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Abstract: In this paper, we study a dual-channel closed-loop supply chain in which a manufacturer
considers the market waste products recovery and remanufacture, and a retailer considers provide
services to customers. We build a Stackelberg game model and a centralized game model in a static
and dynamic state, respectively, and analyze the two dynamic models by mathematical analysis and
explore the stability and entropy of the two models using bifurcation, the basin of attraction, chaotic
attractors, and so on. The influences of service level and profit distribution rate on the system’s profit
are discussed. The theoretical results show that higher price adjustment speed will lead to the system
lose stability with a larger entropy value. In the Stackelberg game model, the stability of the system
increases as the service value and the recovery rate increases; in the centralized model, the stability
of the system decreases with the increase of the service value and increases with the recovery rate
increases. When the Stackelberg game model is in a stable state, the manufacturer’s profit increases
first and then decreases, and the retailer’s profit first decreases and then increases as the service value
of the retailer increases. The research will serve as good guidance for both the manufacturer and
retailer in dual-channel closed-loop supply chains to improve decision making.

Keywords: closed-loop supply chain; recovery rate; service; entropy

1. Introduction

With the continuous deterioration of economic globalization and enterprise competition
environment, and to achieve long-term sustainable development, environmental problems become a
consideration for the development of enterprises [1]. Establishing a reasonable and efficient closed-loop
supply chain to collect and remanufacture waste products plays an important role in improving
the environmental and economic benefits of enterprises [2,3]. Therefore, more end-of-life (EOL)
products are environmentally disposed of by enterprises [4,5]. The remanufacturing of EOL products is
conducive to saving natural resources, energy, and protecting the environment. Manufacturers not only
sell products to customers through traditional and direct channels, but also collect and remanufacture
EOL products through recycling channels to save costs [6], reduce consumption, and protect the
environment. With the development of economic globalization, more and more retailers provide sales
services to consumers, and sales services play an important role in the process of consumption [7,8].
The closed-loop supply chain and channel services have been studied from multiple aspects and
perspectives, while few papers simultaneously considered the closed-loop supply chain and retailer’s
service input in dual-channel supply chains. Therefore, this paper establishes the dual-channel
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closed-loop supply chain based on the product recovery rate of the manufacturer, remanufacturing
cost difference, and the retailer service input, and constructs the centralized and decentralized dynamic
game models by using game theory, system dynamics, and other methods. The optimal price strategy
of the dynamic system and the evolutionary complexity of the dynamic price game model are analyzed
by bifurcation, the basin of attraction, chaotic attractors, the Lyapunov exponent and so on [9,10]. This
paper can provide some references for managers related to recycled products and provided services.

2. Literature Review

Many scholars have studied the closed-loop supply chain from multiple aspects and perspectives.
Ismail and Theodore [11] established a closed-loop supply chain composed of multiple periods
and multiple echelons. This model studies the total cost minimization of supply chain network
under incomplete quality production conditions. Reimann et al. [12] studied the closed-loop supply
chain in which a manufacturer performs process innovation and a manufacturer or retailer performs
remanufacturing and found that decentralized supply chain is more suitable for process innovation. Yi
et al. [13] established a closed-loop supply chain with dual recycling channels. In the positive channel,
the manufacturer produces new products and the retailer recycle old products and remanufacture;
in the reverse channel, the retailer and the third party collector simultaneously collect old products.
They studied the optimal strategy for collection decisions. Zheng et al. [14] investigated a three-stage
closed-loop supply chain consisting of a manufacturer, a distributor, and a retailer, in which the retailer
has fair concern behaviors. They analyzed interactions between participants in both cooperative and
non-cooperative situations. Guo and Ma [15] put forward a closed-loop supply chain in which the
retailer recycle waste products, and discussed the influence of complex system dynamics and system
parameters on the Stackelberg game. Panda et al. [16] studied a closed-loop supply chain, in which
a retailer recycles old products and has a social responsibility; they analyzed the revenue sharing
problem of supply chain members.

Wei et al. [17] studied the optimal decision problem of a closed-loop supply chain and discussed
how the manufacturer and retailer make decisions on wholesale price, retail price, and recycling
rate under the condition of symmetric and asymmetric information. Hasanov et al. [18] studied the
coordination of order quantity and remanufacturing in a four-layer closed-loop supply chain, the
results show that the higher collection rates of waste products are more beneficial to the supply chain.
Xie et al. [19] considered the relationship between recovery rates and studied the contract coordination
problem under centralized decision and decentralized decision in double-channel closed-loop supply
chains, and gave the optimal pricing of the supply chain. Dai et al. [20] analyzed the impact of delay
parameters on the system, such as recovery rate of waste products, direct price, carbon quota subsidy,
and carbon tax. Many scholars have also studied the optimal pricing of closed-loop supply chains under
different scenarios. Wang et al. [21] used the Stackelberg model to study the optimal pricing strategies
of the manufacturer, the retailer, and remanufacturer. Gan et al. [22] constructed a closed-loop supply
chain-pricing model for short-life-cycle products, which is composed of a manufacturer, a retailer, and
a recycler. They found that the acceptance of remanufactured products and direct channel preference
affect supply chain pricing. Hong et al. [23] found that in the closed-loop supply chain, advertising
costs have a great influence on channel members on the recycling decisions, pricing strategies, and
profits of second-hand products. Chen and Bell [24] discussed the influences of recycling channel
cost input and recycling price pricing strategy on the retailer’s pricing and ordering decisions. Under
the centralized and decentralized models, He et al. [25] numerically studied the impact of customers’
intuitive impressions on different collection channels. He [26] considered the closed-loop supply
chain with uncertain supply and demand, and studied the optimal decision of recovery price and
remanufacturing of supply chain members in the centralized and decentralized models.

Many scholars have studied the problem of price decision and service decision under the channel
service provided by retailers and manufacturers, Zhou et al. [27] studied the two-channel supply chain
provided by the retailer and analyzed the impact of free-rider behavior of supply chain members on
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channel pricing, profit, and service strategy under differentiated and undifferentiated schemes. Dan et
al. [28] concluded that the service input of the retailer in the supply chain not only has an impact on
themselves, but also has a great impact on the manufacturer. Li and Li [29] considered a two-channel
supply chain, in which the retailer provides value-added services and has fair behavior concerns, they
studied the impact of the retailers’ behavioral factors on supply chain pricing decisions. Jena and
Sarmah [30] studied the model of two manufacturers providing services to consumers through the
retailer, as well as the price decision and service decision problems of supply chain members. Zhang
et al. [31] studied the optimal decision of the supply chain, in which a manufacturer and a service
provider cooperate, and found that the supply chain can achieve Pareto improvement when relevant
parameters are suitable for some conditions. There are also studies on the impact of service levels on
dynamic systems or consumer channel choices. Dumrongsiria et al. [32] believe that price and service
are the main factors for consumers when choosing a shopping channel. Service level not only influences
consumers’ choice but also influences the optimal pricing of sales channels. Zhang and Wang [33]
constructed a bullwhip effect model and dynamic pricing strategy model of retailers and manufacturers
and analyzed the influence of service levels on the complexity of dynamic systems and bullwhip effect.
There are also studies in different service contexts, under the fact that optimal inventory allocation
has a significant impact on retail profits, Protopappa-Sieke et al. [34] proposed the optimal inventory
allocation strategy for multiple service level contracts. Li and Ma [35] studied the influence of the
manufacturer’s risk attitude on the market strategies of both participants under two market conditions
of service spillover effect and non-service spillover effect. Li and Li [36] considered three strategies of
the no-service, ex-ante, and ex-post service effort strategies, the influence of showrooming effect on
enterprise pricing and service efforts in dual-channel supply chains are studied. Fan et al. [37] studied
the pricing and service cooperation decision-making of supply chain members under BOPS mode. In
the master-slave game, Sadjadi et al. [38] studied two manufacturers and a retailer who simultaneously
played games under service, price discount, and contract.

This paper is organized as follows: The Stackelberg game model is developed in Section 2.
Section 3 analyses the influence of parameters on system behavior. Section 4 presents and analyses the
centralized game model. The influence of parameters on system performance was studied in Section 5.
The conclusions are given in Section 6.

3. The Stackelberg Game Model

3.1. Model Description

The dual-channel closed-loop supply chain system is shown in Figure 1, in which the manufacturer
sells products in direct selling channel at the direct selling price p1 and directly recycles waste product
for remanufacturing in the recycling channel, the retailer buys products from the manufacturer at the
wholesale price w and sells them to customers at the retail price p2 in the traditional channel. In a
closed-loop supply chain with two channels, the manufacturer and retailer make price decisions with
the goal of maximizing profits. The manufacturer takes waste recovery into account, and the retailer
provides services to consumers (see Figure 1).

The model developed in this paper is based on the following assumptions:

(1) The manufacturer recycles and remanufactures old products.
(2) The unit cost of the new product is greater than that off a remanufactured product.
(3) Recycled remanufactured products and new products have the same selling price.
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The symbols used in this paper and their meanings are listed in Table 1.

Table 1. Symbols used in this paper and their meanings.

The Potential Market Size

a The basic demand of market

θ The customer’s loyalty to the traditional retailer channel, θ ∈ (0, 1)

b1 The price elasticity coefficient of the direct channel

b2 The price elasticity coefficient of the traditional channel

k The cross-price sensitivity between two channels (k < b1, k < b2)

v Service value

η The service cost parameters of the traditional channel

τm The recovery rate of waste products

ξ The recovery cost coefficient of the manufacturer

c1 The unit production cost of a new product

c2 The unit production cost of a remanufactured product (c1 > c2)

w The wholesale price for the retailer

p1 The direct selling price of the manufacturer

p2 The retail price of the retailer

3.2. Model Construction

The demand functions of the direct channel and traditional channel are introduced as follows:{
Q1 = θa− b1p1 + k(p2 − v)
Q2 = (1− θ)a− b2(p2 − ν) + kp1

(1)

Letting ηv2

2 is the unit service cost of the retailer and ξτ2
m

2 is the recovery cost of the manufacturer.
The cost difference between the new product and the remanufactured product is ∆ = c1 − c2. The
production cost of the unit product is composed of the proportion of recovery rate as follows:

c = τmc2 + (1− τm)c1 = c1 − τm∆

The profit functions of the manufacturer and retailer are as follows: πm = (w− c1 + τm∆)Q2 + (p1 − c1 + τm∆)Q1 −
ξτ2

m
2

πr =
(
p2 −w− ηv2

2

)
Q2

(2)
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The total profit of the two channels is:

π = πm + πr =

(
p2 −

ηv2

2
− c1 + τm∆

)
Q2 + (p1 − c1 + τm∆)Q1 −

ξτ2
m

2
(3)

The manufacturer and the retailer play the master-slave game, namely, the manufacturer makes the
price decision first, and the retailer makes its own price decision according to the manufacturer’s decision.
We first obtain the optimal price decision (p2) of the retailer, then get w and p1 of the manufacturer.

Let ∂πr
∂p2

= 0, we can obtain:

p2 =
k

2b2
p1 +

w
2
+ A1 (4)

where A1 =
(1−θ)a

2b2
+ v

2 +
ηv2

4 ;
Then taking the first-order partial derivatives of the manufacturer’s profit function πm with

respect to w and p1:  ∂πm
∂w = kp1 − b2w− b2A1 + A2
∂πm
∂p1

=
(

k2

b2
− 2b1

)
p1 + kw + kA1 + A3

(5)

where A2 = (1− θ)a + b2v + (b2−k)(c1−τm∆)
2 ;

A3 = θa +
(
b1 −

k2

2b2
−

k
2

)
(c1 − τm∆) − kv

Then, the Hesse matrix of the manufacturer’s profit is as follows:

HD =

 −b2 k
k k2

b2
− 2b1


Due to −b2 < 0, b1 > k, b2 > k; then∣∣∣∣∣∣ −b2 k

k k2

b2
− 2b1

∣∣∣∣∣∣ = b1b2 − k2 > 0

The Hesse matrix is negative definite, so the manufacturer’s profit function is concave and only
has the maximum solution, by solving ∂πm

∂w = 0, ∂πm
∂p1

= 0, we can get the optimal solution of the
manufacturer:

w∗ =
b1(1− θ)a + kθa

2(b1b2 − k2)
+

(c1 − τm∆)
2

+
v
2
−
ηv2

4
(6)

p1
∗ =

k(1− θ)a + b2θa
2(b1b2 − k2)

+
(c1 − τm∆)

2
(7)

Substituting the Equations (6) and (7) into Equation (4), we can obtain:

p2
∗ =

b1(1− θ)a + kθa
2(b1b2 − k2)

+
(1− θ)a + (b2 + k)(c1 − τm∆)

4b2
+

3v
4

+
ηv2

8
(8)

Substituting the Equations (6)–(8) into Equations (2) and (3):


π∗m = (w∗ − c1 + τm∆)[(1− θ)a− b2(p2

∗
− ν) + kp1

∗] + (p1
∗
− c1 + τm∆)[θa− b1p1

∗ + k(p2
∗
− v)] − ξτ2

m
2

π∗r =
(
p2
∗
−w∗ − ηv2

2

)
[(1− θ)a− b2(p2

∗
− ν) + kp1

∗]

π∗ =
(
p2
∗
−
ηv2

2 − c1 + τm∆
)
[(1− θ)a− b2(p2

∗
− ν) + kp1

∗] + (p1
∗
− c1 + τm∆)[θa− b1p1

∗ + k(p2
∗
− v)] − ξτ2

m
2
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As a matter of fact, when players making price decisions, they can’t get the complete information
of the whole market and adjust their price strategy with bounded rationality. Participants have always
wanted to make more profits by adopting various decisions through active management behavior.
Therefore, we establish a dynamic price model of the dual-channel closed-loop supply chain. The
manufacturer decides the wholesale price based on the limited rationality and decides the direct selling
price based on the adaptive expectation. The manufacturer makes their next period price decision
based on the marginal utility of the current period. When the current marginal utility is positive, the
price will be raised in the next period; otherwise, the price will be reduced in the next period. The
long-term price forecasting system is as follows:{

w(t + 1) = w(t) + α1w(t) ∂πm
∂w

p1(t + 1) = α2p1(t) + (1− α2)p∗1

We obtain:
w(t + 1) = w(t) + α1w(t) [kp1 − b2w +

(1−θ)a
2 + b2

(
v
2 −

ηv2

4

)
+

(b2−k)(c1−τm∆)
2 ]

p1(t + 1) = α2p1(t) + (1− α2) (
k(1−θ)a+b2θa

2(b1b2−k2)
+

(c1−τm∆)
2 )

p2(t) = 1
2 w(t) + k

2b2
p1(t) +

2(1−θ)a+2vb2+b2ηv2

4b2

(9)

where α1 is the adjustment parameters of finite rationality and α2 is the adaptive adjustment parameters
(α1 > 0, 0 < α2 < 1).

In the System (9), the manufacturer adjusts the decision variables w(t) and p1(t) by adjusting
α1,α2, the retailer’s decision variables p2(t) are directly related to w(t) and p1(t).

3.3. Model Analysis

We can obtain two equilibrium solutions by making w(t + 1) = w(t), p1(t + 1) = α2p1(t) +
(1− α2)p∗1:

E0 =

(
0,

k(1− θ)a + b2θa + 2b2kv
2(b1b2 − k2)

+
(c1 − τm∆)

2

)
;

E1 =
(

b1(1−θ)a+kθa+(b1b2+k2)v
2(b1b2−k2)

+
(c1−τm∆)

2 −
ηv2

2 , k(1−θ)a+b2θa+2b2kv
2(b1b2−k2)

+
(c1−τm∆)

2

)
= ( p1

∗, w∗) ;

Thus, the retail price is:

pE0
2 =

k2(1− θ)a + kb2θa + 2b2k2v
4b2(b1b2 − k2)

+
(1− θ)a

2b2
+

k(c1 − τm∆)
4b2

+
v
2
+
ηv2

4

pE1
2 =

b1(1− θ)a + kθa
2(b1b2 − k2)

+

(
3b1b2 + k2

)
v

4(b1b2 − k2)
+

(1− θ)a + (b2 + k)(c1 − τm∆)
4b2

The Jacobian matrix of System (9) is given by:

J =

 1 + α1(kp1 − 2b2w +
2(1−θ)a+b2(2v−ηv2)+2(b2−k)(c1−τm∆)

4 ) α1kw
0 α2

 (10)

The stability of equilibrium points is determined by the eigenvalues of the Jacobian matrix
evaluated at the corresponding equilibrium points. We substitute E0 and E1 into the Jacobian matrix
(10), we can get the following proposition.

Proposition: E0 is boundary equilibrium points, E1 is the Nash equilibrium solution.
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Proof: For equilibrium point E0, the Jacobian matrix of System (9) is equal to:

J(E0) =

 α1[k(
k(1−θ)a+b2θa+2b2kv

2(b1b2−k2)
+

(c1−τm∆)
2 ) +

2(1−θ)a+b2(2v−ηv2)+2(b2−k)(c1−τm∆)
4 ] + 1 0

0 α2

;

The eigenvalues at E0 are as follows:

λ1 = 1 + α1[k(
k(1−θ)a+b2θa+2b2kv

2(b1b2−k2)
+

(c1−τm∆)
2 ) +

2(1−θ)a+b2(2v−ηv2)+2(b2−k)(c1−τm∆)
4 ];

λ2 = α2.
We can see that λ1 > 1,λ2 < 1 which indicates E0 is an unstable point. More precisely, E0 is a

saddle point for |λ2| < 1, which is the boundary equilibrium point. We can prove E1 is the Nash
equilibrium solution of System (9).

Next, we analyze the stability of the equilibrium point E1.

J(E1) =

(
1 + α1B1 α1kw∗

0 α2

)

where B1 = kp1
∗
− 2b2w∗ +

2(1−θ)a+b2(2v−ηv2)+2(b2−k)(c1−τm∆)
4 .

The corresponding characteristic polynomial of the System (9) in the Nash equilibrium solution
can be written as follows:

f (λ) = λ2 + U0λ+ U1

where U0 = 1 + α1B1 + α2; U1 = α2(1 + α1B1); U0 and U1 represent the trace and determinant of the
Jacobian matrix J(E1), respectively.

According to the Jury’s stability condition of the equilibrium point, the necessary and sufficient
conditions for obtaining the local stability of the Nash equilibrium point E1 are:

(i) : 1 + U0 + U1 > 0
(ii) : 1−U0 + U1 > 0
(iii) : 1− |U1| > 0

(11)

Solving the inequality Equation (11), we can obtain the stable region of the System (9). In the
stable region, the System (9) is locally stable with the initial values of prices within a certain range.
Because these limitations are very complex, solving the inequality Equation (11) is very complicated.
Next, we give the stable region of the System (9) through numerical simulation.

4. Numerical Simulations

In this section, numerical simulations are used to show the dynamic behaviors and features of the
System (9). We choose some parameters values as follows: a = 200, θ = 0.4, b1 = 4, b2 = 5, k = 1, η =
0.8, v = 5, c1 = 15, c2 = 4, ∆ = c1 − c2 = 11, τm = 0.2, ξ = 10.

4.1. The Influence of v and τm on the Stability Region of the System (9)

When the initial values are in the stability region of the Nash equilibrium, the prices of players
will be fixed at the Nash equilibrium point after a series of iterations.

Figure 2a shows the stability regions of the System (9) with = 5, τm = 0.2, and the price adjustment
parameter α1 ∈ (0, 0.0215).
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Figure 2. The stability regions with 𝑣 and 𝜏௠ that have different values. (a) The stability regions 
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different values of 𝜏௠. 

Figure 2. The stability regions with v and τm that have different values. (a) The stability regions with
v = 5, τm = 0.2; (b) the stability regions with different values of v; (c) the stability regions with different
values of τm.

In Figure 2b, when v = 5, 6, 7, the stability regions of the System (9) are indicated by yellow,
orange, and red, respectively. We can see that the stability region expands with v increases, the range
of α1 increases and the range of α2 unchanged. When v = 5, the range of price adjustment parameter
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is 0 < α1 < 0.0215; when v = 6, the range of price adjustment parameters is 0 < α1 < 0.0238; when
v = 7, the range of price adjustment parameter is 0 < α1 < 0.0276.

Similarly, Figure 2c shows that the stability regions of the System (9) expand with τm increases,
the stability regions are indicated by lake blue, sky blue, and dark blue, respectively, namely, the range
of α1 increases and the range of α2 unchanged. When τm = 0.2, the range of the price adjustment
parameter is 0 < α1 < 0.0215; the range of price adjustment parameter is 0 < α1 < 0.0229 when
τm = 0.4; when τm = 0.6, the range of price adjustment parameter is 0 < α1 < 0.0243.

From the above analysis, as the manufacturer recovery rate τm and retailer service value v increases,
the System is more stable and the manufacturer and retailer have more space for price decisions, which
also means more competition in the market.

The parameter basin is a kind of two-dimensional bifurcation diagram, 2D bifurcation diagram of
the System (9) in the (α1, α2) plane is displayed in Figure 3, which shows the route of the System (9)
to chaos.
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Figure 3a,b shows the 2D bifurcation diagrams with the change of τm. Different colors represent
different periods, the stable region (red), 2-period (blue), 3-period (orange), 4-period (yellow), 5-period
(green), 6-period (light blue), 7-period (purple), 8-period (coral), and the chaos (white). We can see the
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stable range of α1 changes from 0.0225 to 0.0271. By comparing the size of the red region, the stability
region of the System (9) expands when the manufacturer recovery rate τm goes from 0.5 to 1.

Figure 3c,d shows the 2D bifurcation diagrams with v = 6 and v = 7; the stable region (green),
2-period (red), 3-period (blue), 4-period (orange), 5-period (yellow), 6-period (light blue), 7-period
(purple), 8-period (coral), and chaos (white). In Figure 3c,d, the stable range of α1 changes from 0.0225
to 0.0267 and α2 is unchanged when v goes from 6 to 7.

From Figure 3, we can conclude that increasing the retailer’s service value and manufacturer’s
recycle rate expands the stability region of the Nash equilibrium point and make the market more
competitive. Therefore, managers increase the appropriate product recovery rate and service is
conducive to market stability.

4.2. The Influence of the Price Adjustment Speed on the System Behavior

Figure 4a shows the bifurcation diagram of the direct selling price, retail price, and wholesale
price. We can see that the direct selling price p1 is not affected by the change of α1. When α2 is fixed
and the price adjustment parameter α1 ∈ (0, 0.0215), the retail price p2 and wholesale price w are fixed
values. In the equilibrium state, the direct selling price p1 = 20.0842, the retail price p2 = 30.8268 and
wholesale price w = 18.6368; as α1 increases, the System (9) loses its stability and appears 2-period
cycle bifurcation, then period-doubling bifurcation when α1 ∈ (0.0215, 0.0276), and falls into chaos
finally when α1 ∈ (0.0276, 0.0325).

As can be seen from Figure 4b, when α1 ∈ (0.011, 0.021), the entropy of the System (9) is equal to
0. At this time, the Nash equilibrium point is stable, the wholesale price w and retail price p2 are fixed
values, and the System (9) is in a stable state. However, α1 increases when α1 ∈ (0.022, 0.0276), the
entropy of the System (9), increases. The System (9) is in a doubly periodic bifurcation state, and the
wholesale price w and retail price p2 are unstable and appear multiple values. When α1 > 0.027, the
entropy of the System (9) continues to increase, finally falls into chaos.

Figure 4c shows the corresponding largest Lyapunov exponent (LLE) with α1 varying from 0 to
0.035, we can see that the LLEs is negative when α1 ∈ (0, 0.0276), as α1 increases, the system enters
bifurcation and period-doubling bifurcation states when the α1 = 0.02145 and 0.0276, it also means the
LLEs equal to 0. When the LLEs are larger than 0, it indicates that the System (9) appears to be in a
chaotic state.
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(a) Bifurcation diagram of prices in terms of α1; (b) the entropy diagram; (c) the corresponding largest
Lyapunov exponents (LLEs) for α1 varying from 0 to 0.03.

In Figure 5a, we can see that the trend of profit bifurcation graph of the manufacturer and retailer
is similar to that of the price changes with the change of α1. The profits experience a period of stability
when α1 ∈ (0, 0.0215) and starts to double cycle bifurcation when α1 ∈ (0.0215, 0.0276), finally enters
a state of chaos.
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Similarly, the total profit bifurcation diagram of the manufacturer and retailer is shown in Figure 5b,
when α1 ∈ (0, 0.0215), the total profit remains in a stable state. When α1 ∈ (0.0215, 0.0276), the total
profit starts to double cycle bifurcation and enters a state of chaos, finally.

From these figures, we can get that the larger price adjustment parameter will lead to the market
into a state of chaos, while the smaller appropriate price adjustment is beneficial to the manufacturer
and retailer’s profits to maintain the stability of the market.

Figure 6a shows wave shape chaos diagrams of the System (9) for α1 = 0.01 and α2 varying
from 0 to 1.2, we can see that the direct price p1, retail price p2 and wholesale price w remains stable
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state when the price adjustment parameter α2 ∈ (0, 1.002). When α2 > 1.002, the manufacturer and
retailer’s prices will move from a stable equilibrium to wave shape chaos.
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Figure 6b shows the LLEs with α2 varying from 0 to 1.2, the LLE is negative when α2 ∈ (0, 1.002),
it means that the System (9) is in a stable state. With the α2 increases, it indicates that the System (9)
appears chaotic when the LLEs > 0.

Figure 6c shows in an equilibrium state, the profits of the manufacturer and retailer are πm =

249.3879, πr = 23.9805, respectively. The profits of the manufacturer and retailer appear wave shape
chaos as α2 increases.

The total profit of the manufacturer and retailer is 273.368 when α2 ∈ (0, 1.002), as shown in
Figure 6d. The total profit of the manufacturer and retailer falls into wave shape chaos when α2 > 1.002.

The above analysis shows that the manufacturer and retailer can obtain stable profits during the
initial stabilization phase but as the price adjustment parameter α2 increases, the market will enter
a chaotic state, and the manufacturer and retailer cannot plan for the long-term and achieve stable
profits. Therefore, larger price adjustment parameters can make the system lose stability, a moderately
small price adjustment speed is beneficial to the manufacturer and retailer.
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4.3. The Influence of v, τm on the System Behavior

In Figure 7, the direct selling price p1 is constant with v increase. The wholesale price w increases
first and then decreases as the service value v increases and the retail prices p2 increases with v increases.
When v = 4, the direct selling price p1 is equal to the wholesale price w, and p2 is greater than them.
Therefore, increasing service value has nothing to do with the direct selling price, but can lead to the
higher retail price and lower wholesale price.
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5.1. Model Construction 

In the centralized decision model, both the manufacturer and the retailer aim to maximize profit, 
and they are cooperators of price decision. In this model, the retailer adjusts the retail price based on 
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Figure 8 shows the change in profits with v changing when α1 = 0.003, α2 = 0.01. In Figure 8,
we can see that in the equilibrium state, when v = 0.46, the manufacturer and retailer’s profit is
equal. Then, the manufacturer’s profit πm increases first and then decreases as the service value v
increases, and the retailer’s profit πr first decreases until negative and then increases; the profit of the
manufacturer is greater than that of the retailer when v increases.
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Thus, a hint to managers: increasing service input from retailers is beneficial to manufacturers.
The retailer provides the appropriate service input to facilitate market competition.
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5. The Centralized Game Model

5.1. Model Construction

In the centralized decision model, both the manufacturer and the retailer aim to maximize profit,
and they are cooperators of price decision. In this model, the retailer adjusts the retail price based on
bounded rationality, and the manufacturer adjusts the direct selling price according to adaptability.

We take the first-order partial derivatives of p1 and p2 in π as follows:

∂π
∂p1

= θa− 2b1p1 + 2kp2 + (b1 − k)(c1 − τm∆) − kv− k
ηv2

2

∂π
∂p2

= (1− θ)a + 2kp1 − 2b2p2 + (b2 − k)(c1 − τm∆) + b2v + b2
ηv2

2

Then, the Hesse matrix of the centralized decision model is as follows:

Hc =

[
−2b1 2k
2k −2b2

]
Due to −2b1 < 0,−2b2 < 0, so ∣∣∣∣∣∣ −2b1 2k

2k −2b2

∣∣∣∣∣∣ = 4b1b2 − 4k2 > 0

The Hesse matrix is negative definite, so the total profit function is concave and only have the
maximum solution, by solving ∂π

∂p1
= 0, ∂π

∂p2
= 0, we can get the optimal solution and the optimal total

profit:

p∗∗1 =
(1− θ)ak + θab2

2(b1b2 − 2k2)
+

(c1 − τm∆)
2

(12)

p∗∗2 =
(1− θ)ab1 + θak

2(b1b2 − 2k2)
+

(c1 − τm∆)
2

+
v
2
+
ηv2

4
(13)

π∗∗ =
(
p∗∗2 −

ηv2

2 − c1 + τm∆
)[
(1− θ)a− b2p∗∗2 + b2v + kp∗∗1

]
+

(
p∗∗1 − c1 + τm∆

)
(θa

−b1p∗∗1 + kp∗∗2 − kv) − ξτ2
m

2

In the centralized decision model, the manufacturer and retailer make their next period price
decision based on the marginal utility of the current period. When the current marginal utility is
positive, the price will be raised in the next period; otherwise, the price will be reduced in the next
period. The long-term price forecasting system is as follows: p1(t + 1) = µ1p1(t) + (1− µ1)(

(1−θ)ak+θab2
2(b1b2−2k2)

+
(c1−τm∆)

2 )

p2(t + 1) = p2(t) + µ2p2(t)[(1− θ)a + 2kp1 − 2b2p2 + (b2 − k)(c1 − τm∆) + b2v + b2
ηv2

2 ]
(14)

where µ1 (0 < µ1 < 1) is the adaptive adjustment parameter and µ2 > 0 is the adjustment parameters
of finite rationality.

5.2. Model Analysis

We can obtain two equilibrium solutions by making p1(t + 1) = µ1p1(t) + (1− µ1))p∗∗1 , p2(t + 1) =
p2(t) + µ2p2(t) ∂π∂p2

:

E0 = (
(1−θ)ak+θab2

2(b1b2−2k2)
+

(c1−τm∆)
2 , 0 );
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E1 = ( (1−θ)ak+θab2
2(b1b2−2k2)

+
(c1−τm∆)

2 , (1−θ)ab1+θak
2(b1b2−2k2)

+
(c1−τm∆)

2 + v
2 +

ηv2

4 ).

The Jacobian matrix of the System (14) is given by:

J =
(

µ1 0
2kµ2p2 1 + µ2[(1− θ)a + 2kp1 − 4b2p2 + M]

)

where M = (b2 − k)(c1 − τm∆) + b2v + b2
ηv2

2 .
The stability of equilibrium points is determined by the eigenvalues of the Jacobian matrix

evaluated at the corresponding equilibrium points. If we substitute E0 and E1 into the Jacobian matrix,
we can get the following proposition.

Proposition: E0 is boundary equilibrium points, E1 is the Nash equilibrium solution.

Proof: For equilibrium point E0, the Jacobian matrix of System (14) is equal to:

J(E0) =

(
µ1 0
0 Y

)

where Y = 1 + µ2[(1− θ)a + 2kp∗∗1 + (b2 − k)(c1 − τm∆) + b2v + b2
ηv2

2 ]

Its eigenvalues at E0 are as follows:
λ1 = µ1;

λ2 = 1 + µ2[(1− θ)a + 2kp∗∗1 + (b2 − k)(c1 − τm∆) + b2v + b2
ηv2

2
]

We can see that λ1< 1, λ2 >1 which indicates E0 is an unstable point. More precisely, E0 is the
boundary equilibrium point. We can prove E1 is the Nash equilibrium solution of the System (14).

Next, we analyze the stability of the equilibrium point E1:

J(E1) =

(
µ1 0

2kµ2p∗∗2 1 + µ2B2

)

where B2 = (1− θ)a + 2kp∗∗1 − 4b2p∗∗2 + (b2 − k)(c1 − τm∆) + b2v + b2
ηv2

2 .
We consider the stability of the Nash equilibrium point, the corresponding characteristic

polynomial of System (14) can be written as follows:

f (λ) = λ2 + U2λ+ U3

where U2 = 1 + µ2B2 + µ1;
U3 = µ1(1 + µ2B2);
U2 and U3 represent the trace and determinant of the Jacobian matrix J(E1), respectively.
According to the Judging condition of the Jury’s equilibrium point stability, the necessary and

sufficient conditions for obtaining the local stability of the Nash equilibrium point E1 are:
(i) : 1 + U2 + U3 > 0
(ii) : 1−U2 + U3 > 0
(iii) : 1− |U3| > 0

(15)

Solving the inequality Equation (15), we can obtain the stable region of the System (14). In the
stable region, the System (14) is locally stable with the initial values of prices within a certain range.
Because these limitations are very complex, solving the inequality Equation (15) is very complicated.
Next, we give the stable region of System (14) through numerical simulation.
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6. Numerical Simulations

In this section, we chose the same parameters as in the previous section and obtained p1 =

20.0842, p2 = 28.6368.

6.1. The Influence of v and τm on the Stability Region

Figure 9a shows the stability region of the System (14) with v = 5, τm = 0.2. At this time, the stable
range of the price adjustment parameter is that µ1 ∈ (0, 1.002) and µ2 ∈ (0, 0.00699), respectively.

In Figure 9b, when v = 3, 5 and 7, the stability regions of the System (14) are represented by three
different colors: pink, purple, and dark purple. We can see that when v = 3, the stable range of µ2 is in
[0, 0.0081] and the one of µ1 unchanged; when v = 7, the stable range of µ2 is in [0, 0.0058] and the
one of µ1 unchanged. It means that as the service value v increases, the stable range of µ2 decreases,
the stable range of µ1 unchanged.

In Figure 9c, when τm = 0.2, 0.5, and 0.9, the stability regions of the System (14) are represented
by three different colors: coral, red, and wine. When τm = 0.5, the stable range of µ2 is in [0, 0.0074]
and the one of µ1 unchanged; when τm = 0.9, the stable range of µ2 is in [0, 0.0081] and the one of µ1

unchanged. It means the price adjustment parameters µ2 increases as the recovery rate τm increases.
According to the above analysis, if the manufacturer increases the recovery rate and the retailer

reduces the service level, the stability region of the System (14) will be enlarged, which will make the
market competition more intense.

Figure 10 is the 2D bifurcation diagram in planes of µ1 and µ2 with v = 3, 5, and 7. Different
colors represent different periods, the stable region (coral), period-2 (red), period-3 (green), period-4
(orange), period-5 (yellow), period-6 (blue), period-7 (purple), period-8 (red wine), and chaos (white).
By comparing the size of the stability region (coral) in Figure 10 when v = 3, the range of the coral
region µ2 ∈ (0, 0.0072), when v = 5, the range of the coral region µ2 ∈ (0, 0.0063) and when v = 7, the
range of the coral region µ2 ∈ (0, 0.0058). We can obviously see that higher service values will shrink
the stability region of the System (14).

Figure 11a–c is the 2D bifurcation diagram in planes of µ1 and µ2 with τm = 0.5, 0.7, and 0.9.
Different colors represent different periods, the stable region (blue), period-2 (coral), period-3 (yellow),
period-4 (orange), period-5 (light blue), period-6 (green), period-7 (purple), period-8 (red wine), and
chaos (white). By comparing the size of the stability (blue) region in Figure 11a–c, when τm = 0.5,
the range of the blue region is 0 < µ2 < 0.0068. The range of the blue region is 0 < µ2 < 0.0074 when
τm = 0.7 and the range of the blue region is 0 < µ2 < 0.0081 when τm = 1. We can see that the stability
region of the System (14) will be expanded with τm increasing.

Through the above analysis, it can be obtained that appropriate higher the manufacturer’s recovery
rate and smaller the retailer’s service value can expand the stable region of the System (14), which
makes the market competition more intense.
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(c) v = 7.
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6.2. The Influence of the Price Adjustment Speed on the Behavior of the System (14) 

In Figure 12a, we can see that when 0 < 𝜇ଵ < 1.002, 𝑝ଵ and 𝑝ଶ remains in a stable state. In the 
equilibrium state, 𝑝ଵ = 20.0842 and 𝑝ଶ = 28.6368. When 𝜇ଵ > 1.002, the 𝑝ଵ and 𝑝ଶ move from a 
stable equilibrium to wave shape chaos. 

Figure 12b shows the LLEs with 𝜇ଵ varying from 0 to 1.2, the LLEs is negative when 0 < 𝜇ଵ <1.002; as 𝜇ଵ  increases, the LLEs is greater than 0, which indicates that the System (14) appears 
chaotic.  

Similarly, in Figure 12c, the total profit of the supply chain system remains in a stable state when 0 < 𝜇ଵ < 1.002. In the equilibrium state, the total profit 𝜋 = 290.3489. When 𝜇ଵ > 1.002, the System 
(14) appears in a wave shape chaos.  
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Figure 11. 2D parameter bifurcation of recovery rate in the (µ1, µ2) plane. (a) τm = 0.5; (b) τm = 0.7;
(c) τm = 1.

6.2. The Influence of the Price Adjustment Speed on the Behavior of the System (14)

In Figure 12a, we can see that when 0 < µ1 < 1.002, p1 and p2 remains in a stable state. In the
equilibrium state, p1 = 20.0842 and p2 = 28.6368. When µ1 > 1.002, the p1 and p2 move from a stable
equilibrium to wave shape chaos.
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remains a stable state. As 𝜇ଶ increases, 𝑝ଶ loses stability and appears as a 2-period cycle bifurcation, 
then period-doubling bifurcation and then finally enters chaos.  

Figure 13b shows the corresponding LLEs for   𝜇ଶ varying from 0 to 0.012, we can see that the 
LLEs is negative when 𝜇ଶ ∈ (0, 0.009). The System (14) appears bifurcation when 𝜇ଶ = 0.00702 and 𝜇ଶ = 0.009, respectively. When the LLEs  > 0, it indicates the emergence of chaos. 

Figure 13c is the bifurcation diagram of the total profit when   𝜇ଵ = 0.01 and 𝜇ଶ ∈ (0, 0.012). 
Similarly, when  0 <  𝜇ଶ < 0.00702, the total profit remains stability state. As 𝜇ଶ increases, the total 
profit appears as a 2-period cycle bifurcation, then period-doubling bifurcation and then finally 
enters chaos. 

Figure 12. Wave shape chaos diagrams and the corresponding largest Lyapunov exponent of the
System (14). (a) wave shape chaos diagram of prices in terms of µ1; (b) the corresponding largest
Lyapunov exponent for µ1 varying from 0 to 1.2; (c) wave shape chaos diagram of the total profits in
terms of µ1.

Figure 12b shows the LLEs with µ1 varying from 0 to 1.2, the LLEs is negative when 0 < µ1 < 1.002;
as µ1 increases, the LLEs is greater than 0, which indicates that the System (14) appears chaotic.
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Similarly, in Figure 12c, the total profit of the supply chain system remains in a stable state when
0 < µ1 < 1.002. In the equilibrium state, the total profit π = 290.3489. When µ1 > 1.002, the System (14)
appears in a wave shape chaos.

In Figure 13a, the p1 is a fixed value with the change of µ2. When µ2 ∈ (0, 0.00702), p2 remains
a stable state. As µ2 increases, p2 loses stability and appears as a 2-period cycle bifurcation, then
period-doubling bifurcation and then finally enters chaos.Entropy 2019, 21, 659 22 of 26 
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Figure 13. Bifurcation diagrams and the corresponding LLEs of the dynamic System (10). (a) 
Bifurcation diagram of prices in terms of   𝜇ଶ; (b) the corresponding largest Lyapunov exponent for   𝜇ଶ varying from 0 to 0.012; (c) bifurcation diagram of the total profit in terms of 𝜇ଶ. 

Therefore, the manufacturer and retailer can obtain stable profits under the appropriate price 
adjustment speed, as the price adjustment parameter increases, the market will enter a chaotic state. 

Figure 13. Bifurcation diagrams and the corresponding LLEs of the dynamic System (10). (a) Bifurcation
diagram of prices in terms of µ2; (b) the corresponding largest Lyapunov exponent for µ2 varying from
0 to 0.012; (c) bifurcation diagram of the total profit in terms of µ2.
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Figure 13b shows the corresponding LLEs for µ2 varying from 0 to 0.012, we can see that the
LLEs is negative when µ2 ∈ (0, 0.009). The System (14) appears bifurcation when µ2 = 0.00702 and
µ2 = 0.009, respectively. When the LLEs > 0, it indicates the emergence of chaos.

Figure 13c is the bifurcation diagram of the total profit when µ1 = 0.01 and µ2 ∈ (0, 0.012).
Similarly, when 0 < µ2 < 0.00702, the total profit remains stability state. As µ2 increases, the total profit
appears as a 2-period cycle bifurcation, then period-doubling bifurcation and then finally enters chaos.

Therefore, the manufacturer and retailer can obtain stable profits under the appropriate price
adjustment speed, as the price adjustment parameter increases, the market will enter a chaotic state.
After that, the retail prices of the retailer will fluctuate drastically. It will affect the manufacturer and
retailer to make long-term plans and their own interests. So, smaller prices adjustment can benefit
the market.

6.3. The Influence of v and τm on the System Behavior

In Figure 14a, as the service value v increases, p1 remains unchanged; p2 gradually increases as v
increases. Therefore, the service value increase can result in a higher retail price for the retailer and has
no effect on the direct price.

Figure 14b shows the change of the total profit in an equilibrium state with µ1 = 0.001,µ2 = 0.003.
As v increases, the total profit increases first and then decreases. When v = 1.243, the total profit
increased to the maximum.
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Figure 14. The Influence of  𝑣 𝑎𝑛𝑑 𝜏௠ on the System Behavior. (a) The change of prices with 𝑣; (b) 
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7. Conclusions 

In this paper, we studied a dual-channel closed-loop supply chain in which a manufacturer 
considers waste product recovery and remanufacture, whereas a retailer considers the provision of 
services to customers. We build a Stackelberg game model and a centralized game model, study not 
only the static pricing strategy but also evolution characteristics of dynamic pricing of the two 
models. The profits of the manufacturer and retailer are described when parameters change. The 
following conclusions can be obtained. 

(1) The stability region of the system expands in the Stackelberg game model, while shrinks in the 
centralized model as the retailer’s service value increases; the stability region of the system 
expands as the recovery rate of used products increases in the Stackelberg game model and the 
centralized game model. Therefore, the increase of product recovery rate by managers is more 
conducive to the stability of the system and the market competition. 

(2) The system stability is significantly impacted by the price adjustment parameters; with large 
price adjustment parameter values, the system will bifurcate or even fall into chaos with a larger 
entropy value. Managers should adopt a relatively small rate of price adjustment to maintain 
the stability of the market. 

(3) When the Stackelberg game model is in a stable state, the manufacturer’s profit increases first 
and then decreases, and the retailer’s profit first decreases until negative and then increases as 
the service value of the retailer increases. The total profit in the Stackelberg model is less than 
that in the centralized decision model. So the cooperation of the manufacturer and retailer is 
more conducive to maximizing system profit under the centralized decision. 

Nonetheless, this paper has made several assumptions. Losing these assumptions may allow us 
to understand the interactive dynamics of the model better. For instance, low-carbon behaviors of 
customers in the closed-loop supply chain will be considered and the model will close to the actual 
situation. Second, sales promotion activity should be taken into account, as it may shed lights on 
whether the current results will hold. These problems will be investigated in our future research. 
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Figure 14. The Influence of v and τm on the System Behavior. (a) The change of prices with v; (b) the
change of the total profit with v when µ1 = 0.001, µ2 = 0.003; (c) the change of the total profit with v
when µ1 = 0.001, µ2 = 0.009.

In Figure 14c, we can see that the change of the total profit in the period-doubling bifurcation
state with µ1 = 0.001,µ2 = 0.009. The total profit of the manufacturer and retailer increases
when v ∈ (0, 1.34) and the total profit has the maximum value when v = 1.34. The total profit
appeared period-2 cycle bifurcation when v ∈ (1.34, 4.31). When v increases, the total profit appears
period-doubling bifurcation, and enters a chaotic state finally.

Therefore, we can know that an appropriate smaller service value can improve the total profit of
the supply chain system, a larger service value can cause the market to enter a state of chaos.

7. Conclusions

In this paper, we studied a dual-channel closed-loop supply chain in which a manufacturer
considers waste product recovery and remanufacture, whereas a retailer considers the provision of
services to customers. We build a Stackelberg game model and a centralized game model, study not
only the static pricing strategy but also evolution characteristics of dynamic pricing of the two models.
The profits of the manufacturer and retailer are described when parameters change. The following
conclusions can be obtained.

(1) The stability region of the system expands in the Stackelberg game model, while shrinks in
the centralized model as the retailer’s service value increases; the stability region of the system
expands as the recovery rate of used products increases in the Stackelberg game model and the
centralized game model. Therefore, the increase of product recovery rate by managers is more
conducive to the stability of the system and the market competition.

(2) The system stability is significantly impacted by the price adjustment parameters; with large
price adjustment parameter values, the system will bifurcate or even fall into chaos with a larger
entropy value. Managers should adopt a relatively small rate of price adjustment to maintain the
stability of the market.

(3) When the Stackelberg game model is in a stable state, the manufacturer’s profit increases first and
then decreases, and the retailer’s profit first decreases until negative and then increases as the
service value of the retailer increases. The total profit in the Stackelberg model is less than that
in the centralized decision model. So the cooperation of the manufacturer and retailer is more
conducive to maximizing system profit under the centralized decision.

Nonetheless, this paper has made several assumptions. Losing these assumptions may allow us
to understand the interactive dynamics of the model better. For instance, low-carbon behaviors of
customers in the closed-loop supply chain will be considered and the model will close to the actual
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situation. Second, sales promotion activity should be taken into account, as it may shed lights on
whether the current results will hold. These problems will be investigated in our future research.
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