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Abstract: Direct dependencies and conditional dependencies in restricted Bayesian network
classifiers (BNCs) are two basic kinds of dependencies. Traditional approaches, such as filter
and wrapper, have proved to be beneficial to identify non-significant dependencies one by one,
whereas the high computational overheads make them inefficient especially for those BNCs with
high structural complexity. Study of the distributions of information-theoretic measures provides
a feasible approach to identifying non-significant dependencies in batch that may help increase
the structure reliability and avoid overfitting. In this paper, we investigate two extensions to the
k-dependence Bayesian classifier, MI-based feature selection, and CMI-based dependence selection.
These two techniques apply a novel adaptive thresholding method to filter out redundancy and
can work jointly. Experimental results on 30 datasets from the UCI machine learning repository
demonstrate that adaptive thresholds can help distinguish between dependencies and independencies
and the proposed algorithm achieves competitive classification performance compared to several
state-of-the-art BNCs in terms of 0–1 loss, root mean squared error, bias, and variance.

Keywords: Bayesian network classifiers; mutual information; conditional mutual information;
thresholding

1. Introduction

Classification is one of the most important tasks in machine learning. The basic problem of
supervised classification is the induction of a model with feature set X = {X1, · · · , Xn} that classifies
testing instance (example) x = {x1, · · · , xn} into one of the several class labels {c1, · · · , cm} of class
variable C. Bayesian network classifiers (BNCs) have many desirable properties over other numerous
classification models, such as model interpretability, the ease of implementation, the ability to deal
with multi-class classification problems and the comparable classification performance [1]. A BNC
or B assigns the most probable label with the maximum posterior probability to x by calculating the
posterior probability for each class label that is:

arg max
C

PB(c|x) = arg max
C

PB(x, c)
PB(x)

∝ arg max
C

PB(x, c), (1)

where class label c ∈ {c1, · · · , cm}.
Although unrestricted BNCs are the least biased, the search-space that is needed to train such a

model increases exponentially with the number of features [2]. The arising complexity issues limit the
study of unrestricted BNCs and it has led to the study of restricted BNCs, from 0-dependence naive
Bayes (NB) [3–5], 1-dependence tree-augmented naive Bayes (TAN) [6] to k-dependence Bayesian
classifier (KDB) [7]. These classifiers take class variable as the common parent of all predictive
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features and use different learning strategies to explore the conditional dependence among features.
KDB has numerous desirable characteristics in structure learning. For example, it has satisfactory
classification accuracy while dealing with large quantities of data [2]. In addition, KDB uses a
single parameter, k, to set the maximum number of parents for any feature and thus controls the
structure complexity. KDB first determines the feature order by comparing MI. Suppose that the
order is {X1, · · · , Xn}, then Xi can select at most k, or more precisely min{i − 1, k}, features as
parents from its candidates {X1, · · · , Xi−1}. These parents correspond to the min{i − 1, k} largest
CMI values. Figure 1 shows two examples, i.e., K1DB (KDB with k = 1) and K2DB (KDB with k = 2).
Suppose that I(X1; C) > I(X2; C) > I(X3; C) > I(X4; C), then the feature order is {X1, X2, X3, X4}.
If I(X3; X4|C) > I(X1; X4|C) > I(X2; X4|C), X4 in K1DB chooses X3 as its only parent and X4 in K2DB
chooses {X1, X3} as its parents from candidates {X1, X2, X3}.

C

X 3 X 4X 1 X 2

C

X 3 X 4X 1 X 2 3

(a)   KDB (k=1) (b)   KDB (k=2)

C C

X1 X2 X3 X4 X1 X2 X3 X4

Figure 1. Examples of network structures with four features for KDB.

There are two basic kinds of dependencies in restricted BNCs: (1) direct dependence between
feature Xi and C that can be quantified by mutual information (MI) I(Xi; C), and (2) conditional
dependence between Xi and Xj given C that can be measured by conditional mutual information (CMI)
I(Xi; Xj|C). Many researchers have exploited methods, such as filter and wrapper [8–13], to select
direct dependencies by removing redundant features. The filter approach operates independently
of any learning algorithms that rank the features by some criteria and omit all features that do not
achieve a sufficient score [14–16]. The wrapper approach evaluates the feature subsets every time and
may produce better results. For example, Backwards Sequential Elimination (BSE) [17] uses a simple
heuristic wrapper approach that seeks a subset of the available features that minimizes 0–1 loss on the
training set. Forward Sequential Selection (FSS) [18] uses the reverse search direction to BSE. Although
the filter and wrapper approaches have proved to be beneficial in domains with highly correlated
features, the learning procedure ends only when there is no accuracy improvement, thus they are
expensive to run and can break down with very large numbers of features [8,19,20]. Suppose that we
need to select m from n features for classification, BSE or FSS will construct Pm

n or n!
m! candidate BNCs

to judge if there exist non-significant features or direct dependencies. It is even more difficult for BSE
or FSS to select the conditional dependencies. For example, the network topology of KDB consists
of nk − k2

2 −
k
2 conditional dependencies [21]. If BSE or FSS evaluate them one by one to identify

those relatively non-significant ones, the high computational overheads is almost unbearable and few
approaches are proposed to address this issue.

Obviously, how to efficiently identify non-significant direct and conditional dependencies are
two key issues to learn BNC. Strictly speaking, there exist no direct or conditional independence due
to the fact that the MI and CMI values are non-negative. However, weak dependencies, if introduced
into the network topology, will result in overfitting and classification bias. For KDB, all features
are indiscriminately conditionally dependent on at most k parent features even if the conditional
dependencies are very weak. Discarding these redundant features or weak conditional dependencies
can help increase structure reliability and avoid overfitting. Figure 2 presents the distributions of
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MI and CMI values for K2DB (KDB with k = 2) on dataset Connect-4, which has 67,557 instances
(or examples), 42 features and three classes. As shown in Figure 2a, there exist minor differences
among some MI values, thus the significance of corresponding direct dependencies is almost the same
and they can be treated in batch. From Figure 2b, the same also applies to CMI and corresponding
conditional dependencies.
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Figure 2. The distributions of (a) MI; (b) CMI values on dataset Connect-4. Note that the MI and CMI
values are sorted in descending order.

The filter approaches have computational efficiency while the wrapper approaches may produce
better results. The algorithm proposed combines the characteristics of filter with wrapper approaches
to exploit the complementary strengths. In this paper, we propose to group the direct (or conditional)
dependencies into different batches using adaptive thresholds. We assume that there exists no
significant difference between the MI (or CMI) values in the same batch. Then, the basic idea of
filter and wrapper will be applied to a select batch rather than single dependence for each iteration.
This learning strategy can help achieve much higher efficiency compared to BSE (or FSS) while
retaining competitive classification performance, and above all it provides a feasible solution for
selecting conditional dependencies, the number of which increases exponentially as the number of
features increases.

We investigate two extensions to KDB, MI-based feature selection and CMI-based dependence
selection based on a novel adaptive thresholding method. The final BNC, Adaptive KDB (AKDB),
evaluates the subsets of features and conditional dependencies using leave-one-out cross validation
(LOOCV). In the remaining sections, we prove that applying feature selection and dependence selection
techniques to KDB can alleviate the potential redundancy problem. We present extensive experimental
results, which prove that AKDB significantly outperforms several other state-of-the-art BNCs in terms
of 0–1 loss, root mean squared error (RMSE), bias and variance.

2. Restricted Bayesian Network Classifiers

For convenience, except for the algorithm names, all the used acronyms in this work are listed in
Table 1. The structure of BNC can be described as a directed acyclic graph [22]. Nodes in structure
represent the class variable C or features, edge Xi → Xj denotes probabilistic dependency relationship
between these two features and Xi is one of the immediate parent nodes of Xj. Thus, in a restricted
BNC or B, class variable C is required as the common parent of all features and does not have any
parents so the individual probability of C is P(c). We use PB(xi|πi) to denote the individual probability
of feature Xi, where πi denotes the set of values of Xi’s parents. The joint probability distribution can
be calculated as the product of PB(xi|πi) of all features and P(c) that is:

PB(x, c) = P(c)
n

∏
i=1

PB(xi|πi). (2)
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Unfortunately, the inference of an unrestricted BNC has been proved to be an NP-hard
problem [23,24] and learning a restricted or pre-fixed BNC is one approach to deal with the intractable
complexity. For example, NB [25,26] is the simplest classifier among restricted BNCs that assumes
each feature is conditionally independent given the class variable C.

Table 1. List of acronyms used.

Notation Description

MI mutual information
CMI conditional mutual information
BNCs Bayesian network classifiers
BNC Bayesian network classifier
B a BNC
LOOCV leave-one-out cross validation
RMSE root mean squared error
AMI the average MI
ACMI the average CMI
FS feature selection
DS dependence selection
MDL Minimum Description Length
NF the number of features in BNC
ND the number of conditional dependencies in BNC
SMI the sum of MI
SCMI the sum of CMI

Since, in the real world, the dataset usually does not satisfy the independence assumption,
this may cause a deterioration of the classification performance. KDB alleviates the independence
assumption of NB that it constructs classifiers which allow feature Xi within BNC to have at most k
parent features. KDB firstly sets the feature order by comparing MI values and then calculates CMI
values as the weights to measure the conditional relationship between features given C and select at
most k parent features for one feature. MI and CMI are defined as follows:

I(Xi; C) = ∑
xi∈Xi

∑
c∈C

P(xi, c)log2
P(xi, c)

P(xi)P(c) ,

I(Xi; Xj|C) = ∑
xi∈Xi

∑
xj∈Xj

∑
c∈C

P(xi, xj, c) log2
P(xi, xj|c)

P(xi|c)P(xj|c).
(3)

For KDB, I(Xi; C) measures the direct dependence between Xi and C. I(Xi; Xj|C) measures the
conditional dependence between Xi and Xj given C. For a given training set with n features and the
parameter k, KDB firstly calculates MI and CMI. Suppose that the feature order is {X1, · · · , Xn} by
comparing MI, Xi will choose min(i− 1, k) features with the highest CMI values from the first i− 1
candidates. The structure learning procedure of KDB is depicted in Algorithm 1.

There have been some refinements that may improve KDB’s performance. Rodríguez and
Lozano [27] proposed to extend KDB to a multi-dimensional classifier, which learned a population
of classifiers (nondominated solutions) by a multi-objective optimization technique and the objective
functions for the multi-objective approach are the multi-dimensional k-fold cross-validation estimations
of the errors. Louzada [28] proposed to generate multiple KDB networks via a naive bagging procedure
by obtaining the predicted values from the adjusted models, and then combine them into a single
predictive classification.
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Algorithm 1: Structure learning procedure of KDB: LearnStructure(T , L, k)

Input: Training set T , list of features L = {X1, · · · , Xn, C} and k.
Output: The directed graph G.

1 Calculate I(Xi; C) from T for all features, calculate I(Xi; Xj|C) from T for each pair of features
(i 6= j);

2 Let the used features list, S, be empty;
3 Initialize the network structure G, with a single node, C;
4 repeat
5 Select and add a node Xmax to G, where Xmax = arg max I(Xi; C) and Xi /∈ S;
6 Add an edge C → Xmax in G;
7 Add min(|S| , k) edges from distinct features Xj with the highest I(Xmax; Xj|C), where

Xj ∈ S;
8 Add Xmax to S;
9 until S includes all Xi in L;

10 return G;

3. Adaptive KDB

MI and CMI are non-negative in Equation (3). I(Xi; C) = 0 (or I(Xi; Xj|C) = 0) if Xi and C
are independent (or Xi and Xj are conditionally independent given C). If Xi and C are regarded as
independent, the edge connecting them will be removed. Practically, the estimated MI is compared to
a small threshold, in order to distinguish pairs of dependent and pairs of independent features [29–32].
In the following discussion, we mainly discuss how to choose the threshold of MI. The test for
conditional independence using CMI is similar.

To refine the network structure, AKDB uses an adaptive threshold to filter out those non-significant
dependencies. If the threshold is high, too many dependencies will be identified as non-significant and
removed, and a sparse network may underfit the training data. In contrast, if the threshold is low, few
dependencies will be identified as non-significant and a dense network may overfit the training data.
The thresholds control AKDB’s bias-variance trade-off and, if appropriate thresholds are predefined,
the lowest error will be achieved as this is a complex interplay between structure complexity and
classification performance. Unfortunately, for different training datasets, the thresholds may differ and
there are no formal methods to preselect the thresholds.

To guarantee satisfactory performance and overcome exhaustive experimentation, for KDB,
given the feature order selected by KDB based on MI comparison, if feature Xi is assumed to be
independent of C when I(Xi; C) = 0, it will be at the end of the order and the edge C → Xi will
be removed. Furthermore, Xi may be dependent on other features, whereas no feature depends on
it. That is, Xi will be irrelevant to classification directly or indirectly. The problem of choosing the
threshold of MI turns to choosing a feature subset. Many feature selection algorithms are based on
forward selection or backwards elimination strategies [18,33]. They start with either an empty set of
features or a full set of features, and then only one feature is added to BNC or removed from BNC for
each iteration. Feature selection is a complex task that the search space for n features is O(n2). Thus,
it is impractical to search the whole space exhaustively, unless n is small. Our proposed algorithm,
AKDB, extends KDB to adaptively select a threshold of MI and the threshold can help remove more
than one feature at each step.

To clarify the basic idea, we take datasets Hypo and Waveform for a case study. Dataset Hypo has
3772 instances, 29 features and four classes. Dataset Waveform has 100,000 instances, 21 features and
three classes. Corresponding MI values (see details in Tables A1 and A2 in the Appendix A) and CMI
values (see details in Tables A3 and A4 in the Appendix A) for K2DB are, respectively, presented in
Figures 3 and 4.
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Figure 3. The MI values for K2DB on datasets Hypo and Waveform. Note that features are sorted in
ascending order of I(Xi; C).
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Figure 4. The CMI values for K2DB on datasets Hypo and Waveform. Note that the conditional
dependencies are sorted in ascending order of I(Xi; Xj|C).

As Figure 3 shows, the features can be divided into different parts according to the distribution
of MI values. In dataset Hypo, we can see that the difference in MI values of the first 26 features is
not obvious and that these features can be grouped into one part. The 27th and 28th features can be
grouped into another part, and the 29th feature is the last part. On dataset Waveform, the features can
also be divided into three parts. The distribution of CMI values is similar. As Figure 4 shows, the CMI
values on datasets Hypo and Waveform are both divided into five groups. The difference in MI values
in the same part should be non-significant and, if the MI values are small, corresponding features
can be identified as redundant for classification and removed from BNC. The test for redundant
conditional dependencies is similar. From Figures 3 and 4, we can see that the thresholds for
identifying redundancy differ greatly for different datasets. Thus, a threshold that maximizes a
performance measure should be adapted to different datasets. M̂I and ĈMI are introduced as the
adaptive thresholds of redundant features and redundant conditional dependencies, respectively. AMI
and ACMI respectively denote the average MI and the average CMI, which are defined as follows,
and are introduced in this paper as the benchmark thresholds to distinguish between strong and
weak dependencies: 

AMI = 1
|X| ∑

Xi∈X
I(Xi; C),

ACMI = 1
∑
|F|
i=1 |πi|

∑
Xi∈X

∑
Xj∈πi

I(Xi; Xj|C),
(4)
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where |πi| is the size of πi, |X| and |F| denotes the cardinality of feature set X and feature subset F.
To guarantee satisfactory performance and overcome exhaustive experimentation, we require that
AMI> M̂I and ACMI> ĈMI hold.

AKDB applies the greedy-search strategy to iteratively identify redundant and near-redundant
features. For feature selection, we take advantage of the feature order that is determined by comparing
MI. For simplicity, we adaptively provide the threshold value of MI that cuts off an entire region at
the end of the order. Let δ be a user-specified parameter, 0% < δ ≤ 100% (see detail in Section 4.1).
We suppose that the difference between features Xi and Xj is non-significant if I(Xi; C) ≤ I(Xj; C) ≤
I(Xi; C) ∗ (1 + δ). Correspondingly, we regard the feature Xj as near-redundant if Xi is redundant and
the difference between features Xi and Xj is non-significant. Given the feature order, AKDB firstly
selects the feature, e.g., Xi, at the end of the order and identifies it as a redundant feature. Then, we
identify the near-redundant features. Finally, LOOCV is introduced to evaluate the classification
performance after removing redundant and near-redundant features as it can provide the out-of-sample
error with an unbiased low-variance estimation. In addition, the 0–1 loss is used as a loss function
since it is an effective measure to evaluate the quality of a classifier’s classification performance.

Finally, the feature subset is selected with the lowest 0–1 loss. In case of a draw, preference is
given to the smallest number of features. If the MI values are distributed densely, then all redundant
and near-redundant features can be identified only in a few iterations. After that, the greedy-search
strategy is applied to identify redundant and near-redundant conditional dependencies. In this paper,
we proposed to extend KDB by using information-threshold based techniques, FeatureSelection (FS)
and DependenceSelection (DS), to respectively identify redundant features and redundant conditional
dependencies. Both techniques are based on backward elimination that begins at the full set of features
or conditional dependencies.

The learning procedure of FS is shown in Algorithm 2. By applying BSE, FS aims to seeks a subset
of the available features that minimizes 0–1 loss on the training set. FS starts from the full set of features
and corresponding MI values have been grouped into several batches. There should exist significant
differences between the MI values in different batches. Suppose that, for successive batches Bi and Bi+1,
Im = min{I(Xj; C)} for any I(Xj; C) ∈ Bi and Im+1 = min{I(Xk; C)} for any I(Xk; C) ∈ Bi+1. In this
paper, FS requires that, for batches Bi and Bi+1, the criterion Im ∗ (1 + δ) < Im+1 holds, or for batch
Bi the criterion Im ≤ I(Xj; C) ≤ Im ∗ (1 + δ) holds. BSE operates by iteratively removing successive
batches. Then, the threshold of MI, or M̂I, will change from Im to Im+1 if the removal can help reduce
the 0–1 loss. The features in the batch or corresponding direct dependencies will be removed from
the network structure and the classification performance will be evaluated iteratively using LOOCV.
This procedure will terminate if there is no 0–1 loss improvement or Im>AMI.

When the learning procedure of FS terminates, DS is applied to identify non-significant conditional
dependencies and its learning procedure is similar except that CMI rather than MI values will be
grouped into several batches and we need to remove batch of CMI values iteratively to improve 0–1
loss. The learning procedure of DS is shown in Algorithm 3.

The description of a complete AKDB algorithm, which includes FS and DS techniques, is shown in
Algorithm 4. Both FS and DS firstly apply the filter approach to rank feature or conditional dependence
by MI or CMI criteria, then use the wrapper approach to evaluate the feature subset or dependence
subset every time for better 0–1 loss results.
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Algorithm 2: FeatureSelection(T , BN, L, AMI)
Input: Training set T , list of features L = {X1, · · · , Xn} and AMI.
Output: KDB with the best feature subset.

1 Let M̂I denote the adaptive threshold of MI;
2 Let the directed graph G0 =BN;
3 t = 0;
4 repeat
5 Let the tth Batch of features or Bt = ∅;
6 Let the feature Xmin = arg min I(Xi; C), where Xi ∈ L;
7 Let M̂I=I(Xmin; C);
8 Select nodes Xj from Gt and add them to Bt if M̂I ≤ I(Xj; C) ≤ M̂I ∗ (1 + δ);
9 Remove all nodes belonging to Bt and edges connecting to them from Gt;

10 L = L− Bt;
11 for instance x ∈ T do
12 Predict x using Gt and accumulate the classification accuracy;
13 end
14 Gt+1 = Gt;
15 t = t + 1;
16 until M̂I >AMI;
17 Select Gt which corresponds to the lowest 0–1 loss;
18 return Gt ;

Algorithm 3: DependenceSelection(T , G, ACMI)
Input: Training set T , directed graph G, ACMI.
Output: KDB with the best conditional dependence subset.

1 Let ĈMI be the adaptive threshold of CMI;
2 Let the directed graph G0 = G;
3 Let the edge list, E, include all conditional dependencies in G0;
4 t = 0;
5 repeat
6 Let the tth Batch of conditional dependencies or Bt = ∅;
7 Let ĈMI = arg min I(Xi; Xj|C), where edge {Xi − Xj} ∈ E;
8 Add edge {Xk − Xl} to Bt if ĈMI ≤ I(Xk; Xl |C) ≤ ĈMI ∗ (1 + δ);
9 E = E− Bt;

10 Remove all edges belonging to Bt from Gt;
11 for instance x ∈ T do
12 Predict x using Gt and accumulate the classification accuracy;
13 end
14 Gt+1 = Gt;
15 t = t + 1;
16 until ĈMI >ACMI;
17 Select Gt with the lowest 0–1 loss;
18 return Gt;
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Algorithm 4: AKDB
Input: Training set T with features L = {X1, · · · , Xn, C} and k.
Output: AKDB model.

1 Calculate I(Xi; C)(1 ≤ i ≤ n) from T for each feature and AMI;
2 Calculate I(Xi; Xj|C)(i 6= j) from T for every pair of features and ACMI;
3 Let L be a list which includes all Xi in decreasing order of I(Xi; C);
4 Initialize the network structure G = LearnStructure(T ,L, k); // Algorithm 1
5 G = FeatureSelection(T ,G,L, AMI); // Algorithm 2
6 G = DependenceSelection(T ,G, ACMI); // Algorithm 3
7 return G;

4. Experiments

We conduct the experiments on 30 benchmark datasets from UCI (University of California,
Irvine) machine learning repository [34]. The detailed characteristics of these datasets are described in
Table 2, which includes the number of instance, feature and class. The datasets are divided into two
categories—first, small datasets with number of instances ≤3000; second, large datasets with number
of instances >3000. Numeric features, if they exist in a dataset, are discretized based on Minimum
Description Length (MDL) [35]. Missing values are considered as a distinct value and the m-estimation
with m = 1 [36] is employed to smooth the probability estimates.

Table 2. Description of the datasets used in the experiments.

No. Dataset Instance Feature Class No. Dataset Instance Feature Class

1 Echocardiogram 131 6 2 16 German 1000 20 2
2 Lymphography 148 18 4 17 Yeast 1484 8 10
3 Iris 150 4 3 18 Splice-c4.5 3177 60 3
4 Hepatitis 155 19 2 19 Dis 3772 29 2
5 Autos 205 25 7 20 Hypo 3772 29 4
6 Glass Identification 214 9 3 21 Spambase 4601 57 2
7 Heart 270 13 2 22 Phoneme 5438 7 50
8 Primary Tumor 339 17 22 23 Page-blocks 5473 10 5
9 Ionosphere 351 34 2 24 Optdigits 5620 64 10
10 Musk1 476 166 2 25 Mushroom 8124 22 2
11 Balance-scale 625 4 3 26 Magic 19,020 10 2
12 Soybean 683 35 19 27 Adult 48,842 14 2
13 Credit-a 690 15 2 28 Shuttle 58,000 9 7
14 Breast-cancer-w 699 9 2 29 Connect-4 67,557 42 3
15 Vehicle 846 18 4 30 Waveform 100,000 21 3

The following algorithms are compared:

• NB, standard Naive Bayes.
• TAN, tree-augmented naive Bayes.
• NB-FSS, selective Naive Bayes classifier with forward sequential selection.
• K1DB, standard k-dependence Bayesian classifier with k = 1.
• K2DB, standard k-dependence Bayesian classifier with k = 2.
• AKDB, KDB with feature selection and conditional dependence selection based on

adaptive thresholding.

The classification accuracy of algorithms are compared in terms of 0–1 loss and RMSE, and the
results of them are respectively presented in Tables A5 and A6. The bias and variance results are
respectively provided in Tables A7 and A8 because the bias-variance decomposition can provide
valuable insights into the components of the error of learned algorithms [37,38]. Note that only 13
large datasets are selected because of statistical significance in terms of bias-variance comparison.
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4.1. Selection of the Value of Parameter for AKDB

Removing redundant features or conditional dependencies from BNC may positively affect its
classification performance if the threshold value δ is selected appropriately. However, there is no priori
work that can achieve this goal. We perform an empirical study to select an appropriate δ. The 0–1 loss
results for all datasets with different δ values are presented in Table 3. We can see that AKDB achieves
the lowest 0–1 loss results more often when δ = 10%. Although on some datasets AKDB with δ = 10%
may perform relatively poorer, the difference between the 0–1 loss when δ = 10% and the lowest 0–1
loss is not significant (less than 5%). For example, on dataset Splice-C4.5, AKDB achieves the lowest
0–1 loss (0.0468) when δ = 80%, and when δ = 10% the 0–1 loss is 0.0469. From the experimental
results, we argue that δ = 10% is appropriate to help identify the threshold efficiently.

Table 3. The 0–1 loss results of AKDB for all datasets with different δ values.

Dataset δ = 5% δ = 10% δ = 20% δ = 30% δ = 40% δ = 50% δ = 60% δ = 70% δ = 80% δ = 90%

Echocardiogram 0.3740 0.3206 0.3359 0.3511 0.3588 0.3664 0.3740 0.3664 0.3664 0.3664
Lymphography 0.2365 0.1554 0.2432 0.2095 0.2162 0.2027 0.2568 0.2027 0.2162 0.2500
Iris 0.0867 0.0733 0.0867 0.0867 0.0800 0.0767 0.0767 0.0800 0.0733 0.0733
Hepatitis 0.1677 0.1419 0.2129 0.1935 0.2323 0.2129 0.2000 0.2323 0.2323 0.2323
Autos 0.2098 0.1951 0.2000 0.2098 0.2098 0.1951 0.2195 0.2000 0.2000 0.2000
Glass-Id 0.2103 0.1963 0.2103 0.2150 0.2196 0.2243 0.2150 0.2196 0.2103 0.2150
Heart 0.1963 0.1630 0.1963 0.1963 0.1963 0.1889 0.1852 0.1852 0.1815 0.1815
Primary-Tumor 0.5693 0.5428 0.5988 0.5988 0.5693 0.5664 0.5811 0.5841 0.5752 0.5782
Ionosphere 0.0912 0.0712 0.0883 0.0912 0.0855 0.0769 0.0912 0.0940 0.0826 0.0940
Musk1 0.1176 0.1029 0.1134 0.1155 0.1155 0.1092 0.1197 0.1197 0.1218 0.1261
Balance-Scale 0.2784 0.2800 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2784 0.2752
Soybean 0.0556 0.0527 0.0556 0.0600 0.0571 0.0630 0.0571 0.0732 0.0761 0.1098
Credit-A 0.1681 0.1420 0.1551 0.1609 0.1768 0.1638 0.1493 0.1623 0.1536 0.1522
Breast-Cancer-W 0.0744 0.0472 0.0544 0.0644 0.0730 0.0758 0.0758 0.0758 0.0758 0.0601
Vehicle 0.2983 0.3014 0.2996 0.2986 0.2990 0.3002 0.3168 0.3109 0.3322 0.3310
German 0.2920 0.2590 0.2700 0.2920 0.2880 0.2890 0.2880 0.2940 0.2950 0.2940
Yeast 0.4387 0.4218 0.4447 0.4468 0.4461 0.4461 0.4501 0.4569 0.4616 0.4778
Splice-C4.5 0.0853 0.0469 0.0661 0.0585 0.0516 0.0529 0.0475 0.0475 0.0468 0.0468
Dis 0.0151 0.0130 0.0146 0.0154 0.0151 0.0146 0.0138 0.0143 0.0146 0.0151
Hypo 0.0130 0.0077 0.0130 0.0103 0.0170 0.0217 0.0225 0.0233 0.0225 0.0233
Spambase 0.0762 0.0752 0.0767 0.0796 0.0761 0.0776 0.0785 0.0795 0.0787 0.0813
Phoneme 0.1984 0.1984 0.1984 0.1984 0.2896 0.2602 0.2655 0.2519 0.2589 0.2758
Page-Blocks 0.0391 0.0391 0.0391 0.0391 0.0391 0.0376 0.0380 0.0389 0.0402 0.0386
Optdigits 0.0438 0.0358 0.0372 0.0368 0.0391 0.0388 0.0374 0.0368 0.0400 0.0418
Mushrooms 0.0004 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0010 0.0011
Magic 0.1637 0.1636 0.1722 0.1900 0.1904 0.1914 0.1909 0.1906 0.1917 0.1897
Adult 0.1375 0.1338 0.1338 0.1337 0.1347 0.1347 0.1348 0.1409 0.1421 0.1413
Shuttle 0.0009 0.0009 0.0018 0.0018 0.0018 0.0021 0.0018 0.0018 0.0018 0.0019
Connect-4 0.2294 0.2283 0.2442 0.2499 0.2535 0.2591 0.2575 0.2592 0.2652 0.2692
Waveform 0.0193 0.0196 0.0193 0.0195 0.0194 0.0194 0.0194 0.0194 0.0194 0.0234

The lowest 0–1 loss results for datasets are shown in bold.

4.2. Effects of Feature Selection and Conditional Dependence Selection on KDB

FS and DS are two information-threshold based techniques which are used in the proposed
algorithm AKDB. Using these techniques will cause a portion of features and conditional dependencies
to be removed. To prove that they can work severally, we present respectively two versions of KDB
as follows:

• KDB-FS, KDB with only feature selection,
• KDB-DS, KDB with only conditional dependence selection.

In order to evaluate the difference between two classifiers, we define the relative ratio as follows:

RM(A|B) = 1− MA
MB

. (5)

The values of parameter M represents different measures. Corresponding values of RM(A|B)
represent the difference in percentage between two classifiers A and B based on parameter M.

In this paper, NF and ND are respectively used to denote the number of features and the number
of conditional dependencies in BNC. SMI and SCMI are used to indicate the sum of MI and CMI
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in BNC, respectively. The results of RM(KDB-FS|K2DB) and RM(KDB-DS|K2DB) are shown in
Figure 5a,b, respectively.
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Figure 5. The comparison results ofRM(KDB-FS|K2DB) andRM(KDB-DS|K2DB).

Figure 5a presents relative ratios between KDB-FS and K2DB in terms of NF, SMI and 0–1 loss.
The effectiveness of FS can be demonstrated by comparing the SMI values before and after removing
redundant features. From Figure 5a, FS removes features on 27 out of 30 datasets. The larger the value of
RNF (KDB-FS|K2DB), the more features that are identified as redundant and removed. We can see that
the values ofRNF (KDB-FS|K2DB) on five datasets are greater than 50%. For example, on dataset Hypo
(No. 20),RNF (KDB-FS|K2DB) = 79.31%, indicating that 79.31% of features are identified as redundant
and removed. The AMI value on dataset Hypo with 29 features is 0.0251 and only three features
have MI values greater than the AMI value. In addition, 23 of these 29 features have MI values
lower than 0.007 and they are iteratively removed from KDB according to the greedy-search strategy.
Thus, the significant difference in MI values contributes to this high value of RNF (KDB-FS|K2DB).
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Furthermore, removing features based on the FS technique will not result in strong direct dependencies
to be removed. For example, the value of RSMI(KDB-FS|K2DB) on datasets Hypo is 4.14%, although
79.31% of features are removed. On dataset Wavement (No. 30), the value of RSMI(KDB-FS|K2DB)
is close to 0% after removing 9.52% of features. These facts suggest that those removed features in
KDB show weak direct dependencies. In addition, removing weak direct dependencies may help
improve the classification performance. The values ofR0-1 Loss(KDB-FS|K2DB) on datasets Hypo and
Wavement are 21.05% and 24.61%, respectively. That is, the classification performance is improved
after removing the weak direct dependencies. The significant improvement in 0–1 loss (the value
ofR0-1 Loss(•) > 5%) on 12 datasets has demonstrated that the FS technique demonstrates a positive
influence on classification performance.

The redundancy of conditional dependencies may also exist in KDB. Figure 5b presents the
relative ratios between KDB-DS and K2DB in terms of ND, SCMI and 0–1 loss. The comparison of the
SCMI values before and after removing redundant conditional dependencies can demonstrate the
effectiveness of DS. When DS is applied to KDB, the selection of conditional dependencies occurs on
all 30 datasets. The value ofRND (KDB-DS|K2DB) ranges from 8.77% to 86.72%. The larger the value of
RND (KDB-DS|K2DB), the more conditional dependencies that are identified as redundant and removed.
For example, the value of RND (KDB-DS|K2DB) is 78.51% on dataset Credit-a. It indicates that on
average only 5.8 of 27 conditional dependencies are retained. Furthermore, 24 of all 27 CMI values
are lower than the ACMI value (0.1592), and even the minimum CMI value is 0.0189. The difference
in CMI values on dataset Credit-a is obvious; by applying the DS technique with the greedy-search
strategy, weak conditional dependencies are iteratively removed. The value ofRSCMI(KDB-DS|K2DB)
ranges from 1.54% to 45.83%. The high value of RSCMI(KDB-DS|K2DB) does not indicate that the
strong conditional dependencies are removed. On dataset Hypo, RSCMI(KDB-DS|K2DB) = 36.40%.
The factor that contributes to this high value is that the SCMI value of these 48 removed conditional
dependencies reaches 2.3355, but the CMI value of each removed conditional dependence is lower than
the ACMI value. When it comes to 0–1 loss, the value ofR0-1 Loss(KDB-DS|K2DB) on dataset Hypo is
14.04%. It indicates that deleting those weak conditional dependencies may help improve classification
accuracy. KDB-DS achieves almost the same classification accuracy as K2DB with a simplified network
structure on 14 datasets and achieves 0–1 loss improvement on 16 datasets. These results indicate that
the DS technique is effective and can help reduce the structure complexity of KDB.

Both FS and DS techniques combine the characteristics of filter and wrapper approaches.
The redundant features or conditional dependencies are filtered out and then we use classification
accuracy to evaluate the feature subsets or the retained conditional dependencies, respectively. On the
other hand, removing redundant features and conditional dependencies can reduce the parameters
that are needed for probability estimates and may improve the classification accuracy. From the
above discussion, we can see that both FS and DS techniques are efficient and can help improve the
classification performance.

4.3. Comparison of AKDB vs. NB, NB-FSS, TAN, K1DB and K2DB

In this section, we conduct comparisons for related algorithms in terms of 0–1 loss, RMSE and
bias-variance decomposition. RMSE [2] is computed as :

RMSE =

√
1
t ∑

xεT
(1− p̂(cx|x))2, (6)

where t is the number of training instances in training set T , cx is the true class label for the instance x,
and p̂(cx|x) is the estimated posterior probability of the true class given x.

The win/draw/loss (W/D/L) records of 0–1 loss, RMSE and bias-variance decomposition are
presented in Tables 4–6, respectively. The W/D/L record of the comparison results of every two
different algorithms are presented in each cell[i; j] of every table. When one algorithm in row i (Ali)
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and the another algorithm in column j (Alj) are compared, we can observe which algorithm performs
better on all datasets from cell[i; j]. This is because, in cell[i; j], a win denotes that Ali obtains a lower
0–1 loss than Alj, a loss denotes Alj that obtains a lower 0–1 loss than Ali, and a draw denotes that
Ali and Alj perform comparably. We regard a difference as significant if the outcome of a one-tailed
binomial sign test is less than 0.05 [39,40].

Table 4. W/D/L records of 0–1 loss on all datasets.

W/D/L NB NB-FSS TAN K1DB K2DB

NB-FSS 10/12/8
TAN 17/8/5 18/6/6
K1DB 19/5/6 19/5/6 5/18/7
K2DB 17/7/6 20/1/9 8/11/11 11/11/8
AKDB 21/7/2 22/5/3 16/11/3 19/11/0 15/14/1

Table 5. W/D/L records of RMSE on all datasets.

W/D/L NB NB-FSS TAN K1DB K2DB

NB-FSS 6/18/6
TAN 17/10/3 14/9/7
K1DB 18/10/2 15/10/5 2/25/3
K2DB 16/9/5 16/7/7 6/19/5 6/18/6
AKDB 20/8/2 18/6/6 10/13/7 8/18/4 7/21/2

Table 6. W/D/L records of bias and variance on large datasets.

W/D/L NB NB-FSS TAN K1DB K2DB

NB-FSS 6/3/4
TAN 9/1/3 10/1/2

Bias K1DB 11/1/1 12/1/0 4/5/4
K2DB 11/0/2 12/0/1 6/4/3 7/3/3
AKDB 11/1/1 11/2/0 8/2/3 8/1/4 5/3/5

NB-FSS 13/0/0
TAN 4/0/9 0/0/13

Variance K1DB 4/2/7 0/0/12 4/3/6
K2DB 5/0/8 0/0/13 4/1/8 4/0/9
AKDB 8/0/5 1/1/11 9/1/3 10/2/1 12/0/1

From Table 4, we can see that NB-FSS performs better than NB in terms of a 0–1 loss. It indicates
that FSS is feasible to NB. Surprisingly, K2DB does not have an obvious advantage when compared to
1-dependence classifiers. In addition, it even performs poorer when compared to TAN. However, when
it comes to large datasets, as Table 7 shows, K2DB performs better than both TAN and K1DB. We can
see that AKDB significantly outperforms all other algorithms. Most importantly, when compared
to K2DB, AKDB has a 0–1 loss improvement with 15 wins and only one loss, which proves that the
proposed two information-threshold based techniques are effective. This advantage is even greater on
small datasets. From Table A5, AKDB never loses on small datasets and it obtains a significantly lower
0–1 loss on 11 out of 17 small datasets. On dataset Lymphography, the error is substantially reduced
from 0.2365 to 0.1554. Compared to K2DB on large datasets, AKDB achieves W/D/L record of 4/8/1.
Although the improvement is not significant, AKDB only loses on dataset Spambase. Based on these
facts, we argue that AKDB is a more effective algorithm in terms of 0–1 loss.
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Table 7. W/D/L records of 0–1 loss on large datasets.

W/D/L NB NB-FSS TAN K1DB K2DB

NB-FSS 5/5/3
TAN 9/4/0 10/1/2
K1DB 11/1/1 10/2/1 3/7/3
K2DB 11/0/2 12/0/1 8/3/2 9/1/3
AKDB 12/0/1 11/1/1 7/5/1 9/4/0 4/8/1

What is revealed in Table 5 is similar to that in Table 4. NB and NB-FSS perform worse,
which demonstrates the limitations of the independence assumption in NB. TAN and K1DB get
better performance than NB and NB-FSS. In addition, AKDB still achieves lower RMSE significantly
more often than the other five algorithms. On average, 72.4% of the features and 59.6% of conditional
dependencies are selected to build the network structure of AKDB, although in some cases the
improvement in terms of RMSE is not significant. Considering that AKDB has significantly lower 0–1
loss and RMSE in comparison to other algorithms, we argue that the FS technique in tandem with the
DS technique used in the proposed algorithm is powerful to improve classification accuracy.

The W/D/L records of bias-variance decomposition are presented in Table 6. We may observe
that NB and NB-FSS achieve higher bias and lower variance significantly more often than the
other algorithms because their structures are definite without considering the true data distribution.
TAN, K1DB and K2DB are all low-bias and high-variance learners because they are derived from
higher-dimensional probability estimates. Thus, these classifiers are more sensitive to the changes in
the training data. AKDB performs best in terms of bias. When compared to K1DB and K2DB, AKDB
obtains lower bias more often than them, as jointly applying both FS and DS to KDB can simplify
the network structure. Furthermore, we can observe that AKDB shows an advantage over K2DB
in variance. The average of variance of K2DB and AKDB are 0.045 and 0.025 on 13 large datasets,
respectively. Based on these facts, we argue that the proposed AKDB is more stable for classification.

4.4. Tests of Significant Differences

Friedman proposed the Friedman test [41] for comparisons of multiple algorithms over multiple
datasets. It first calculates the ranks of algorithms for each dataset separately, and then compares
the average ranks of algorithms over datasets. The best performance algorithm getting the rank of
1, the second best rank of 2, and so on. The null-hypothesis is that there is no significant difference
in terms of average ranks. The Friedman test is a non-parametric measure which can be computed
as follows:

χ2
F =

12
Nt(t + 1)

t

∑
j=1

R2
j − 3N(t + 1), (7)

where N and t respectively denote the number of datasets and the number of algorithms, and Rj is the
average rank of the j-th algorithm. With the 30 datasets and 6 (t = 6) algorithms, the critical value of
χ2

α for α = 0.05 with (t − 1) degrees of freedom is 11.07. The Friedman statistics χ2
F of experimental

results in Tables A5 and A6 are respectively 36.56 and 22.90, which are larger than χ2
α, 11.07. Hence,

we reject all the null-hypothesis.
Figure 6 presents the results of average ranking in terms of 0–1 loss and RMSE for six algorithms.

The average ranks of different algorithms based on 0–1 loss on all datasets are, respectively, {NB(4.32),
NB-FSS(4.33), K1DB(3.07), TAN(3.83), K2DB(3.53), and AKDB(1.92)}. That is, the ranking of AKDB is
higher than that of other algorithms, followed by TAN, K2DB, K1DB, NB, and NB-FSS. When assessing
performance using RMSE, AKDB still obtains the advantage of ranking with the lowest average rank,
i.e., 2.42.
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Figure 6. The results of ranking in terms of 0–1 loss and RMSE for alternative algorithms.

In order to determine which algorithm has a significant difference to others, we further employ
the Nemenyi test [42]. The comparisons of six algorithms against each other with the Nemenyi test on
0–1 loss and RMSE are shown in Figure 7. Critical difference (CD) is also presented in the figure that is
calculated as follows:

CD = qα

√
t(t + 1)

6N
, (8)

where the critical value qα for α = 0.05 and t = 6 is 2.85. With the 30 (N = 30) datasets and six
algorithms, CD = 2.85×

√
6× (6 + 1)/(6× 30) = 1.377. On the top dotted line, we plot the algorithms

based on their average ranks, which are indicated on the top solid line. On a line, the lower rank is to
the more leftward position and the algorithm on the left side has better performance. The algorithms
are connected by a line if their differences are not significant.
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Figure 7. The results of Nemenyi tests in terms of 0–1 loss and RMSE for alternative algorithms.

As shown in Figure 7a, these algorithms are divided into two groups clearly in terms of 0–1 loss.
One group includes AKDB and TAN, and other algorithms are in another group. AKDB ranks first
although it does not have a significant advantage when compared to TAN. AKDB enjoys a significant
0–1 loss advantage relative to K2DB, K1DB, NB and NB-FSS, proving the effectiveness of the proposed
information-threshold based techniques in our algorithm. As shown in Figure 7b, when RMSE is
compared, AKDB still achieves lower mean ranks than the other algorithms, although the differences
between AKDB, K1DB, K2DB are not significant.

5. Discussion

KDB is a form of restricted BNCs, and the weak direct dependencies and conditional dependencies
may exist in KDB and they may be redundant. To alleviate the potential redundancy problem,
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we develop an extension to KDB, called AKDB, which applies feature selection and conditional
dependence selection to remove redundant features and conditional dependencies. These two
techniques presented in this paper, MI-based feature selection and CMI-based dependence selection,
are based on adaptive thresholding. They are designed to iteratively identify relevant features and
conditional dependencies in certain circumstances, and they combine the characteristics of filter and
wrapper approaches. Both techniques are efficient and complementary. By providing experiments on
30 UCI datasets and comparisons with other state-of-the-art BNCs, we prove that adaptive thresholding
can help select the most relevant features and conditional dependencies with an improvement in
classification performance. On average, 72.4% of the features and 59.6% of conditional dependencies
are selected to build the network structure of AKDB. Overall, AKDB achieves significant advantage
over KDB in terms of 0–1 loss by a 8.54% reduction on average. The statistical significance of the
experiment results is further confirmed by the Friedman test and Nemenyi test.

6. Conclusions

To efficiently identify non-significant direct and conditional dependencies, we investigate two
techniques to extend KDB, MI-based feature selection and CMI-based dependence selection based
on adaptive thresholding. These two techniques combine the characteristics of filter and wrapper
approaches and when applied to KDB, they are severally efficient for filtering out redundancy and
can help improve the classification performance. The extensive experimental results show that the
final classifier, AKDB, significantly outperforms several state-of-the-art BNCs, including NB, TAN
and KDB.
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Appendix A

Table A1. The values of I(Xi; C) for each feature in K2DB on Hypo dataset.

No. MI No. MI No. MI No. MI No. MI

1 0.0000 7 0.0002 13 0.0009 19 0.0020 25 0.0123
2 0.0000 8 0.0004 14 0.0012 20 0.0030 26 0.0337
3 0.0000 9 0.0005 15 0.0017 21 0.0052 27 0.1425
4 0.0000 10 0.0006 16 0.0017 22 0.0062 28 0.1580
5 0.0001 11 0.0007 17 0.0018 23 0.0065 29 0.3528
6 0.0001 12 0.0007 18 0.0019 24 0.0105

Table A2. The values of I(Xi; C) for each feature in K2DB on Waveform dataset.

No. MI No. MI No. MI No. MI No. MI

1 0.0000 6 0.5847 11 0.6348 16 0.6588 21 0.7497
2 0.0000 7 0.6014 12 0.6379 17 0.7023
3 0.4891 8 0.6020 13 0.6439 18 0.7111
4 0.4960 9 0.6295 14 0.6446 19 0.7400
5 0.5801 10 0.6305 15 0.6550 20 0.7424
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Table A3. The results of I(Xi; Xj|C) for each feature pair in K2DB on Hypo dataset.

No. CMI No. CMI No. CMI No. CMI No. CMI

1 0.0000 12 0.0035 23 0.0092 34 0.0355 45 0.2331
2 0.0000 13 0.0044 24 0.0092 35 0.0471 46 0.3031
3 0.0000 14 0.0048 25 0.0098 36 0.0864 47 0.3354
4 0.0000 15 0.0049 26 0.0121 37 0.1153 48 0.4571
5 0.0000 16 0.0058 27 0.0146 38 0.1189 49 0.4782
6 0.0000 17 0.0058 28 0.0154 39 0.1240 50 0.4786
7 0.0018 18 0.0064 29 0.0241 40 0.1313 51 0.4834
8 0.0019 19 0.0073 30 0.0262 41 0.1361 52 0.4852
9 0.0023 20 0.0073 31 0.0279 42 0.1390 53 0.4912
10 0.0024 21 0.0076 32 0.0279 43 0.1855 54 0.5099
11 0.0032 22 0.0090 33 0.0286 44 0.2007 55 0.7263

Table A4. The results of I(Xi; Xj|C) for each feature pair in K2DB on Waveform dataset.

No. CMI No. CMI No. CMI No. CMI No. CMI

1 0.0000 9 0.0029 17 0.1024 25 0.2741 33 0.4917
2 0.0000 10 0.0530 18 0.1408 26 0.3046 34 0.5233
3 0.0000 11 0.0580 19 0.1463 27 0.3077 35 0.5291
4 0.0000 12 0.0750 20 0.1510 28 0.3922 36 0.5318
5 0.0016 13 0.0872 21 0.1548 29 0.4092 37 0.5449
6 0.0016 14 0.0937 22 0.1611 30 0.4115 38 0.5748
7 0.0017 15 0.0969 23 0.1612 31 0.4564 39 0.5847
8 0.0022 16 0.0973 24 0.2475 32 0.4752

Table A5. Experimental results of 0–1 loss.

Dataset NB SNB-FSS TAN K1DB K2DB KDB-FS KDB-DS AKDB

Echocardiogram 0.3359 0.3664 0.3282 0.3053 0.3435 0.3435 0.3206 0.3206 ◦
Lymphography 0.1486 0.1689 0.1757 0.1757 0.2365 0.1757 0.2095 0.1554 ◦
Iris 0.0867 0.0600 0.0800 0.0867 0.0867 0.0667 0.0867 0.0733 ◦
Hepatitis 0.1935 0.1677 0.1677 0.1548 0.1871 0.1806 0.1871 0.1419 ◦
Autos 0.3122 0.3561 0.2146 0.2146 0.2049 0.1951 0.2049 0.1951
Glass-id 0.2617 0.2430 0.2196 0.2243 0.2196 0.2009 0.2196 0.1963 ◦
Heart 0.1778 0.1741 0.1926 0.1963 0.2111 0.1926 0.1926 0.1630 ◦
Primary-tumor 0.5457 0.5398 0.5428 0.5693 0.5723 0.5693 0.5723 0.5428 ◦
Ionosphere 0.1054 0.0826 0.0684 0.0741 0.0741 0.0741 0.0712 0.0712
Musk1 0.1660 0.1450 0.1134 0.1113 0.1155 0.1071 0.1034 0.1029 ◦
Balance-scale 0.2720 0.3648 0.2736 0.2816 0.2784 0.2720 0.2700 0.2800
Soybean 0.0893 0.0952 0.0469 0.0644 0.0556 0.0556 0.0556 0.0527 ◦
Credit-a 0.1406 0.1377 0.1507 0.1551 0.1464 0.1435 0.1464 0.1420
Breast-cancer-w 0.0258 0.0258 0.0415 0.0486 0.0744 0.0601 0.0715 0.0472 ◦
Vehicle 0.3924 0.4054 0.2943 0.3014 0.2943 0.2778 0.2943 0.3014
German 0.2530 0.2660 0.2730 0.2760 0.2890 0.2790 0.2810 0.2590 ◦
Yeast 0.4239 0.4239 0.4171 0.4218 0.4387 0.4387 0.4333 0.4218
Splice-c4.5 0.0444 0.0381 0.0466 0.0482 0.0941 0.0469 0.0910 0.0469 ◦
Dis 0.0159 0.0154 0.0159 0.0146 0.0138 0.0130 0.0138 0.0130 ◦
Hypo 0.0138 0.0244 0.0141 0.0077 0.0114 0.0090 0.0098 0.0077 ◦
Spambase 0.1015 0.0765 0.0669 0.0765 0.0635 0.0635 0.0628 0.0752 •
Phoneme 0.2615 0.2477 0.2733 0.2120 0.1984 0.1984 0.1984 0.1984
Page-blocks 0.0619 0.0442 0.0415 0.0433 0.0391 0.0378 0.0373 0.0391
Optdigits 0.0767 0.0788 0.0407 0.0416 0.0372 0.0352 0.0370 0.0358
Mushrooms 0.0196 0.0148 0.0001 0.0006 0.0000 0.0000 0.0000 0.0000
Magic 0.2239 0.2132 0.1675 0.1742 0.1637 0.1637 0.1636 0.1636
Adult 0.1592 0.1656 0.1380 0.1385 0.1383 0.1338 0.1383 0.1338
Shuttle 0.0039 0.0040 0.0015 0.0015 0.0009 0.0009 0.0009 0.0009
Connect-4 0.2783 0.2999 0.2354 0.2406 0.2283 0.2282 0.2283 0.2283
Waveform 0.0220 0.0273 0.0202 0.0226 0.0256 0.0193 0.0194 0.0196 ◦

◦, • denote significant improvement or degradation of AKDB over K2DB.
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Table A6. Experimental results of RMSE.

Dataset NB SNB-FSS TAN K1DB K2DB AKDB

Echocardiogram 0.4896 0.4823 0.4886 0.4846 0.4889 0.4807
Lymphography 0.3465 0.3505 0.3813 0.3726 0.4362 0.4076
Iris 0.2545 0.2158 0.2441 0.2435 0.2447 0.2224
Hepatitis 0.3901 0.3770 0.3610 0.3559 0.3875 0.3823
Autos 0.5190 0.5330 0.4475 0.4460 0.4399 0.4380
Glass-id 0.4353 0.4325 0.4109 0.4223 0.4205 0.4105
Heart 0.3651 0.3579 0.3771 0.3752 0.3949 0.3773
Primary-tumor 0.7084 0.7159 0.7170 0.7190 0.7262 0.7092
Ionosphere 0.0856 0.0538 0.2615 0.0621 0.0499 0.0561
Musk1 0.3972 0.3839 0.3022 0.3034 0.3058 0.3034
Balance-scale 0.4431 0.5448 0.4344 0.4384 0.4323 0.4605
Soybean 0.2945 0.3845 0.2014 0.2206 0.2063 0.2223
Credit-a 0.3342 0.3179 0.3411 0.3400 0.3525 0.3391
Breast-cancer-w 0.1570 0.1570 0.1928 0.1951 0.2497 0.2199
Vehicle 0.5736 0.5663 0.4593 0.4623 0.4591 0.4419
German 0.4945 0.4212 0.5000 0.4991 0.5053 0.4644
Yeast 0.5987 0.5987 0.5994 0.5997 0.6035 0.6035
Splice-c4.5 0.1883 0.2030 0.1917 0.1944 0.2756 0.1848
Dis 0.1177 0.1104 0.1103 0.1072 0.1024 0.1024
Hypo 0.1105 0.1401 0.1050 0.0881 0.0955 0.0863
Spambase 0.2994 0.3939 0.2403 0.2480 0.2300 0.2300
Phoneme 0.4792 0.4632 0.5048 0.4385 0.4195 0.4195
Page-blocks 0.2331 0.1923 0.1894 0.1940 0.1811 0.1781
Optdigits 0.2637 0.2893 0.1906 0.1937 0.1806 0.1736
Mushrooms 0.1229 0.1083 0.0083 0.0188 0.0001 0.0001
Magic 0.3974 0.3802 0.3461 0.3509 0.3470 0.3470
Adult 0.3409 0.3345 0.3076 0.3071 0.3089 0.3047
Shuttle 0.0561 0.0674 0.0356 0.0367 0.0290 0.0279
Connect-4 0.4787 0.5024 0.4435 0.4480 0.4336 0.4206
Waveform 0.1441 0.1499 0.1164 0.1285 0.1402 0.1253

Table A7. Experimental results of Bias.

Dataset NB SNB-FSS TAN K1DB K2DB AKDB

Splice-c4.5 0.0341 0.0355 0.0444 0.0358 0.0968 0.0353
Dis 0.0160 0.0191 0.0188 0.0174 0.0171 0.0190
Hypo 0.0098 0.0177 0.0101 0.0083 0.0072 0.0077
Spambase 0.0965 0.0735 0.0656 0.0665 0.0504 0.0589
Phoneme 0.2284 0.2004 0.2470 0.1740 0.1599 0.1572
Page-blocks 0.0409 0.0363 0.0331 0.0342 0.028 0.0286
Optdigits 0.0655 0.0685 0.0308 0.0313 0.0285 0.0235
Mushrooms 0.0399 0.0148 0.0002 0.0011 0.0002 0.0000
Magic 0.1987 0.1942 0.1357 0.1451 0.1321 0.1292
Adult 0.1485 0.1880 0.1125 0.1117 0.1135 0.1236
Shuttle 0.0066 0.0036 0.0023 0.0026 0.0028 0.0008
Connect-4 0.2327 0.2959 0.1829 0.1882 0.1788 0.2069
Waveform 0.0314 0.0257 0.0138 0.0154 0.0180 0.0164



Entropy 2019, 21, 665 19 of 21

Table A8. Experimental results of Variance.

Dataset NB SNB-FSS TAN K1DB K2DB AKDB

Splice-c4.5 0.0095 0.0051 0.0296 0.0357 0.0813 0.0572
Dis 0.0091 0.0000 0.0009 0.0021 0.0025 0.0012
Hypo 0.0063 0.0033 0.0078 0.0066 0.0059 0.0069
Spambase 0.0104 0.0070 0.0171 0.0176 0.0238 0.0178
Phoneme 0.1831 0.0783 0.2496 0.1710 0.1490 0.1064
Page-blocks 0.0128 0.0110 0.0142 0.0171 0.0185 0.0161
Optdigits 0.0247 0.0156 0.0280 0.0290 0.0322 0.0227
Mushrooms 0.0081 0.0000 0.0006 0.0013 0.0005 0.0002
Magic 0.0409 0.0284 0.0792 0.0744 0.0818 0.0453
Adult 0.0355 0.0304 0.0640 0.0652 0.0717 0.0196
Shuttle 0.0038 0.0004 0.0008 0.0016 0.0021 0.0004
Connect-4 0.0953 0.0037 0.0883 0.0956 0.1044 0.0294
Waveform 0.0044 0.0009 0.0119 0.0110 0.0102 0.0023
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