ρ1 M?
1) =

tr(ρ2 M?
2). Because the measurement of M? is an optimal strategy for the prior probability of q?, it

satisfies the optimal condition of MD, which is the second condition. Inversely, the fulfillment of the
two conditions is the sufficient condition for the minimax strategy.

Here, the conditions can be explained as follows. Suppose that a measurement M◦ = (M◦1 , M◦2)
satisfies tr(ρ1 M◦1) = tr(ρ2 M◦2) and is optimal for the prior probability of q◦. Then, we find the
following relation:

minqmaxMPcorr(q, M) ≤ maxMPcorr(q◦, M) = Pcorr(q◦, M◦) = minqPcorr(q, M◦). (4)

The last equality holds by tr(ρ1M◦1) = tr(ρ2M◦2). Because of minqmaxMPcorr(q, M) ≥ minqPcorr(q, M◦),
we find minqmaxMPcorr(q, M) = minqPcorr(q◦, M◦). And the following relation holds:

maxMminqPcorr(q, M) ≤ minqPcorr(q, M◦) = Pcorr(q◦, M◦) = maxMPcorr(q◦, M) (5)

The first equality is obtained by tr(ρ1 M◦1) = tr(ρ2 M◦2). Because of maxMminqPcorr(q, M) ≥
maxMPcorr(q◦, M), we obtain maxMminqPcorr(q, M) = maxMPcorr(q◦, M◦) and
minqmaxMPcorr(q, M) = Pcorr(q◦, M◦) = maxMminqPcorr(q, M). It implies that (q◦, M◦) is a
minimax strategy. Then, one can obtain the following lemma.

Lemma 2. When MD is performed for a given prior probability, the minimum of guessing probability is obtained
iff an optimal measurement {Mx}2

x=1 satisfies tr(ρ1 M1) = tr(ρ2 M2).

3. Results

This section presents the necessary and sufficient condition that ensures the uniqueness of the
minimax strategy of a sender. Because there always exists a minimax strategy for the quantum minimax
theorem, when one finds a minimax strategy, one can obtain the condition by which the strategy is
unique. When MDs with different prior probabilities can provide the same guessing probability, the
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following lemma provides the condition by which the MDs with different prior probabilities can have
the same optimal measurement (The proof of this lemma can be found in the Appendix A).

Lemma 3. The quantum ensembles of S1 and S2 are given as {px, ρx}2
x=1 and {qx, ρx}2

x=1, respectively, where

p1 6= q1. Suppose that in the MD of a quantum ensemble Sx, the guessing probability is p(x)
guess and the minimum

value of guessing probability is p?guess. Then, when p(1)guess = p(2)guess, if there exists an measurement that can

simultaneously perform MD on two quantum ensembles S1 and S2, one can obtain p(1)guess = p?guess.

Note that the optimal measurement performing simultaneous MD on two quantum ensemble S1

and S2 satisfies the equal probabilities of correct detection. It is the minimax strategy of the receiver.
Here, the set of prior probability providing the minimum of guessing probability is a convex set. It can
be shown in the following way. Suppose that the prior probabilities of q and p provide the minimum
of guessing probability p?guess. Then, by Lemma 3 there exists a measurement M that can perform MD
on both the quantum states, satisfying ∑2

x=1 qxtr(ρx Mx) = p?guess = ∑2
x=1 pxtr(ρx Mx). Now, one can

see that the relation of ∑2
x=1(θqx + (1− θ)px)tr(ρx Mx) = p?guess holds for θ ∈ [0, 1]. If one assumes

that the minimax strategy (q, M) is not unique and there is another strategy p for a sender, then the
minimax strategy of the sender forms a convex set, and one can find the prior probability where
M is optimal in the ε-neighborhood of q for an arbitrary positive number of ε. Therefore, one can
check the uniqueness of the prior probability of q providing the minimum of guessing probability,
by deciding whether there exists a prior probability exhibiting optimal M in the ε neighborhood of q
after finding the optimal POVM M for minimax strategy in the prior probability of q providing the
minimum of guessing probability. Proposition 1 shows the necessary and sufficient condition for the
non-uniqueness of a prior probability q of which M is optimal in the ε neighborhood (The proof of
this proposition can be found in the Appendix A).

Proposition 1. The prior probability providing the minimum of guessing probability is not unique if and only
if {Mx}2

x=1 satisfies the following conditions.

1. [ρx, M1] = 0 ∀x ∈ {1, 2},
2. For some x ∈ {1, 2}, every |v〉 ∈ Supp(Mx) satisfies 〈v| ρ1 |v〉 : 〈v| ρ2 |v〉 6= 1− q : q.

where [A, B] = AB− BA.

Lemma 2 and Proposition 1 can be applied to check whether the strategy under a situation
is unique. By applying Lemma 2, one can explain why the identical prior probability in the
BB84 protocol is the best strategy of a sender. The quantum states used in the BB84 protocol are
{|0〉 , |1〉 , |+〉 , |−〉} [23]. Alice encodes (a0, a1) into quantum states and sends them to Bob. In general,
a0 is selected by Alice, but a1 is randomly chosen. Suppose that Table 1 is used for encoding bit. Here,
encoding means that a quantum state corresponding to a0a1 is prepared for communication.

Table 1. Encoding table for Alice.

a0a1 Quantum States

00 |0〉
01 |1〉
10 |−〉
11 |+〉

When Alice chooses 0 as the value of a0, the quantum state is determined by a1. If the value of a1

is 0, the quantum state becomes |0〉. However, when a1 is 1, |1〉 is prepared for the quantum state. If
the quantum state does not interact with the environment, Bob receives the quantum state prepared by
Alice. Then, Bob performs the following measurements:
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M0 = {|0〉 〈0| , |1〉 〈1|}, M1 = {|+〉 〈+| , |−〉 〈−|} (6)

When for the quantum states {|0〉 , |1〉 , |+〉 , |−〉} the prior probability of the quantum states is identical,
the optimal measurement becomes

M = {1
2
|0〉 〈0| , 1

2
|1〉 〈1| , 1

2
|+〉 〈+| , 1

2
|−〉 〈−|}. (7)

The optimal measurement satisfies the following relation:

tr(|0〉 〈0| 1
2
|0〉 〈0|) = tr(|1〉 〈1| 1

2
|1〉 〈1|) = tr(|+〉 〈+| 1

2
|+〉 〈+|) = tr(|−〉 〈−| 1

2
|−〉 〈−|) = 0.5 (8)

It implies that the identical prior probability provides the minimum of guessing probability. It is because
if there exists an optimal measurement satisfying the above condition, the prior probability provides
the minimum of guessing probability. It should be noted that Lemma 3 implies that the measurement
of M is optimal for every prior probability providing the minimum of guessing probability. Meanwhile,
if the prior probability is not identical, all the quantum states in the BB84 protocol does not have M as
an optimal measurement. It can be shown in the following way. Let us assume that the probability of
a1 to become 0 or 1 is equal, and the probability of a0 to become 0 or 1 is q. Then, the prior probability
of each quantum state becomes q/2, q/2, (1− q)/2, (1− q)/2. We can show that if the measurement
M is optimal at q 6= 0.5, the following inequalities should be satisfied [2,28]:

q
4
|0〉 〈0|+ q

4
|1〉 〈1|+ 1− q

4
|+〉 〈+|+ 1− q

4
|−〉 〈−| − q

2
|0〉 〈0| ≥ 0 (9)

q
4
|0〉 〈0|+ q

4
|1〉 〈1|+ 1− q

4
|+〉 〈+|+ 1− q

4
|−〉 〈−| − 1− q

2
|+〉 〈+| ≥ 0 (10)

However, when q 6= 0.5, one of these inequalities cannot be satisfied. Therefore, the prior probability
providing the minimum of the guessing probability is only the case of q = 1/2.

Using Proposition 1, we can investigate the quantum states of the unique prior probability, which
provides the minimum of the guessing probability. Here we consider the MD of the following two
quantum states:

ρ1 =
2
3
|φ−〉 〈φ−|+ I

12
, (11)

ρ2 =
1
3
|φ−〉 〈φ−|+ I

6
. (12)

From Figure 2, we can check whether the prior probability providing the minimum of guessing
probability is unique. We can see that the prior probabilities providing the minimum of guessing
probability are q1 = 2

5 and q2 = 3
5 . The optimal measurement for the quantum ensemble is {M1 =

4
5 |φ−〉 〈φ−| , M2 = I − 4

5 |φ−〉 〈φ−|}, since the measurement satisfies Lemma 1 as follows:

(qρ1 − (1− q)ρ2)M1 =

(
2
5

ρ1 −
3
5

ρ2

)
M1 =

(
1

15
|φ−〉 〈φ−| − 1

15
I
)

4
5
|φ−〉 〈φ−| = 0 (13)

((1− q)ρ2 − qρ1) M2 =

(
3
5

ρ2 −
2
5

ρ1

)
M2

=

(
1

15
I − 1

15
|φ−〉 〈φ−|

)(
I − 4

5
|φ−〉 〈φ−|

)
=

1
15
(

I − |φ−〉 〈φ−|
)
≥ 0

(14)

In addition, {Mx}2
x=1 satisfies the relation of tr(ρ1 M1) = tr(ρ1 − 4

5 |φ−〉 〈φ−|) = 0.6 =

tr(ρ2

(
I − 4

5 |φ−〉 〈φ−|
)
) = tr(ρ2 M2). From Lemma 2, the prior probability of q1 = 2

5 and q2 = 3
5

provides the minimum of guessing probability. Now, we verify the uniqueness of the prior probability
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which provides the minimum of the guessing probability for the given quantum states. The following
relations show [ρ1 + ρ2, M1] = [ρ2, M1] = 0, which is the first condition of Proposition 1:

(ρ1 + ρ2)M1 =

(
|φ−〉 〈φ−|+ I

4

)
|φ−〉 〈φ−| = |φ−〉 〈φ−|

(
|φ−〉 〈φ−|+ I

4

)
= M1(ρ1 + ρ2) (15)

ρ2M1 =

(
1
3
|φ−〉 〈φ−|+ 2

3
I
4

)
|φ−〉 〈φ−| = |φ−〉 〈φ−|

(
1
3
|φ−〉 〈φ−|+ 2

3
I
4

)
= M1ρ2 (16)

However, |φ−〉 which is the support of M1 and M2, satisfies the following relation:

〈φ−| ρ1 |φ−〉 : 〈φ−| ρ2 |φ−〉 =
9
12

:
6
12

=
3
5

:
2
5
= 1− q : q (17)

Because the second condition of Proposition 1 cannot be satisfied, the prior probability providing the
minimum of the guessing probability is unique.

Now, to investigate the case of non-unique prior probability, which provides the minimum of the
guessing probability, we consider the following quantum states:

ρ1 =

(
0.3 0
0 0.7

)
, ρ2 =

(
0.7 0
0 0.3

)

From Figure 2, we can see non-uniqueness of the prior probability, which can provide the minimum of
guessing probability.

Figure 2. (Left:) Example of unique prior probability providing the minimum of guessing probability.
The guessing probability of two quantum states ρ1 = 2

3 |φ−〉 〈φ−| +
I

12 and ρ2 = 1
3 |φ−〉 〈φ−| +

I
6

is shown in terms of prior probability (q, 1− q). (Right:) Example of non-unique prior probability
providing the minimum of guessing probability. The guessing probability of two quantum states
ρ1 = diag[0.3, 0.7] and ρ2 = diag[0.7, 0.3] is shown in terms of prior probability (q, 1− q).

For ρ1 and ρ2 with the prior probability of q = 0.5, we can obtain the minimum of the guessing

probability, which is 0.7. Then, the optimal measurements are M1 =

(
0 0
0 1

)
and M2 =

(
1 0
0 0

)
.

Because of tr(ρ1 M1) = tr(ρ2 M2) = 0.7, the minimum of the guessing probability becomes 0.7 at
q = 0.5. And because of (ρ1 + ρ2)M1 = M1, the support of M1 is |e2〉 = (0, 1)T , which is unique. Then,
one has

〈e2| qρ1 − (1− q)ρ2 |e2〉 = 〈e2|
1
2

(
−0.4 0

0 0.4

)
|e2〉 = 0.2 > 0.



Entropy 2019, 21, 671 8 of 15

Further, because of (ρ1 + ρ2)M2 = M2, the support of M2 is |e1〉 = (1, 0)T , which is unique. We have

〈e1| qρ1 − (1− q)ρ2 |e1〉 = 〈e1|
1
2

(
−0.4 0

0 0.4

)
|e1〉 = −0.2 < 0.

Then, the prior probability providing the minimum of the guessing probability is not unique.
From Proposition 1, the unique prior probability providing the minimum of the guessing

probability has two cases. The interesting case of the two cases is one where the prior probability
providing the minimum of the guessing probability is unique, with the condition that the second
inequality of Proposition 1 does not hold. This is because, in this case, Bob’s optimal MD strategy
is not unique. When the second condition of Proposition 1 is satisfied, an element |v1〉 in the
support of M1 satisfies the relation of 〈v1| ρ1 |v1〉 : 〈v1| ρ2 |v1〉 = 1− q : q. Then, from Lemma A1
in Appendix B, there exists ε > 0 providing M1 − ε |v1〉 〈v1| ≥ 0. Now, we define M′1 and M′2
as M1 − ε |v1〉 〈v1| and M2 + ε |v1〉 〈v1|, respectively. Then, M′1 and M′2 are positive semidefinite
operators. Because of M′1 + M′2 = (M1 − ε |v1〉 〈v1|) + (M2 + ε |v1〉 〈v1|) = I, M′ = (M′1, M′2) is
a POVM. We can verify whether M′ is an optimal measurement at q. First, from the relation of
〈v1| ρ1 |v1〉 : 〈v1| ρ2 |v1〉 = 1− q : q, we have 〈v1| (1− q)ρ2 − qρ1 |v1〉 = 0. For |v1〉 ∈ Supp(M1), by
Lemma A2, we can obtain ((1− q)ρ2 − qρ1) |v1〉 〈v1| = 0. Then, we have the following relations that
show that M′ is an optimal measurement at q:

((1− q)ρ2 − qρ1) M′1 = ((1− q)ρ2 − qρ− 1) (M1 − ε |v1〉 〈v1|) = ((1− q)ρ2 − qρ1) M1 ≥ 0

(qρ1 − (1− q)ρ2) M′2 = (qρ1 − (1− q)ρ2) (M2 + ε |v1〉 〈v1|) = (qρ1 − (1− q)ρ2) M2 ≥ 0

According to Lemma A3 in the Appendix B, the necessary and sufficient condition that two conditions
of [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0 are satisfied is that the optimal measurement M of a receiver
can be simultaneously diagonalized with two quantum states ρ1 and ρ2. Therefore, if the optimal
measurement M of a receiver is simultaneously diagonalized with two quantum states ρ1 and ρ2,
the uniqueness of the sender’s minimax strategy cannot be compatible with the uniqueness of the
receiver’s MD strategy. The following Corollary summarizes this result.

Corollary 1. If the optimal measurement M can be simultaneously diagonalized with two quantum states
ρ1 and ρ2, the uniqueness of minimax strategy of a sender and the uniqueness of MD of a receiver cannot
be compatible.

The above result can be applied to cases of building quantum random number generator(QRNG).
Suppose that only one side’s strategy is unique. Therefore, either the minimax strategy of a sender
or the minimum error strategy is unique. The randomness in QRNG is defined as the min-entropy
to the classical bit in the quantum-classical state and depends on the prior probability [25,29]. If the
prior probability providing minimum guessing probability is not unique, we can build QRNG that is
not sensitive to the prior probability. When QRNG is built such that the receiver’s strategy is unique,
even a slight error in the measurement leads to the loss of the optimality of the receiver’s strategy.
The quantum states with a unique receiver’s strategy in QRNG can be found by using Corollary 1.

4. Conclusions

We studied the two person zero sum game where the payoff is defined by the correct probability
of the two quantum states. Because it is known that the optimal strategy of the game is a minimax
strategy, and it is important to verify its uniqueness of the minimax strategy, we focused on the
uniqueness condition of the minimax strategy of a sender and the minimax strategy of a receiver.
In this study, we obtained the necessary and sufficient condition for the uniqueness of the sender’s
strategy. Using this condition, we investigated the quantum states providing the minimum guessing
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probability when a sender’s minimax strategy is unique. Further, we found the condition where both
the sender’s minimax strategy and the receiver’s optimal minimum error strategy cannot be unique.

Our result helps to understand the fundamental aspect of minimax strategy. We studied the
minimax strategy in the quantum state discrimination of two quantum states. The uniqueness of the
minimax strategy in the quantum state discrimination of more than two quantum states is not known
yet. In our future work, we hope to investigate this problem.
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Abbreviations

The following abbreviations are used in this manuscript:

MD Minimum error Discrimination
QRNG Quantum Random Number Generator

Appendix A. Proofs

Proof of Lemma 1. (⇒) Suppose that measurement {Mx}2
x=1 satisfies the above condition. We define

the operator K to be qρ1M1 + (1− q)ρ2M2. Then, we obtain the following relations:

K− qρ1 = qρ1M1 + (1− q)ρ2M2 − qρ1 = ((1− q)ρ2 − qρ1) M2 ≥ 0

K− (1− q)ρ2 = qρ1M1 + (1− q)ρ2M2 − (1− q)ρ2 = (qρ1 − (1− q)ρ2) M1 ≥ 0.

For an arbitrary measurement {Nx}2
x=1, we obtain:

tr(K)− tr(qρ1N1 + (1− q)ρ2N2) = tr((K− qρ1) N1) + tr((K− (1− q)ρ2) N2) ≥ 0.

This implies that the measurement {Mx}2
x=1 is optimal.

(⇐) Let us assume that measurement {Mx}2
x=1 is optimal in the MD of two quantum state. This

implies that the measurement provides the guessing probability:

pguess = qtr(ρ1 M1) + (1− q)tr(ρ2 M2)

=
1
2
(1 + tr(((1− q)ρ2 − qρ1) (M2 −M1)))

=
1
2
(1 + tr(Λ(M2 −M1))) ,

where Λ is (1− q)ρ2 − qρ1. Because Λ is a Hermitian operator, from the spectrum theorem, we know
that there is a projection operator onto the eigenspace:

Λ = ∑
i∈Ω

λiPi = ∑
i∈Ω>

λiPi + ∑
i∈Ω<

λiPi
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Here, λi are eigenvalues and PiPj = Piδij is satisfied for every i, j ∈ Ω. Further, Ω> = {i ∈ Ω : λi > 0}
and Ω< = {i ∈ Ω : λi < 0}. Then, I − ∑i∈Ω>∪Ω<

Pi is a projection onto the kernel of Λ. Because
measurement {Mx}2

x=1 is optimal, the general form is given as:

M1 = ∑
i∈Ω<

Pi + N1, M2 = ∑
i∈Ω>

Pi + N2

Here, we have N1 ≥ 0, N2 ≥ 0 and N1 + N2 = I −∑i∈Ω>∪Ω<
Pi. First, M1 is optimal and Λ contains

the projector ∑i∈Ω<
Pi onto the eigenspace of negative eigenvalues. And M2 is optimal and Λ includes

projector ∑i∈Ω>
Pi onto eigenspace of positive eigenvalues. However, for Ω 6= Ω> ∪Ω<, ∑i∈Ω>

Pi +

∑i∈Ω<
Pi = I is not generally satisfied. Meanwhile, I − ∑i∈Ω>∪Ω<

Pi is a projector onto the null
space of Λ, which does not affect optimization. Therefore, for N1 ≥ 0 and N2 ≥ 0, one can find
N1 + N2 = I −∑i∈Ω>∪Ω<

Pi. Because ΛNx = 0(x = 1, 2), for x ∈ {1, 2}, we have

(−1)xΛMx = (−1)xΛ(Mx − Nx) = (−1)x(Mx − Nx)Λ(Mx − Nx) ≥ 0.

Therefore, when measurement {Mx}2
x=1 is optimal in the MD of two quantum states, the relation of

(−1)x ((1− q)ρ2 − qρ1) Mx ≥ 0 (x = 1, 2) is satisfied.

Proof of Lemma 3. (⇒) Suppose that a measurement {Mx}2
x=1 can simultaneously perform MD

on {px, ρx}2
x=1 and {qx, ρx}2

x=1. This implies that ∑2
x=1 pxtr(ρx Mx) = ∑2

x=1 qxtr(ρx Mx) and one has
∑2

x=1(px − qx)tr(ρx Mx) = 0. Therefore, (p1 − q1)(tr(ρ1 M1)− tr(ρ2 M2)) = 0. Because of p1 6= q1, we
obtain tr(ρ1 M1) = tr(ρ2 M2). Note that only in the prior probability providing the minimum guessing
probability, there exists an optimal measurement that satisfies tr(ρ1 M1) = tr(ρ2 M2). Therefore, when
an optimal measurement of the simultaneous MD on {px, ρx}2

x=1 and {qx, ρx}2
x=1 exists, we have

p(1)guess = p?guess.
(⇐) When a prior probability can provide the minimum guessing probability, there exists at least
one optimal measurement {Mx}2

x=1 satisfying tr(ρ1 M1) = tr(ρ2 M2). Because of p(1)guess = p?guess,
an optimal measurement {Mx}2

x=1 satisfies tr(ρ1 M1) = tr(ρ2 M2) and we have ∑2
x=1 qxtr(ρx Mx) =

∑2
x=1 pxtr(ρx Mx) = p(1)guess = p(2)guess. This implies that the optimal measurement {Mx}2

x=1 which
performs the minimum error discrimination on {px, ρx}2

x=1 can discriminate {qx, ρx}2
x=1 with

minimum error. Therefore, when p(1)guess = p?guess, there exists an optimal measurement that can
simultaneously perform MD on {px, ρx}2

x=1 and {qx, ρx}2
x=1.

Proof of Proposition 1. (⇒) Suppose that the prior probability providing the minimum of guessing
probability is not unique. For example, prior prbability (p, 1− p) or (q, 1− q) exhibits the minimum of
the guessing probability. In this case, we will show [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0. By Lemmas 2
and 3, measurement {Mx}2

x=1 is optimal in both prior probabilities p and q to ρ1. Therefore, one can
have the following relations:

(qρ1 − (1− q)ρ2)M1 ≥ 0 (A1)

(pρ1 − (1− p)ρ2)M1 ≥ 0. (A2)

Note that the two operators are Hermitian and their difference is (p− q)(ρ1 + ρ2)M1, which is also
Hermitian. Because of p 6= q, (ρ1 + ρ2)M1 is a Hermitian operator and the relation of [ρ1 + ρ2, M1] = 0
holds. This is because (ρ1 + ρ2)M1 = ((ρ1 + ρ2)M1)

† = M†
1(ρ1 + ρ2)

† = M1(ρ1 + ρ2) when (ρ1 +

ρ2)M1 is Hermitian. Further, (p − q)ρ2M1 is also Hermitian, and because of p 6= q and ρ2M1 is
Hermitian. Because of ρ2M1 = (ρ2M1)

† = M†
1ρ†

2 = M1ρ2, we have [ρ2, M1] = 0. This implies that both
(ρ1 + ρ2)M1 and ρ2M1 are positive semidefinite operator. ρ1 + ρ2 and M1 (ρ2 and M1) commute each
other and are simultaneously diagonalizable. Furthermore, the positive semidefinite operator

√
M1
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can be diagonalized by any basis that can diagonalize M1. Therefore, we can find [ρ1 + ρ2,
√

M1] = 0
and [ρ2,

√
M1] = 0. Then, we can obtain the following relations for a vector |v〉:

〈v| (ρ1 + ρ2)M1 |v〉 = 〈v|
√

M1(ρ1 + ρ2)
√

M1 |v〉 ≥ 0 (A3)

〈v| ρ2M1 |v〉 = 〈v|
√

M1ρ2
√

M1 |v〉 ≥ 0 (A4)

Hence, (ρ1 + ρ2)M1 ≥ 0 and ρ2M1 ≥ 0. In the prior probability (p, 1− p) because {Mx}2
x=1 is optimal,

(pρ1 − (1 − p)ρ2)M1 and ((1 − p)ρ2 − pρ1)M2 are positive semidefinite. Therefore we obtain the
following relations:

(qρ1 − (1− q)ρ2)M1 ≥ (q− p)(ρ1 + ρ2)M1 (A5)

((1− q)ρ2 − qρ1)M2 ≥ (p− q)(ρ1 + ρ2)M2 (A6)

We will show that for x ∈ {1, 2} an element |v〉 of support of Mx does not satisfy 〈v| ρ1 |v〉 : 〈v| ρ2 |v〉 =
1− q : q. First, we consider the case of p < q. Then, qρ1 − (1− q)ρ2 and M1 commute each other and a
vector |v〉 satisfies the following relation:

〈v|
√

M1(qρ1 − (1− q)ρ2)
√

M1 |v〉 = 〈v| (qρ1 − (1− q)ρ2)M1 |v〉
≥ (q− p) 〈v| (ρ1 + ρ2)M1 |v〉

= (p− q) 〈v|
√

M1(ρ1 + ρ2)
√

M1 |v〉 ≥ 0

(A7)

Here, the first and the last equalities are satisfied by Corollary A1.
√

M1 and M1 have the same support
and
√

M1 |v〉 is a element of M1’s support. Every element of the support of M1 can be expressed by√
M1 |v〉 for a vector |v〉. Moreover, ρ1 + ρ2 is full rank and we obtain 〈v| ρ1 + ρ2 |v〉 > 0 for a non-zero

vector |v〉. Therefore, the condition for equality in the last inequality becomes
√

M1 |v〉 = 0, which
implies that |v〉 is a kernel of M1. Therefore, a non-zero element |v1〉 in the support of M1 satisfies the
inequality 〈v1| (qρ1 − (1− q)ρ2) |v1〉 > 0.

Now, we consider the case of p > q. By the completeness condition of POVM, qρ1 − (1− q)ρ2 and
M2 commute each other and for a vector |v〉 we have the following relation:

〈v|
√

M2((1− q)ρ2 − qρ1)
√

M2 |v〉 = 〈v| ((1− q)ρ2 − qρ1)M2 |v〉
≥ (p− q) 〈v| (ρ1 + ρ2)M2 |v〉

= (p− q) 〈v|
√

M2(ρ1 + ρ2)
√

M2 |v〉 ≥ 0

(A8)

The first and the last equalities are obtained by Corollary A1.
√

M2 and M2 have the same support
and
√

M2 |v〉 is an element of M2’s support. Every element of the support of M2 can be expressed
by
√

M2 |v〉 for an element of |v〉. The condition for the equality in the last inequality is
√

M2 |v〉,
which implies that |v〉 is a kernel of M2. Then, a non-zero element |v2〉 in the support of M2 satisfies
〈v2| (1− q)ρ2 − qρ1 |v2〉 > 0. Therefore, when p < q, any vector |v1〉 in the support of M1 does not
satisfy 〈v1| ρ1 |v1〉 : 〈v1| ρ2 |v1〉 = 1− q : q. When p > q, any vector |v2〉 in the support of M2 does not
satisfy 〈v2| ρ1 |v2〉 : 〈v2| ρ2 |v2〉 = 1− q : q.

In summary, if the prior probability providing the minimum of guessing probability is not unique,
the relations of [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0 hold and for x ∈ {1, 2}, any vector |vx〉 in the
support of Mx does not satisfy 〈vx| ρ1 |vx〉 : 〈vx| ρ2 |vx〉 = 1− q : q. This contradicts the assumption
that condition 1 and 2 hold. Therefore, when condition 1 and 2 are satisfied, the prior probability
providing the minimum of guessing probability is unique.

(⇐) Assume that the measurement {Mx}2
x=1 satisfies [ρ1 + ρ2, M1] = 0, [ρ2, M1] = 0 and for some

x′ ∈ {1, 2} there is no |vx′〉 of the support of Mx′ that satisfies the relation 〈vx′ | ρ1 |vx′〉 : 〈vx′ | ρ2 |vx′〉 =
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1− q : q. For every x ∈ {1, 2} the support of Mx is a subspace of the direct sum of the non-negative
eigenspace of (−1)x((1− q)ρ2 − qρ1). Therefore, for an element |vx〉 in the support of Mx the relation
of (−1)x((1− q)ρ2 − qρ1) holds. However, when x = x′, because of 〈vx′ | (1− q)ρ2 − qρ1 |vx′〉 6= 0, we
can have (−1)x′ 〈vx′ | (1− q)ρ2 − qρ1 |vx′〉 > 0.

Now, let us find the other prior probability which can share the optimal measurement. We

define p as q + (−1)x′

2 min|v〉∈Supp(Mx′ )
(−1)x′ 〈v| (1 − q)ρ2 − qρ1 |v〉. When x′ = 1, we have p < q.

By min|v〉∈Supp(M1)
〈v| qρ1 − (1− q)ρ2 |v〉 ≤ q we have p ≥ 0. When x′ = 2, one has p > q and by

min|v〉∈Supp(M2)
〈v| (1− q)ρ2 − qρ1 |v〉 ≤ 1− q we obtain p ≤ 1.

Then, we will show that {Mx}2
x=1 is optimal in (q, 1 − q). Note that the following two

relations hold:

〈v1| qρ1 − (1− q)ρ2 |v1〉 ≥ −(p− q) 〈v1| ρ1 + ρ2 |v1〉 for all |v1〉 ∈ Supp(M1) (A9)

〈v2| (1− q)ρ2 − qρ1 |v2〉 ≥ (p− q) 〈v2| ρ1 + ρ2 |v2〉 for all |v2〉 ∈ Supp(M2). (A10)

Here, ρ1 + ρ2 is full rank and for every vector |v〉 one has 〈v| ρ1 + ρ2 |v〉 > 0. When x′ = 1, p < q and
because of 〈v2| (1− q)ρ2 − qρ1 |v2〉 ≥ 0 the second condition holds. By the following relation the first
inequality (A13) holds:

〈v1| qρ1 − (1− q)ρ2 |v1〉 ≥ min
|v〉∈Supp(M1)

〈v| qρ1 − (1− q)ρ2 |v〉

= −2(p− q) ≥ −(p− q) 〈v1| ρ1 + ρ2 |v1〉
(A11)

Let us consider the case of x′ = 2. Because p > q and 〈v1| qρ1 − (1− q)ρ2 |v1〉 ≥ 0, the first condition
holds. By the following relation, the second inequality holds:

〈v2| (1− q)ρ2 − qρ1 |v2〉 ≥ min
|v〉∈Supp(M2)

〈v| (1− q)ρ2 − qρ1 |v〉

= 2(p− q) ≥ (p− q) 〈v2| ρ1 + ρ2 |v2〉
(A12)

Because [ρ1 + ρ2, M1] = 0 and [ρ2, M1] = 0, have the relation [pρ1 − (1− p)ρ2, M1] = [p(ρ1 + ρ2)−
ρ2, M1] = 0. This implies that pρ1 − (1− p)ρ2 and M1 are simultaneously diagonalizable. Then, pρ1 −
(1− p)ρ2 and the positive semidefinite operator satisfying N2

1 = M1 are simultaneously diagonalizable,
which has the same support as to that of M1. Therefore, for every vector |v〉 the following relation holds:

〈v| (pρ1 − (1− p)ρ2)M1 |v〉 = 〈v|N1(pρ1 − (1− p)ρ2)N1 |v〉 ≥ 0 (A13)

Note that N1 |v〉 is an element of M1. Therefore, we have (pρ1− (1− p)ρ2)M1 ≥ 0. In the same manner,
by the completeness relation of POVM, pρ1 − (1− p)ρ2 and M2 are simultaneously diagonalizable.
pρ1 − (1 − p)ρ2 and positive semidefinite operator N2 satisfying N2

2 = M2 are simultaneously
diagonalizable, which has the same support as that of M2 by Corollary A1. Therefore, for every
vector |v〉, the following relation holds:

〈v| ((1− p)ρ2 − pρ1)M2 |v〉 = 〈v|N2((1− p)ρ2 − pρ1)N2 |v〉 ≥ 0 (A14)

Note that N2 |v〉 is support of M2 and one has ((1− p)ρ2 − pρ1)M2 ≥ 0.
By Lemma 1, for every x ∈ {1, 2}, one finds (−1)x((1 − p)ρ2 − pρ1)Mx ≥ 0 and {Mx}2

x=1
is optimal at the prior probability (p, 1 − p). This contradicts the assumption that the identical
measurement cannot be shared in the different prior probabilities. Therefore, when the prior probability
providing the minimum guessing probability is unique, the condition 1(or 2) holds.

Appendix B. Lemmas

LetH be a finite dimensional Hilbert space.
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Lemma A1. Let A be a positive semidefinite operator. Let |v〉 be an element of support of A. Then there exists
ε > 0 such that A− ε |v〉 〈v| ≥ 0.

Proof of Lemma A1. Let us assume that there exists no ε > 0 satisfying A− ε |v〉 〈v| ≥ 0. This implies
that for any ε > 0, there exists |w〉 ∈ H such that 〈w| (A − ε |v〉 〈v|) |w〉 < 0. Thus 〈w| A |w〉 <
ε|〈w|v〉|2. Because A ≥ 0, it follows that 0 ≤ 〈w| A |w〉 < ε|〈w|v〉|2.

Note that 〈w| A |w〉 cannot be zero. Because when we assume 〈w| A |w〉 = 0, |w〉 is an element
of ker(A). Since |v〉 is orthogonal to ker(A); this directly implies 〈w|v〉 = 0. Hence, 0 < 0, which is a
contradiction. Therefore 〈w| A |w〉 > 0.

Any vector inH can be decomposed as a linear combination of elements of Supp(A) and ker(A).
Furthermore |w〉 cannot be an element of kernel. Thus there exists |s〉 ∈ Supp(A) and |k〉 ∈ ker(A)

such that |w〉 = c1 |s〉+ c2 |k〉 and where c1 6= 0.
Because A is an operator on the finite dimensional Hilbert space, there exists γ > 0 such that

γ ≡ inf|s〉∈Supp(A) 〈s| A |s〉. When ε = γ,

〈w| A |w〉 = |c1|2 〈s| A |s〉 ≥ |c1|2ε ≥ |c1|2ε|〈s|v〉|2 ≥ ε|〈w|v〉|2.

This contradicts the initial assumption. Therefore there exists ε > 0 such that A− ε |v〉 〈v| ≥ 0.

Lemma A2. Let A be a Hermitian operator onH. Let B be a positive semidefinite operator onH. Suppose that
A and B are commutable. If |v〉 ∈ Supp(B) satisfies 〈v| A |v〉 = 0, then |v〉 ∈ ker(A).

Proof of Lemma A2. Because A and B are commutable, there exists an orthonormal basis {|φi〉}i such
that A = ∑i∈χA

ai |φi〉 〈φi|, B = ∑i∈χB
bi |φi〉 〈φi|, where ai 6= 0 for all i ∈ χA and bi > 0 for all i ∈ χB.

Then AB = ∑i∈χA∩χB
aibi |φi〉 〈φi|. Because AB ≥ 0, ai > 0 for all i ∈ χA ∩ χB. As |v〉 ∈ Supp(B), we

can express |v〉 as ∑i∈χB
ci |φi〉. Then

∑
i∈χA∩χB

|ci|2ai = ∑
i,j∈χB

c∗i 〈φi| ∑
k∈χA

ak |φk〉 〈φk| |φj〉 cj

= 〈v| A |v〉 = 0.

Because ai > 0, it follows that |ci|2 = 0 for all i ∈ χA ∩ χB. This implies that ci = 0. Thus

A |v〉 = ∑
k∈χA

ak |φk〉 〈φk| ∑
i∈χB

ci |φi〉 = ∑
i∈χA∩χB

aici |φi〉 = 0

Therefore if |v〉 ∈ Supp(B) satisfies 〈v| A |v〉 = 0, then |v〉 ∈ ker(A)

LetH be a Hilbert space with dimension d. Let A, B be Hermitian operators onH.

Lemma A3. If [A, B] = 0, then A, B can be simultaneously diagonalizable.

Proof of lemma A3. Because A and B are Hermitian operators and [A, B] = 0, it follows that (AB)† =

B† A† = BA = AB. This implies that AB is a Hermitian operator. Let ∑d
i=1 ai |ai〉 〈ai| be a spectral

decomposition of A. Then

AB =
d

∑
i,j=1

ai |ai〉 〈ai| B |aj〉 〈aj| =
d

∑
i,j=1

ai 〈ai| B |ai〉 |ai〉 〈ai| .

Because AB is a Hermitian operator, it follows that

al 〈ak| B |al〉 = (AB)∗lk = (AB)kl = ak 〈ak| B |al〉 for all k, l ∈ {1, 2, · · · , d}

This implies that (al − ak) 〈ak| B |al〉 = 0. Thus al = ak or 〈ak| B |al〉 = 0.
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Let us define a set of indices I ⊂ {1, 2, · · · , d} such that for every i ∈ I, if j ∈ {1, 2, · · · , d}\{i}
satisfies 〈ai| B |aj〉 6= 0, then j ∈ I and there is no non-empty subset J ⊂ I such that for every i ∈ I\J
and for every j ∈ J, 〈ai| B |aj〉 = 0. Using the result above, ai = aj for all i, j ∈ I. This implies that
∑i,j∈I 〈ai| B |aj〉 |ai〉 〈aj| can be represented with a block matrix with a basis of {|ai〉}i∈I by rearranging
the indices. Define a′ as the positive number satisfying ai = a′ for all i ∈ I. Then ∑i∈I |ai〉 〈ai| is a
projection operator on the eigenspace of A providing eigenvalue a′. Note that the eigenspace has a
degree of freedom in choosing the orthonormal basis.

Now let us explain how to choose a basis that can diagonalize A and B simultaneously. Because
∑i,j∈I 〈ai| B |ai〉 |ai〉 〈ai| is a Hermitian operator, it can be diagonalized with some orthonormal basis.
Suppose that {|ci〉}i∈I is the basis. Then ∑i,j∈I 〈ai| B |aj〉 |ai〉 〈aj| = ∑i∈I ci |ci〉 〈ci| holds, where ci is
a eigenvalue of B. Furthermore, because span{|ai〉}i∈I is an eigenspace of A, ∑i∈I a′ |ai〉 〈ai| can be
rewritten as ∑i∈I a′ |ci〉 〈ci|. Similarly, we can find a basis that diagonalizes each block matrix of B.
A can be diagonalized using this basis. Therefore if [A, B] = 0, then A and B can be simultaneously
diagonalizable.

Let ∑r
i=1 λiPi be a spectral decomposition of B. Then C = ∑r

i=1
√

λiPi satisfies C2 = B. We show
that the positive semidefinite operator satisfying C2 = B is unique.

Suppose that C is not unique. Then there exists another positive semidefinite operator C′ such
that C′2 = B. Because [B, C′] = 0, from Lemma A3, B, C′ are simultaneously diagonalizable. That is,
there exists an orthornormal basis {|ν(j)

i 〉}
r,di
i,j=1 such that

B =
r

∑
i=1

λi

(
di

∑
j=1
|ν(i)j 〉 〈ν

(i)
j |
)

, C′ =
r

∑
i=1

(
di

∑
j=1

νij |ν
(j)
i 〉 〈ν

(j)
i |
)

for some non-negative λi, νi,j ∈ R. Because C′2 = B, it follows that

B− C′2 =
r

∑
i=1

di

∑
j=1

(λi − ν2
ij) |ν

(j)
i 〉 〈ν

(j)
i | = 0.

Thus νij =
√

λi for all i, j ∈ {1, 2, · · · , d}. Further, because ∑d
j=1 |ν

(j)
i 〉 〈ν

(j)
i | = Pi, it follows that C′ =

∑r
i=1
√

λi

(
∑di

j=1 |ν
(j)
i 〉 〈ν

(j)
i |
)
= ∑r

i=1
√

λiPi = C. This contradicts the initial assumption. Therefore, the

positive semidefinite operator satisfying C2 = B is unique.
Let A, B be positive semidefinite operators onH. Let C be a positive semidefinite operator onH

satisfying C2 = B.

Corollary A1. If [A, B] = 0, then [A, C] = 0.

Proof of Corollary A1. According to Lemma A3, [A, B] = 0 implies that A and B are simultaneously
diagonalizable. That is there exists an orthonormal basis {|λi〉}d

i=1 such that

A =
d

∑
i=1

ai |λi〉 〈λi| , B =
d

∑
i=1

bi |λi〉 〈λi| ,

for some ai ≥ 0 and bi ≥ 0. Then C is uniquely defined as C = ∑d
i=1
√

bi |λi〉 〈λi| by the statement
above. Note that there exists an orthornormal basis {|λi〉}d

i=1 diagonalizing A, C simultaneously.
Therefore if [A, B] = 0, then [A, C] = 0.
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