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Abstract: Recently, active learning is considered a promising approach for data acquisition due to
the significant cost of the data labeling process in many real world applications, such as natural
language processing and image processing. Most active learning methods are merely designed to
enhance the learning model accuracy. However, the model accuracy may not be the primary goal and
there could be other domain-specific objectives to be optimized. In this work, we develop a novel
active learning framework that aims to solve a general class of optimization problems. The proposed
framework mainly targets the optimization problems exposed to the exploration-exploitation trade-off.
The active learning framework is comprehensive, it includes exploration-based, exploitation-based
and balancing strategies that seek to achieve the balance between exploration and exploitation.
The paper mainly considers regression tasks, as they are under-researched in the active learning
field compared to classification tasks. Furthermore, in this work, we investigate the different active
querying approaches—pool-based and the query synthesis—and compare them. We apply the
proposed framework to the problem of learning the price-demand function, an application that is
important in optimal product pricing and dynamic (or time-varying) pricing. In our experiments,
we provide a comparative study including the proposed framework strategies and some other
baselines. The accomplished results demonstrate a significant performance for the proposed methods.

Keywords: active learning; exploration-exploitation; regression; optimization; mutual information;
Kullback–Leibler divergence; entropy; query synthesis; demand learning; exploration-exploitation;
sequential decision problems

1. Introduction

Recently, active learning has received a substantial growing interest in literature. With the
abundant amounts of unlabeled data, the cost of data labelling is, generally, expensive. Thus, active
learning is used for selecting the most informative “beneficial” training samples for the learning model
in order to achieve high model accuracy using as few examples as possible [1]. Active learning has
proved its superiority in diverse applications such as natural language processing [2] and image
processing [3]. The active learning process basically proceeds as follows: first, an initial learning
model is trained using a few training samples. Then, additional samples are sequentially added to the
training data according to a certain querying strategy. This process repeats until a certain stopping
criterion is satisfied [4].

Generally, most of the active learning research mainly focuses on querying data labels to optimize
the learning model’s accuracy. Only a few contributions utilize active learning for achieving other
objectives. However, in many applications, the data labeling process is costly and the ultimate goal
is to optimize a domain-specific objective function, other than minimizing the learning model’s
predictive error. Accordingly, in this work, we propose a comprehensive active learning framework
which consists of several novel querying strategies for handling general optimization problems
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where the objective could be some general utility function, not necessarily the learning model’s
accuracy. The problem can be framed as selecting the right trade-off for the exploration-exploitation
concept. In other words, we encounter a trade-off between minimizing the uncertainty of the target
objective function, known as exploration and maximizing the underlying objective function given the
available function estimates, which is known as exploitation. The exploration-exploitation trade-off
is encountered in machine learning [5] and optimization algorithms [6]. Furthermore, this class of
optimization problems experiencing a trade-off between exploration and exploitation is prevalent
in many real-world applications of various fields, such as recommender systems [7] and dynamic
pricing [8].

In this paper, we provide a comprehensive analysis of active learning from the point of view of
the exploration-exploitation trade-off. Our focus is on having a general optimization function, rather
than prediction accuracy. For example, the user may like to select a query point that maximizes his
profit. As a case study, we consider the application of the proposed active learning framework to
some real-world application, namely dynamic pricing for revenue maximization in case of unknown
behavior of the customers’ demand [9]. Specifically, firms offering a certain good or service seek to
adjust prices in a way that maximizes the obtained revenue. However, the price-demand curve which
controls the relation between the price and the corresponding behavior of customers, is usually not
known beforehand and has to be inferred. Generally, companies learn the price-demand curve through
price experimentation by testing a number of prices and obtaining their corresponding demands from
actual selling situations. On the other hand, choosing prices for revealing the price-demand relation
could yield revenue losses since such prices are not designed to maximize the achieved revenue [10,11].

Therefore, we are dealing with two conflicting goals: exploration in the form of choosing prices
that minimize the uncertainty of the learned demand model and exploitation in the form of setting
prices to maximize the objective function, that is, the obtained revenue. The former is accomplished in
a framework of active learning: what price should we suggest next to gain the most knowledge of the
demand-price function?

The aforementioned problem of revenue maximization with demand learning represents a case
study which can be considered an application of our proposed framework. However, the presented
active learning framework is general and it can be applied to any objective optimization problem
incurring a trade-off between exploration and exploitation.

The proposed active learning framework consists basically of three main active learning approaches:
exploration-based, exploitation-based and balancing strategies that handle both exploration and
exploitation. For the exploration-based methods, we propose several novel information-theoretic
strategies with the aim of minimizing the learning model uncertainty. On the other hand, the
exploitation-based methods are designed merely to optimize the target objective function, without
taking into consideration the model accuracy. Finally, we present several active learning strategies
specifically designed to address the exploration-exploitation trade-off by combining both objectives of
optimizing the target objective and obtaining an accurate learning model.

We apply a set of experiments to evaluate the performance of our proposed active learning
methods in terms of both aspects: exploitation in terms of the gained utility and exploration by
measuring the regression model’s accuracy. In these experiments, we compare the performance of our
proposed methods to some standard baselines.

Active learning has been extensively studied in classification problems [4]. However, only few
studies investigate applying active learning to regression tasks [12–14]. In this work, our presented
active learning framework mainly targets regression problems. However, it could be easily adapted to
handle classification problems, as well.

Active learning is generally classified into sequential and batch mode settings. In the sequential
setting, one query sample is selected per iteration. On the other hand, for the batch mode, a group
of samples are simultaneously selected for labeling. In this work, we adopt the sequential active
learning approach.
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Another scheme used for classifying the active learning methods is based on the query generation
process. Specifically, active learning is classified into: pool-based and query synthesis approaches.
The pool-based approach is the conventional method which is most commonly used in the active
learning literature [4]. In the pool-based scheme, at each iteration, one or more query samples
are selected from an unlabeled pool of existing data according to a certain querying criterion and
labeling is carried out for these selected samples. On the other hand, the membership query synthesis
approach selects one or more synthetic samples from the whole space. In this paper, we apply both
approaches—pool-based and query synthesis. Moreover, we perform a comparative study between the
two methods. From the experimental results, this work essentially elucidates the significance and the
superiority of employing the query synthesis approach over the commonly used pool-based approach.
More detailed results will be discussed in Sections 7 and 8.

The goal of this work is not to provide a group of active learning strategies, instead, we aim to
introduce a comprehensive active learning framework including novel strategies, for handling a wide
class of objective optimization problems confronting the exploration-exploitation dilemma.

The main contributions of this paper are summarized as follows:

• Provide a comprehensive active learning framework for a general objective optimization,
analyzing it from the point of view of the exploration-exploitation trade-off.

• Propose several novel information-theoretic active learning strategies, designed for minimizing
the learning model uncertainty.

• Design active learning methods for regression tasks.
• Present a less-myopic active learning method focusing on exploitation or target optimization.
• Develop query synthesis and pool based variants of the proposed active learning strategies and

compare the two approaches.
• Apply the proposed active learning framework to a real-world application, namely dynamic

pricing with demand learning, as a case study.

The paper is organized as follows: Section 2 presents a literature review. Section 3 presents the
problem formulation. Section 4 briefly describes the Bayesian formulation of linear regression model
that is applied in our experiments. Then, our proposed active learning strategies are represented in
Section 5. After that, Section 7 presents experimental results. Section 8 discusses the main findings.
Finally, Section 9 concludes the paper.

2. Related Work

In this section, we briefly review the related work.

2.1. Active Learning

A comprehensive active learning literature survey can be found in the work by Settles in
Reference [4]. Mostly, active learning research is designed to query data samples which enhance
the predictive power of the learning model. One of the popular active learning methods is uncertainty
sampling [15], which selects a sample that the learning model is most uncertain about. The label
uncertainty is often measured using the predictive label variance [16] or the label entropy [17].

Another commonly used active learning strategy is query by committee (QBC) [18]. The QBC
strategy hinges on minimizing the version space [4]. A committee of learning models, generally
formed using ensemble learning, are trained using the training data acquired so far. Then, the QBC
strategy chooses the most controversial data sample, about which the learning models disagree the
most. Roy et al. propose an active learning strategy that targets minimizing the generalization error of
the learning model [19]. However, their method is computationally intensive.

2.2. Active Learning for Regression

Unlike the classification domain, there is limited work that considers active learning for the
regression domain. In this work, we mainly focus on regression tasks. However, our proposed active
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learning framework is general enough and could be applied to classification tasks. In this subsection
we briefly overview the main methods of active learning for regression.

Several popular active learning methods have been extended and applied to regression such as
query by commitee (QBC) in Reference [13]. In addition, Cai et al. propose an active learning method
named, Expected Model Change Maximization (EMCM). Their presented querying method selects
the data samples leading to the maximum model change. In their work, they estimate the model
change as the gradient of the loss function, typically squared error, with respect to the query sample
under consideration.

Wu proposes an active learning approach that considers representativeness and diversity in initial
data collection and sequential query selection [14]. The presented approach typically applies k-means
clustering to ensure representativeness by choosing data samples that are close to clusters’ centroids.
Furthermore, diversity is satisfied by favoring clusters having no labeled data so far. Another work
seeking to enhance diversity of data samples is presented in Reference [20].

The pool-based active learning chooses training data points without assuming a prior knowledge
of the test distribution. On the other hand, the population-based active learning assumes that the test
distribution of data points is known and it seeks to estimate the optimal training input density from
which training data points are sampled. Sugiyama et al. develop a population-based active learning
approach using weighted least-squares linear regression in Reference [21]. Their proposed method,
named ALICE, aims to minimize the conditional expectation of the generalization error given the
training data samples.

To our knowledge, applying information-theoretic approaches to active learning for the regression
domain is limited, unlike the classification domain. In this work, as demonstrated in Section 5.2,
we propose several information-theoretic based active learning querying strategies for regression.

2.3. Information-Theoretic Active Learning

In this section, we briefly describe some information-theoretic based active learning methods
in literature, that are mainly designed for classification, aiming to enhance the learning model
predictive performance.

Guo and Greiner exploit the potential information of the unlabeled data in their proposed active
learning strategy [17]. The authors develop their active learning method based on maximizing the
mutual information between the underlying query and the conditional labels of the unlabeled pool
given the training data. In their method, since the true label is not known, the authors use an optimistic
label for the candidate query sample, which is the label leading to the maximum mutual information
about the labels of the unlabeled pool samples.

The authors of Reference [22] develop an entropy-based active learning for object recognition.
The presented method seeks to minimize the expected entropy of the labels for the unlabeled pool of
samples, given the training data acquired so far.

In Reference [23], the authors develop an information-theoretic active learning framework in
batch setting mode. Their proposed framework seeks to maximize the mutual information between the
candidate sample and the unlabeled pool of samples. The authors propose pessimistic and optimistic
approximations of the mutual information by choosing the label minimizing or maximizing the
conditional entropy of the labels of the unlabeled samples.

Another information-theoretic metric used in Reference [24], for active learning classification,
is the Fisher information ratio (FIR). A major advantage of using the Fisher information metric
specifically, is that it accounts for the diversity among the query samples. The proposed method
obtains a probability mass function (PMF) over the unlabeled pool by maximizing the FI using
semi-definite programming, then the chosen queries are drawn according to the optimized PMF.

In this paper, we propose novel active learning strategies for regression tasks that utilize
information-theoretic concepts including: mutual information, Kullback–Leibler divergence and
learning model entropy, as described in Section 5.2.
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2.4. Query Synthesis versus Pool-Based AL

As previously mentioned in Section 1, active learning can be classified into pool-based and query
synthesis approaches [4]. The pool-based approach is prevalent in active learning literature, however
the query synthesis approach could potentially outperform the pool-based method, since unlike the
pool-based, the query sample is chosen from the whole input space and not restricted by a certain
pool of samples, that could not be representative for the whole input space or could not contain the
optimal query samples. However, the main limitation of the query synthesis approach is that it could
not be applicable for tasks requiring human annotation such as image processing and natural language
processing, since the synthetically generated samples could be meaningless to the human annotator [4].
Consequently, the query synthesis could mainly be used whenever the query oracle is a scientific
experiment or when the underlying input space is continuous such as: the considered dynamic pricing
application [8] and some robotics applications [25].

There are a few contributions applying query synthesis for active learning querying. Query
synthesis was first introduced in Reference [26]. In Reference [25], the authors approximate the version
space by solving a convex optimization problem. Then, the synthetic query is generated by extracting
the principal component that would shrink the version space.

In this work, we implement our proposed active learning strategies in both ways: query synthesis
and pool-based. The experimental results indicate that the query synthesis approach has superior
performance compared to the pool-based approach as discussed in Section 7. This is intuitively logical
because the query synthesis approach optimizes the query criteria over the whole input space, so the
returned solution is optimal since it is not restricted to be in a certain pool of samples. Moreover, the
query synthesis approach is significantly more computationally efficient than the pool-based approach
since for each iteration, the former optimizes the underlying query strategy one time, while the latter
evaluates the querying strategy over all the pool samples and chooses the best sample of them to query,
which is computationally intensive, especially that the pool size (the number of available unlabeled
samples) is used to be large.

2.5. Active Learning for Objective Optimization

As mentioned in the introduction, Section 1 and as discussed so far, most of the active learning
work in literature aims to enhance the predictive accuracy of the learning model. There are only
limited research contributions that use active learning for achieving general real-world objectives other
than the model predictive power. In this section, we discuss the main contributions that utilize active
learning for achieving a general objective other than the learning model accuracy.

Saar and Provost design an active learning querying method named Goal-Oriented Active
Learning (GOAL) for decision making. In their paper, the authors apply their proposed active learning
method to customer targeting campaigns [27]. They typically consider binary decision (classification)
problem, which is whether to target a specific customer or not, given that customer targeting incurs
some cost. Their proposed method queries data samples that are close to decision threshold to enhance
decision learning. However, the GOAL method does not consider the trade-off between learning
optimal decisions and profit maximization.

Garnett et al. adopt active learning for two binary classification problems, active search and
active surveying in Reference [28]. The authors utilize the Bayesian decision theory and they propose
less-myopic approximations to the optimal policy by considering multiple step look-ahead of the
underlying utility functions of both problems.

Marcela et al. develop an active learning approach for solving multi-objective optimization,
named ε-Pareto Active Learning (ε-PAL) [29]. Their approach assumes that the considered objectives
follow a Gaussian process distribution, so they use Bayesian optimization framework. However, their
work does not focus on the exploration-exploitation trade-off that may exist among the underlying
different objectives, which is the main concern of our presented work.
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Another active learning scheme for sequential decision making is the knowledge-gradient (KG)
method [30]. The KG method is an exploitation-based strategy that considers several alternatives
and chooses the alternative maximizing the expected improvement of a certain utility function. The
knowledge-gradient method maintains a Bayesian predictive distribution for each alternative’s utility
and these posterior distributions are updated upon acquiring new observations. However, the KG
method could be computationally expensive for large number of alternatives.

Unlike the KG method, our framework considers the distribution of a certain utility function that
is evaluated using a learning model, specifically the Bayesian linear regression. Another difference
between the KG method and our proposed methods is that the KG method is inherently designed
in pool-based setting where the selection is performed from a finite set of alternatives. On the other
hand, our proposed approaches are general to be applied in pool-based or query synthesis setting
as indicated in Section 5.1. In addition, the KG method is a pure exploitation method that does not
explicitly consider exploration. However, in this work, we provide several less-myopic methods
balancing between exploitation and exploration described in Section 5.4.

The mean objective cost of uncertainty (MOCU) method proposed in References [31,32] handles
model uncertainty in a novel way. The MOCU method essentially studies the impact of the model
uncertainty on performance degradation in terms of some incurred cost. Specifically, the MOCU
criterion evaluates model uncertainty by measuring the differential cost between the current estimated
model and the optimal model which minimizes the expected cost.

2.6. The Exploration-Exploitation Trade-Off

The exploration and exploitation trade-off has been extensively studied in many contexts including:
reinforcement learning [5], multi-armed bandit problems [33] and evolutionary optimization [6].

Krause and Guestrin handle the trade-off between exploration and exploitation in their active
learning method for handling spatial phenomena such as river monitoring [34]. The authors use
Gaussian Processes (GPs) in their model, with unknown kernel parameters. They propose a non-myopic
active learning approach for handling the trade-off between exploration, which aims to decrease the
uncertainty about the model parameters and exploitation, which seeks to near-optimal observations
using the estimated model parameters so far. However, they use static split between exploration and
exploitation as two separate phases and they derive some bounds for the length of the exploration
phase. On the other hand, our proposed methods described in Section 5.4 make probabilistic
transitions/balance between exploration and exploitation. A dynamic balance between exploration and
exploitation that is performed probabilistically could be more powerful than static balance, especially
for real world applications that could have noisy observations. In such a case it is hard to predict a
predefined period of exploration.

The multi-armed bandit (MAB) context is a class of sequential decision making problems originally
developed in Reference [35]. The objective is to maximize rewards but under uncertainty and
incomplete feedback about rewards, so there is a trade-off between performing an action that gathers
information regarding reward (exploration) and making a decision that maximizes the immediate
reward given the information gathered so far (exploitation). In our experiments, we apply the upper
confidence bound algorithm (UCB) [36], a popular algorithm developed in the context of MAB, as a
baseline to compare with.

Although the primary objective of reinforcement learning is to maximize the cumulative rewards,
which is typically exploitation, exploration plays a significant role in reinforcement learning as
demonstrated in Reference [5], since without exploration, the agent could simply derive sub-optimal
plans. So, achieving the balance between exploration and exploitation is the core issue in reinforcement
learning. However, reinforcement learning is generally computationally expensive, so it is not scalable
for large state spaces. Furthermore, reinforcement learning requires a considerable amount of training
data, unlike active learning which is designed for limited data requirements. The work of Reference [37]
relates the concept of exploration-exploitation trade-off with bias-variance trade-off.
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The exploration-exploitation trade-off has been extensively addressed in the context of evolutionary
optimization. In such context, exploration is defined as visiting new regions of the search space, while
exploitation denotes visiting regions of the search space within the neighborhood of previously
explored points. A comprehensive review of the exploration-exploitation trade-off in evloutionary
optimization is presented in Reference [6].

3. Problem Formulation

As mentioned in the introduction, this work focuses on regression tasks since it is prominent
in different applications such as energy consumption prediction [38] and price-demand elasticity
estimation [8,39]. Specifically, in this work, we apply linear regression model but our proposed active
learning framework is general and can be applied to any other regression model. Furthermore, the
proposed strategies can be adapted to classification models as well.

We consider the following linear regression problem:

y = βTx + ε (1)

where x is the input feature vector such that x ∈ Rd, where d is the dimensionality of the feature vector,
y denotes the regression response variable y ∈ R and ε is a random error term such that ε ∼ N (0, σ2)

and β ∈ Rd denotes the regression model coefficients.
This work particularly tackles the class of optimization problems which have a certain utility

function u to be optimized, for any regression task. However, the utility function u incurs some
uncertainty which can be estimated using a probabilistic regression model. Such problems pose
the challenging problem of how to strike a balance between maximizing the objective function u
(exploitation) and minimizing the uncertainty about the utility function (exploration). In this work,
we develop a novel active learning framework consisting of various strategies to interactively seek a
balance between exploitation and exploration.

Notation

In this section, we introduce the adopted notation used in the proposed active learning framework.
First, the training data acquired so far is denoted as D =

{
(xi, yi)

}N
i=1, the training data term D is

expressed in terms of a set of pairs of input data samples xi and their corresponding labels yi, where N
is the number of data samples acquired so far.

The matrix of input data points is denoted as X ∈ RN×d, such that each row x represents one
data sample and d is the dimensionality of the data point x. For Y ∈ RN×1, it represents the vector of
the corresponding output variables. The matrix of data samples whose outputs require prediction is
denoted as X∗, such that X∗ ∈ Rm×d, where m is the size of data samples to be predicted. In addition,
Y∗ represents the vector of the corresponding output variables and Y ∈ Rm×1. Similarly, in case of
predicting a single data point, the data sample is denoted as x∗ and y∗ is its corresponding output.

In the adopted linear regression algorithm described in Section 4, the regression coefficients are
denoted as β. In addition, µβ and Σβ are the mean and covariance matrix of β, respectively.

In the proposed active learning framework, U denotes the unlabeled pool of data samples and
YU represents the responses of the samples in the pool. The utility function u represents the objective
function to be optimized using active learning as defined in Sections 5.3 and 5.4.

4. Preliminaries: Bayesian Linear Regression

In this section, we briefly describe the Bayesian linear regression model used in the proposed
active learning framework. We adopt the Bayesian linear regression model due to several reasons.
First, the class of optimization problems that we handle involves uncertainty of the utility function,
which can be estimated using probabilistic regression models such as the Bayesian linear regression.
Moreover, most active learning querying strategies depend on the uncertainty of predictions, so it
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is compelling that we use a regression model providing not only predictions but also uncertainty of
the obtained predictions and Bayesian linear regression provides such information. Finally, in active
learning settings, the initial data points available for training is essentially limited which could result
in over-fitting, especially for noisy data, so applying Bayesian linear regression helps to combat the
potential over-fitting.

The underlying regression problem is formulated as indicated in Equation (1), in Section 1.
According to Equation (1), we have two major parameters in the regression model, the regression
model coefficients β and the noise variance σ2, so we adopt Bayesian linear regression with conjugate
prior of (β, σ2).

Since the noise variance parameter σ2 is a key parameter in the model and we have some prior
knowledge about it, for example it must be positive, we can use a conjugate prior distribution for both
parameters β and σ2. We assume an Inverse Gamma prior distribution for σ2, σ2 ∼ IG(aσ, bσ).

p(σ2) =
(bσ)aσ

Γ(aσ)
σ−2(aσ+1)e−

bσ
σ2 (2)

where aσ > 1, bσ > 0 and σ2 > 0. The conjugate prior p(β, σ2) can be expressed as a Normal Inverse
Gamma (NIG) distribution as follows:

p(β, σ2) = p(β|σ2)p(σ2) = N (µ, σ2Σ)IG(aσ, bσ) = NIG(µ, Σ, aσ, bσ) (3)

• Conjugate Posterior Distribution:

According to Reference [40], the conjugate posterior distribution p(β, σ2|D) is a Normal Inverse
Gamma (NIG) distribution as follows:

p(β, σ2|D) = NIG(µβ|D , Σβ|D , aσ|D , bσ|D) (4)

Let µ and Σ be the prior expectation and covariance matrix of parameters β, respectively. The
posterior mean µβ|D is evaluated as follows:

µβ|D = (XTX + Σ−1)
−1

(Σ−1µ + XTy) (5)

The posterior covariance Σβ|D is calculated as follows:

Σβ|D = (XTX + Σ−1)−1 (6)

The posterior updates of noise distribution parameters aσ and bσ parameters are given by:

aσ|D = aσ +
N
2

(7)

bσ|D = bσ +
1
2
(yTy + µTΣ−1µ− µT

β|DΣβ|D
−1µβ|D) (8)

As derived in Reference [41], the marginal posterior distribution for β, denoted as β|D, is a
multivariate Student-t distribution as follows:

β|D ∼ t2aσ|D (µβ|D ,
bσ|D
aσ|D

Σβ|D) (9)
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For a random variable Z that follows a multivariate Student-T distribution, defined as tv(µ0, Σ0),
the expectation and the covariance matrix of Z are calculated, respectively, as follows:

E[Z] = µ0 (10)

ΣZ =
v

v− 2
Σ0 (11)

where v is the number of degrees of freedom for the Student-T distribution tv(µ, Σ).

According to Equations (9), (18) and (11), the expectation and the covariance matrix of the marginal
β|D distribution are evaluated as follows:

E[β|D] = µβ|D (12)

Cov[β|D] =
bσ|D

aσ|D−1
Σβ|D (13)

• Posterior predictive distribution of Y:

As derived in Reference [40], the posterior predictive distribution p(Y|D) is evaluated as follows:

p(Y|D) =
∫

p(Y|β, σ2)p(β, σ2|D) (14)

= N (Xβ, σ2Im)× NIG(µβ|D , Σβ|D , aσ|D , bσ|D) (15)

= t2aσ|D

(
Xµβ|D ,

bσ|D
aσ|D

(Im + XΣβ|DXT)
)

(16)

To predict a vector of output responses Y∗, corresponding to a matrix of data points X∗, the
posterior predictive distribution of the output vector Y∗ is defined as follows:

p(Y∗|X∗,D) ∼ t2aσ|D (E[Y
∗|X∗,D], AY∗ |X∗ ,D) (17)

The posterior expectation of the predicted responses Y∗ is calculated as:

E[Y∗|X∗,D] = X∗µβ|D (18)

where AY∗ |X∗ ,D is calculated as:

AY∗ |X∗ ,D =
bσ|D
aσ|D

(Im + X∗Σβ|DX∗T) (19)

However, the covariance matrix for a multivariate Student-T distribution tv(µ, A) is estimated as:

Σ =
v

v− 2
A (20)

Consequently, from Equation (17) and substituting from Equation (19) into Equation (20), the
posterior variance of the predicted responses Y∗ is calculated as:

ΣY∗ |X∗ ,D =
bσ|D

aσ|D − 1
(Im + X∗Σβ|DX∗T) (21)

To predict a single label y∗, the predictive posterior distribution p(y∗|x∗,D) is evaluated as:

p(y∗|x∗,D) ∼ t2aσ|D∪(x∗ ,y∗)

(
E[y∗|x∗,D], σy∗ |x,D

)
(22)
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According to Equations (17) and (18), the posterior expectation of the predicted label y∗ is
calculated as:

E[y∗|x∗,D] = x∗Tµβ|D (23)

Similarly, using Equations (17) and (21), the posterior variance of the predicted value y∗ is
defined as:

σ2
y∗ |x∗ ,D =

bσ|D
aσ|D − 1

(1 + x∗TΣβ|Dx∗) (24)

In this section, we have provided the final formulations for Bayesian linear regression model.
The interested readers can find more details in References [40,42].

5. Proposed Active Learning Framework

In this section, we present our proposed active learning framework for handling optimization
problems, encountering an exploration-exploitation trade-off.

First, we describe the general active learning settings. Then, we introduce our proposed active
learning strategies which are mainly classified into: exploration-based, exploitation-based and
strategies that balance exploration and exploitation. Figure 1 shows the proposed active learning
framework.

Figure 1. The Proposed Active Learning Framework.

5.1. Active Learning Schemes

Active learning can be applied in different modes that define how a new query point is generated.
We describe three different schemes, the first two methods are generally known in literature and we
define the third one because we incorporate it into some of our proposed strategies.

• Pool-based

This is the conventional approach that is mostly used in the active learning literature. In the
pool-based approach, there exists an unlabeled pool of data samples XU and at each iteration, one
or more query example(s) x∗ is selected from the pool according to a certain querying criterion.
Algorithm 1 describes the pool-based active learning approach.
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• Membership Query Synthesis

Unlike the pool-based approach, the membership query synthesis scheme is not commonly used
in the active learning literature. In contrast with the pool-based active learning, the membership
query synthesis does not select data samples out of a certain pool of unlabeled data. Alternatively,
this approach essentially generates and queries synthetic data samples of the entire input space.
Algorithm 2 explains the query synthesis approach.

This approach is very efficient and is not computationally intensive compared to the pool-based
approach. The reason for the query synthesis’s computational efficiency is that instead of iterating
over the large unlabeled pool of samples and evaluating a certain selection criterion such as
mutual information, the query synthesis approach directly generates a synthetic data sample to
achieve a certain objective. For example, our proposed query synthesis approach optimizes the
underlying querying metric using optimization algorithms. The query synthesis approach is not
only computationally efficient, it could be more compelling than the pool-based approach since
the generated query sample is not restricted to be part of an unlabeled pool, so the synthetically
generated query sample could be more informative and beneficial than the examples in the pool.

• Membership Query Synthesis without a Predefined Pool

The query synthesis approach does not need to have a pool of samples. However, some active
learning strategies exploit the potential information in the unlabeled data to guide the sample
selection such as mutual information strategy defined subsequently in Equation (28) and the KL
divergence strategy defined in Equation (47). Consequently, such strategies rely on the existence
of some unlabeled data to estimate how useful or how representative a certain query point is.
However, for some applications, the unlabeled data could not exist or if they exist, they may not
be a representative sample for the input space. In such cases, one could generate a representative
and diverse sample of unlabeled data using the domain knowledge of the feature space. Another
way for generating unlabeled representative data could be to apply any reasonable clustering
algorithm using the available training data and the cluster centroids can be used as representatives
of the unobserved data. Algorithm 3 elucidates this approach.

Algorithm 1 Pool-based Active Learning

Input: A dataset D =
{
(xj, yj)

}N
j=1, a general active learning strategy S, a utility function u,

number of iterations T, a discount factor γ and a generation method for creating synthetic queries
GenerateQueryPoint().
Output: A Learned model θT and a cumulative gained utility uT .
DL ← Ninit labeled data samples randomly chosen out of D.
Train the regression model using the initial training data to obtain initial model θ0.
DU ← D \DL

repeat
for each xk ∈ DU do

S(xk)← Apply a certain active learning strategy S to xk, using current model estimate θi.
end for
x∗ = arg maxxk

S(xk) ∀k, k ∈ {1...|DU |}.
y∗ ← the true label for the query sample x∗.
Add the acquired data point (x∗, y∗) to the training data: DL ← DL ∪ (x∗, y∗).
Evaluate the utility ui using the new acquired point: ui ← u(x∗, y∗).
Update the regression model θi using the new acquired point (x∗, y∗).

until T iterations executed
return The learned model θT and the cumulative discounted utility uT = ∑T

i=1 γi−1ui.
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In our experiments, we develop several novel active learning strategies and apply them in the
pool-based and query synthesis schemes. For the strategies that use the unlabeled data samples
for guiding its selection such as mutual information (MI), modified mutual information (MMI) and
Kullback–Leibler divergence (KL), we apply the three aforementioned schemes. More details are
provided in the experiments section, Section 7.

Algorithm 2 Query Synthesis Active Learning

Input: A dataset D =
{
(xj, yj)

}N
j=1, a general active learning strategy S, a utility function u,

number of iterations T, a discount factor γ and a generation method for creating synthetic queries
GenerateQueryPoint().
Output: A Learned model θT and a cumulative gained utility uT .
DL ← Ninit labeled data samples randomly chosen out of D.
Train the regression model using the initial training data to obtain initial model θ0.
repeat

x∗ = GenerateQueryPoint(S,DU , θi).
y∗ ← the true label for the query sample x∗.
Add the acquired data point (x∗, y∗) to the training data: DL ← DL ∪ (x∗, y∗).
Evaluate the utility ui using the new acquired point: ui ← u(x∗, y∗).
Update the regression model θi using the new acquired point (x∗, y∗).

until T iterations executed

return The learned model θT and the cumulative discounted utility uT = ∑T
i=1 γi−1ui.

Algorithm 3 Query Synthesis Active Learning without a predefined pool

Input: A small dataset of Ninit points D =
{
(xj, yj)

}Ninit
j=1 , a general active learning strategy S, a

utility function u, number of iterations T, a discount factor γ and a generation method for creating
synthetic queries GenerateQueryPoint().
Output: A Learned model θT and a cumulative gained utility u.
DL ← Ninit labeled data samples randomly chosen out of D.
Train the regression model using the initial training data to obtain initial model θ0.
U ← Construct a representative sample of unlabeled data using for example, domain knowledge or
clustering.
repeat

x∗ = GenerateQueryPoint(S,U , θi).
y∗ ← the true label for the query sample x∗.
Add the acquired data point (x∗, y∗) to the training data: DL ← DL ∪ (x∗, y∗).
Evaluate the utility ui using the new acquired point: ui ← u(x∗, y∗).
Update the regression model θi using the new acquired point (x∗, y∗).

until T iterations executed
return The learned model θT and the cumulative discounted utility uT = ∑T

i=1 γi−1ui.

5.2. Exploration-Based Strategies

In this section, we describe our novel proposed exploration-based active learning strategies for
regression. The exploration-based strategies mainly target enhancing the regression model predictive
performance. The presented strategies are not limited to a certain application or a class of problems,
they are quite general and could be applied in any settings where the objective is to boost the regression
model accuracy. The most popular active learning methods such as uncertain sampling [15] and
Query by Committee [18] seek to query the most “uncertain” sample, that is, the data sample about



Entropy 2019, 21, 651 13 of 45

which the learning model is the most uncertain. Although this seems helpful for the learning model
either classification or regression, the uncertain sampling approach does not consider the potential
information of the unlabeled pool of examples. Thus, the uncertain sampling could select noisy
patterns or outliers. On the other hand, querying samples not only based on the query sample but also
on the unlabeled samples of the pool ([17,23]) is more promising since such approach is less myopic
and it utilizes the information of the plentiful unlabeled pool.

The following proposed exploration strategies are mainly based on information theory [43]. To our
knowledge, it is the first time that information theoretical concepts (such as mutual information,
Kullback–Leibler divergence and model entropy) are applied in active learning for regression.
Some information-theoretic metrics such as predictive label entropy, Fisher information and mutual
information have been employed for active learning in classification problems [17,22,23]. However,
such information theoretic metrics have not been considered yet for regression problems.

Depending solely on a single query sample information could lead to choosing noisy samples or
outliers [19]. It is well-known that an outlier does more damage than help. Consequently, our proposed
exploration-based active learning strategies exploit the potential information existing in the unlabeled
pool of samples and the learning model uncertainty. Moreover, incorporating the information of
the unlabeled pool such as mutual information, into the selection strategy, advocates querying
representative samples.

5.2.1. Mutual Information (MI)

The mutual information criterion aims to query the sample x∗ which effectively holds a substantial
amount of information about the labels of the unlabeled pool. Thus, this strategy chooses the sample x∗

that maximizes the mutual information between its label y∗ and the labels of the remaining unlabeled
samples of the pool excluding x∗, denoted as YU .

The mutual information between the query sample x∗ and the labels of the unlabeled pool YU is
defined as:

I(x∗, YU) = H(YU |D)− H(YU |x∗,D) (25)

where D denotes the labeled training data acquired so far.
The first term H(YU |D) represents the prior entropy (or uncertainty) of all the labels of the

unlabeled pool of samples. Similarly, the second term H(YU |x∗,D) denotes the entropy of the labels
of unlabeled pool of samples but after acquiring the new query point x∗. From Equation (25), it can
be noted that maximizing I(x∗, YU) is equivalent to minimizing the conditional entropy H(YU |x∗,D),
which is defined as follows:

H(YU |x∗,D) =
∫

y∗
p(y∗|x∗,D)H(YU |x∗, y∗,D)dy∗ (26)

To simplify computations, Equation (26) could be approximated by eliminating the integration
over all the possible labels of y∗ and using the expected value of it E[y∗]. Other approximations
are made in literature [22,23], using the optimistic or the pessimistic label. However, we found that
employing the expectation could be more reasonable. Accordingly:

H(YU |x∗,D) = H(YU |(x∗, y∗),D) (27)

where y∗ is the expected predicted label of the data point x∗, which is calculated using Equation (23).

H(YU |(x∗, y∗),D) =
∫

Y
p(Y|X,D ∪ (x∗, y∗)) log(p(Y|X,D ∪ (x∗, y∗))dY (28)

As mentioned in Section 4, the posterior predictive distribution of the predictive labels vector Y,
p(Y|X,D ∪ (x∗, y∗)) is a multivariate Student-T distribution which is defined as follows:
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p(Y|X,D ∪ (x∗, y∗)) = t2aσ|D∪(x∗ ,y∗)

(
Y,E[Y|X,D ∪ (x∗, y∗)], ΣY|X,D∪(x∗ ,y∗)

)
(29)

The posterior expectation E[Y|X,D ∪ (x∗, y∗)] and the covariance matrix ΣY|X,D∪(x∗ ,y∗) are
evaluated using the Bayesian linear regression model formulations described in Section 4, using
Equations (18) and (21), respectively. However, this method and all our proposed methods are general
and can be applied using any regression model that provides uncertainty of its predictions.

According to Reference [41], the final formulation of the entropy of a random variable Z following
a Student-t distribution tvZ is given by:

H(Z) =
1
2

log det(RZ) + φ(vZ, d) +
vZ + d

2
M(vZ, d, ∆) (30)

where RZ denotes the correlation matrix of Z, d is the dimensionality of Z and vZ represents the number
of degrees of freedom for the Student-t distribution. In addition, φ(vZ, d) is a constant depending on
vZ and d and ∆Z = µZ

∗T RZ
∗−1µZ

∗.

M(aZ, d, ∆) = e−
∆Z
2

∞

∑
j=0

1
j!
{

Ψ(
d + vZ + 2j

2
)−Ψ(

vZ
2
)
}

(31)

where Ψ is the digamma function which is defined as:

Ψ(x) =
d

dx
ln(Γ(x)) (32)

Accordingly, the conditional entropy of YU , H(YU |(x∗, y∗)), is calculated using Equation (30)
as follows:

H(YU |(x∗, y∗),D) = 1
2

log det(RY
∗) + φ(2a∗, m) +

2a∗ + m
2

M(2a∗, m, ∆Y) (33)

where m is the number of data points to be predicted, that is, it is the length of the predicted output
vector YU . To simplify notation, let a∗ = aσ|D∪(x∗ ,y∗), µY

∗ = µY|D∪(x∗ ,y∗), ΣY
∗ = ΣY|D∪(x∗ ,y∗) and

RY
∗ = RY|D∪(x∗ ,y∗). For ∆Y, it is evaluated as follows:

∆Y = µY
∗T RY

∗−1µY
∗ (34)

such that RY
∗ denotes the correlation matrix of the unlabeled samples Y after acquiring the query

sample x∗.
The term M(2a∗, m, ∆Y) can be evaluated using Equation (31):

M(2a∗, m, ∆Y) = e−
µY
∗T RY

∗−1µY
∗

2

∞

∑
j=0

1
j!
{

Ψ(
m + 2a∗ + 2j

2
)−Ψ(a∗)

}
(35)

Using algebraic manipulations, the summation in Equation (35) converges as follows:

∞

∑
j=0

1
j!
{

Ψ(
m + a∗ + 2j

2
)−Ψ(

a∗

2
)
}
= e×

(
Ψ(a∗ +

m
2
+ 1))−Ψ(a∗)

)
(36)

Accordingly, substituting from Equation (36) into Equation (35) results in:

M(2a∗, d, ∆Y) =
(
Ψ(a∗ +

m
2
+ 1))−Ψ(a∗)

)
× e−

µY
∗T RY

∗−1µY
∗

2 +1 (37)
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Then, after substituting from Equation (37) into Equation (33), the conditional entropy
H(YU |(x∗, y∗),D) can be evaluated as:

H(YU |(x∗, y∗),D) = 1
2 log det(R∗Y) + φ(2a∗, m) + (2a∗ + m

2 )
(
Ψ(a∗ + m

2 + 1))−Ψ(a∗)
)
× e−

µY
∗T RY

∗−1µY
∗

2 +1 (38)

Finally, the query sample x∗ that maximizes the mutual information essentially minimizes the
conditional entropy of the unlabeled pool of samples as indicated in Equation (25). Consequently, the
query sample x∗ minimizing the conditional entropy H(YU |(x∗, y∗),D) can be evaluated as follows:

xMI = arg minx∗
1
2 log det(RY|D∪(x∗ ,y∗)) + φ

(
2aσ|D,∪(x∗ ,y∗), m

)
+
(
aσ|D,∪(x∗ ,y∗) +

m
2
)
×(

Ψ(aσ|D,∪(x∗ ,y∗) +
m
2 + 1))−Ψ(aσ|D,∪(x∗ ,y∗))

)
e−

µT
Y |D,∪(x∗ ,y∗)R−1

Y|D,∪(x∗ ,y∗)µY|D,∪(x∗ ,y∗)
2 +1

(39)

Simplifying Equation (39) by eliminating the term φ(2aσ|D,∪(x∗ ,y∗), m) since it is a constant that does
not depend on the query sample, because aσ|D,∪(x∗ ,y∗) basically depends on the number of data being
observed, as indicated in Equation (7). Thus:

xMI = arg minx∗
1
2 log det(RY|D∪(x∗ ,y∗)) + (aσ|D,∪(x∗ ,y∗) +

m
2 )
(
Ψ(aσ|D,∪(x∗ ,y∗) +

m
2 + 1))

−Ψ(aσ|D,∪(x∗ ,y∗))
)
× e−

µT
Y|D,∪(x∗ ,y∗)R−1

Y|D,∪(x∗ ,y∗)µY|D,∪(x∗ ,y∗)
2 +1

(40)

For computational efficiency purposes, we evaluate the log determinant of the correlation matrix
RY and its inverse using Cholesky decomposition since the correlation matrix is a symmetric positive
semi-definite matrix.

We apply three variants of this active learning strategy: pool-based, query synthesis and query
synthesis without pool, which are described in Section 5.1.

5.2.2. Modified Mutual Information (MMI)

The modified mutual information strategy is basically akin to the aforementioned strategy.
This method maximizes the mutual information defined in Equation (25) but it evaluates the first term
of that equation, H(YU |D), which represents the entropy of the labels of the unlabeled samples and
does not ignore it. The intuition of this querying strategy is to account for the impact of the query
sample (x∗, y∗) on reducing the joint entropy of the unlabeled samples H(YU |D). In other words, if
the first term is ignored and we just focus on minimizing the conditional entropy given the underlying
query sample H(YU |(x∗, y∗),D), we may choose a sample x∗ that is redundant and not informative in
case the entropy before acquiring x∗, H(YU |D) is inherently negligible.

Accordingly, the modified mutual information equation is defined using Equation (25) but without
ignoring the first term.

I(x∗, YU) = H(YU |D)− H(YU |(x∗, y∗),D) (41)

Similar to the mutual information strategy, the second term of Equation (41) can be evaluated
using Equation (38). As for the first term H(YU |D), similar to Equation (38), it can be computed
as follows:

H(YU |D) =
1
2

log det(RY) + φ(2a, m) + (a +
m
2
)
(
Ψ(a +

m
2
+ 1))−Ψ(a)

)
e−

µY
T RY

−1µY
2 +1 (42)

where a = aσ|D , µY = µY|D , ΣY = ΣY|D , and RY = RY|D . For ∆Y it is evaluated as follows:

∆Y = µY
T RY

−1µY (43)

where RY denotes the correlation matrix of the unlabeled samples Y, given the training data acquired
so far D.
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Therefore, substituting from Equations (28) and (42) into Equation (41) results in:

I(x∗, YU) =
1
2 log det(RY|D∪(x∗ ,y∗)) + φ

(
2aσ|D,∪(x∗ ,y∗), m

)
+ (aσ|D,∪(x∗ ,y∗) +

m
2 )×(

Ψ(aσ|D,∪(x∗ ,y∗) +
m
2 + 1))−Ψ(aσ|D,∪(x∗ ,y∗))

)
e−

µT
Y|D,∪(x∗ ,y∗)R−1

Y|D,∪(x∗ ,y∗)µY|D,∪(x∗ ,y∗)
2 +1

− 1
2 log det(RY) + φ(2a, m) + (a + m

2 )
(
Ψ(a + m

2 + 1))−Ψ(a)
)
e−

µY
T RY

−1µY
2 +1

(44)

xMMI = arg maxx∗
1
2 (log det(RY|D∪(x∗ ,y∗))− log det(RY)) + (aσ|D,∪(x∗ ,y∗) +

m
2 )×(

Ψ(aσ|D,∪(x∗ ,y∗) +
m
2 + 1))−Ψ(aσ|D,∪(x∗ ,y∗))

)
e−

µT
Y|D,∪(x∗ ,y∗)R−1

Y|D,∪(x∗ ,y∗)µY|D,∪(x∗ ,y∗)
2 +1

−(a + m
2 )
(
Ψ(a + m

2 + 1))−Ψ(a)
)
e−

µY
T RY

−1µY
2 +1

(45)

Similar to the previous strategy, we apply three variants of this active learning method using the
different active learning schemes: pool-based, query synthesis and query synthesis without pool.

5.2.3. Kullback–Leibler Divergence (KL)

So far, the previously mentioned strategies select the sample revealing the most amount of
information for the labels of the other samples. However, this strategy addresses a different aspect.
The Kullback–Leibler divergence strategy seeks to acquire samples having the greatest impact on
the posterior predictive distribution of the unlabeled samples p(YU |X,D). So, this method considers
the influence of the query sample on the “distribution” of the unlabeled samples. To achieve that,
this method maximizes the difference in posterior predictive distributions of unlabeled pool YU
before and after querying the query point (x∗, y∗). The distribution difference is evaluated using
the Kullback–Leibler divergence (KL) metric [44]. The Kullback–Leibler divergence metric is an
asymmetric distance measure that evaluates the distance between two probability distributions P and
Q. In other words, DKL(P||Q) measures the information lost when Q is used to approximate P [44].
The DKL(P||Q) is defined as follows:

DKL(P||Q) =
∫ ∞

−∞
p(x)log

p(x)
q(x)

dx

where p(x) and q(x) are the probability density functions to be compared.
It is worth noting that the KL divergence has been employed as a powerful method in Bayesian

analysis. For example, Lopez et al. apply the KL divergence to influence analysis [45]. The authors
use the KL metric to study the impact of removing one or several observations from data set on the
inferences.

In our proposed active learning method, p(x) denotes the posterior predictive distribution
of unlabeled example given the query sample (x∗, y∗), whereby q(x) is the posterior predictive
distribution of unlabeled example prior to acquiring the query example (x∗, y∗). The Kullback–Leibler
divergence DKL(U|D, x∗) is defined as:

DKL(U|D, x∗) = DKL
(

p(YU |D, x∗, y∗), p(YU |D)
)

(46)

We approximate DKL(U|D, x∗) by evaluating the average Kullback–Leibler divergence over all
the unlabeled examples of the pool YU .

DKL(U|D, x∗) =
1
|U| ∑

k∈U
DKL(p(yk|D,(x∗ ,y∗)), p(yk|D)) (47)

Since the true label y∗ of the query sample x∗ is unknown, we use the expectation of y∗ denoted
as E[y∗|µβ, x∗].
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As indicated in Section 4, both predictive distributions p(yk|D,(x∗ ,y∗)) and p(yk|D) follow
Student-t distributions. Let p(yk|D,(x∗ ,y∗))) ∼ t2aσ|D∪(x∗ ,y∗)(yk,E[yk|xk,D ∪ (x∗, y∗)], σ2

yk |xk ,D∪(x∗ ,y∗)).
Similarly, the posterior predictive distribution after acquiring y∗ is denoted as p(yk|D) ∼
t2aσ|D (yk,E[yk|xk,D], σ2

yk |xk ,D).
To simplify notation, let DKL(k|D, (x∗, y∗)) denote the Kullback–Leibler divergence between the

two predictive distributions DKL(p(yk|D,x∗ ,y∗), p(yk|D)), which is calculated as:

DKL(k|D, x∗) =
∫ ∞

−∞
p(yk|D,x∗ ,y∗)log

p(yk|D,x∗ ,y∗)

p(yk|D)
dx (48)

Substituting with the Student-t distribution formulation Equation (22) into Equation (48):

DKL(k|D, x∗) =
∫ ∞
−∞t2aσ|D∪(x∗ ,y∗)(yk,E[yk|xk,D ∪ (x∗, y∗)], σ2

yk |xk ,D∪(x∗ ,y∗))×

log
t2aσ|D∪(x∗ ,y∗)(yk,E[yk|xk,D ∪ (x∗, y∗)], σ2

yk |xk ,D∪(x∗ ,y∗))

t2aσ|D (yk,E[yk|xk,D], σ2
yk |xk ,D)

dx
(49)

where the means and variances of the posterior distributions can be given using the regression
equations in Section 4, Equations (23) and (24), respectively.

After substituting from Equation (49) into Equation (47), the Kullback–Leibler divergence
DKL(U|D, x∗) is evaluated as:

DKL(U|D, x∗) = 1
|U| ∑k∈U

∫ ∞
−∞t2aσ|D∪(x∗ ,y∗)(yk,E[yk|xk,D ∪ (x∗, y∗)], σ2

yk |xk ,D∪(x∗ ,y∗))×

log
t2aσ|D∪(x∗ ,y∗)(yk,E[yk|xk,D ∪ (x∗, y∗)], σ2

yk |xk ,D∪(x∗ ,y∗))

t2aσ|D (yk,E[yk|xk,D], σ2
yk |xk ,D)

dx
(50)

Finally, the query sample x∗ that maximizes the Kullback–Leibler divergence between the
posterior predictive distributions of unlabeled pool YUL before and after querying the query point
(x∗, y∗) is evaluated as follows:

xKL = arg maxx∗
1
|U| ∑k∈U

∫ ∞
−∞t2aσ|D∪(x∗ ,y∗)(yk,E[yk|xk,D ∪ (x∗, y∗)], σ2

yk |xk ,D∪(x∗ ,y∗))×

log
t2aσ|D∪(x∗ ,y∗)(yk,E[yk|xk,D ∪ (x∗, y∗)], σ2

yk |xk ,D∪(x∗ ,y∗))

t2aσ|D (yk,E[yk|xk,D], σyk |xk ,D)
dx

(51)

Like the two aforementioned active learning methods, we apply the three variants of active
learning settings described in Section 5.1, along with this active learning method.

5.2.4. Model Entropy (ME)

The aforementioned strategies, the two variants of mutual information and Kullback–Leibler
divergence, exploit the potential information of the unlabeled pool to guide the query selection
process. However, this novel active learning strategy, named model entropy, considers a different
aspect. The tmodel entropy method targets the ultimate objective for the exploration, as mentioned
in Section 1, which is minimizing the learning model uncertainty. In order to achieve this target, this
method emphasizes reducing the learning model uncertainty in terms of the model entropy. Thus, this
method queries the data sample that minimizes the model entropy in order to reveal the uncertainty of
the underlying model and obtain better estimates of the learning model parameters.

In general, the entropy has been used in several applications such as biological systems [46],
financial applications [47] and model selection [48]. However, to the best of our knowledge, the use of
the model entropy minimization strategy in the active learning field is novel.

According to Reference [4], the existing work in active learning literature so far mainly addresses
the following: minimizing the approximate generalization error [19] and reducing the model
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uncertainty indirectly either by choosing the example about which the model is most uncertain [15] or
by querying the example that produces the maximum model change [12].

For the general regression problem formulation presented in Section 3, using Equation (1), the
model entropy of the regression model parameters β can be formulated as follows:

H(β|x∗,D) = −
∫

β
p(β|x∗,D) log p(β|x∗,D)dβ (52)

Using the Bayesian linear regression formulation presented in Section 4 (see Equation (9)), the
model parameter β follows a multivariate Student-t distribution such that:

p(β|D, x∗, y∗) ∼ t2aσ|D∪(x∗ ,y∗)

(
µβ|D∪(x∗ ,y∗),

bσ|D∪(x∗ ,y∗)

aσ|D∪(x∗ ,y∗) − 1
Σβ|D∪(x∗ ,y∗)

)
(53)

H(β|x∗, y∗D) = −
∫

β
t2aσ|D∪(x∗ ,y∗)

(
µβ|D∪(x∗ ,y∗),

bσ|D∪(x∗ ,y∗)

aσ|D∪(x∗ ,y∗) − 1
Σβ|D∪(x∗ ,y∗))×

log t2aσ|D∪(x∗ ,y∗)(µβ|D∪(x∗ ,y∗),
bσ|D∪(x∗ ,y∗)

aσ|D∪(x∗ ,y∗) − 1
Σβ|D∪(x∗ ,y∗)

)
dβ (54)

where µβ|D,(x∗ ,y∗) and Σβ|D,(x∗ ,y∗) are the posterior mean and covariance matrix of model parameter
β, respectively and they can be evaluated using Equations (12) and (13), respectively, according to
the Bayesian linear regression formulation described in Section 4. Furthermore, the posterior values,
aσ|D∪(x∗ ,y∗) and bσ|D∪(x∗ ,y∗) are evaluated using Equations (7) and (8), respectively.

To simplify notation, let a∗ = aσ|D∪(x∗ ,y∗), µβ
∗ = µβ|D∪(x∗ ,y∗) and Σβ

∗ =
bσ|D∪(x∗ ,y∗)

aσ|D∪(x∗ ,y∗)−1 Σβ|D∪(x∗ ,y∗).

According to Reference [41], the final formulation of the entropy for the multivariate Student-t
distribution is given by:

H(β|x∗, y∗D) = 1
2

log det(Rβ|D∪(x∗ ,y∗)) + φ(2a∗, d) + (a∗ +
d
2
)M(2a∗, d, ∆β) (55)

where Rβ|D∪(x∗ ,y∗) denotes the correlation matrix of β, d is the dimensionality of β, φ is a constant

depending on d and a∗ and ∆β = µβ
∗TΣβ

∗−1µβ
∗.

M(2a∗, d, ∆β) = e−
µβ
∗T Σβ

∗−1µβ
∗

2

∞

∑
j=0

1
j!
{

Ψ(
d + a∗ + 2j

2
)−Ψ(

a∗

2
)
}

(56)

Substituting from Equation (36) into Equation (56):

M(2a∗, d, ∆β) =
((

Ψ(a∗ +
d
2
+ 1))−Ψ(a∗)

))
e−

µβ
∗T Σβ

∗−1µβ
∗

2 +1 (57)

Substituting from Equation (56) into Equation (55) results in:

H(β|x∗, y∗D) = 1
2

log det(Rβ|D∪(x∗ ,y∗)) + φ(2aD∪(x∗ ,y∗), d) + (aD∪(x∗ ,y∗) +
d
2
)×

((
Ψ(aD∪(x∗ ,y∗) +

d
2
+ 1))−Ψ(aD∪(x∗ ,y∗))

))
e
−

(aσ|D∪(x∗ ,y∗)−1)µβ
T
D∪(x∗ ,y∗)Σβ

−1
D∪(x∗ ,y∗)µβD∪(x∗ ,y∗)

2bσ|D∪(x∗ ,y∗)
+1

(58)
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However, we could safely ignore the term φ(2a∗, d) since it does not depend on the query sample
x∗. Finally, the query sample x∗ minimizing the model entropy H(β|x∗, y∗D) can be estimated as
follows:

xME = arg min
x∗

1
2

log det(Rβ|D∪(x∗ ,y∗)) + (aD∪(x∗ ,y∗) +
d
2
)×

((
Ψ(aD∪(x∗ ,y∗) +

d
2
+ 1))−Ψ(aD∪(x∗ ,y∗))

))
e
−

(aσ|D∪(x∗ ,y∗)−1)µβ
T
D∪(x∗ ,y∗)Σβ

−1
D∪(x∗ ,y∗)µβD∪(x∗ ,y∗)

2bσ|D∪(x∗ ,y∗)
+1

(59)

For this strategy, we apply both of pool-based and query synthesis active learning approaches.

5.3. Exploitation-Based Strategies

In this section, we present the exploitation-based active learning strategies for regression that we
apply in our proposed framework. Such strategies purely emphasize on maximizing a certain objective
function, with no consideration given to the concept of exploration.

First, we describe the greedy strategy that is considered a pure exploitation method. Then, we
propose using a novel active learning querying strategies that mainly focus on exploitation but in a
less myopic way than the commonly adopted greedy strategy.

5.3.1. Greedy Strategy (G)

This query strategy addresses pure exploitation by querying the sample resulting in the maximum
immediate value of the target objective function (reward). We apply this method as a baseline to
compare with, where for every iteration, the query sample is chosen to maximize the expected
utility function.

Although the greedy strategy is straightforward and simple, it is myopic in since that it purely
considers exploitation, which could result in potential revenue loss, since it pays no attention to
improving the model predictive power, which could severely affect the resulting decision, which is
commonly known as exploration.

xG = arg max
x

E[u(x)|D] (60)

where the expected utility function u can be expressed as a function of x and the regression model
coefficients β.

5.3.2. Expected Value of Perfect Information (EVPI)

We propose a decision-theoritic querying approach which is based on the expected value of
perfect information (EVPI). Evaluating the expected value of perfect information could be beneficial
for active learning since one can evaluate how revealing a certain query sample is valuable. In other
words, active learning could be guided to choose data points that do improve the gained expected
utility using EVPI. According to Russell and Norvig [49], the expected value of perfect information for
revealing a piece of information, named evidence Ej, given an initial evidence e is defined as:

E[VPIe(Ej)] = ∑
k

P(Ej = ejk|e)E[u(αejk |e, Ej = ejk)]−E[u(α|e)] (61)

where α is the action to be taken and the expected utility of taking action α given the evidence e and
after revealing Ej, E[u(αejk |e, Ej = ejk)] is defined as:

E[u(αej |e, ej)] = max
a ∑

s′
P(Result(a) = s′, e, ej)u(s′) (62)



Entropy 2019, 21, 651 20 of 45

while the expected utility of taking action α given the evidence e and without revealing Ej is denoted
by E[u(α|e)] and it is defined as:

E[u(α|e)] = arg max
a

∑
s′

P(Result(a) = s′, e)u(s′) (63)

We apply the value of information formulation to the active learning with utility maximization.
So, the action α is querying a data point x∗ to obtain its label y∗. For the initial evidence e, it denotes
the training labeled data points so far D. Also, ej represents the acquired label y∗ of the query point x∗

which represents the piece of information we seek to evaluate.
The expected value of perfect information after querying x∗ and acquiring its label y∗ is:

E[VPIe(y∗)] =
∫

yj

P(yj|x∗,D)E[u(x∗|D, yj)]−E[u(x∗|D)] (64)

Accordingly, the expected utility of acquiring the data sample x∗ given the observed training data
so far D and after observing the evidence yj, the true value of y∗, E[u(x∗|D, yj)], can be formulated as:

E[u(x∗yj
|D, yj)] = max

x
E[u(x|D, yj)] = E[uopt|D, yj] (65)

where the utility u is the target objective function to be maximized, which is conventionally a function
of the data point x and the model parameters β. µβ

∗ denotes the expectation of the updated model
parameters β after revealing point x and its label value yj.

The second term of Equation (64) could be safely ignored, since the objective is to decide whether
to acquire the data label y∗ or not, maximizing EVPI, this term is independent of y∗. This is implied
by the following equation, Equation (66). Consequently, this term does not affect the process of
maximizing EVPI.

E[u(x∗|D)] = max
x

E[u(x|D)] = E[uopt|D] (66)

Consequently, the term E[uopt|D] is constant over all query points x∗, so it could be safely
ignored. Then, evaluating the EVPI by substituting from Equation (65) into Equation (64) results in the
following formula:

E[VPID(y∗)] =
∫

yj

P(yj|D, x∗)E[uopt|D, yj]dyj −E[uopt|D] (67)

Finally, maximizing Equation (67) by differentiating it with respect to x∗, equating the obtained
derivative to zero and solving the resulting equation or using any direct optimization method, we get
the query point x∗ of the highest value of the expected value of perfect information as indicated in the
following equation.

xEVPI = arg max
x∗

∫
yj

P(yj|D, x∗)E[uopt|D, yj]dyj −E[uopt|D] (68)

The expected value of perfect information method seems similar to the mean objective cost of
uncertainty (MOCU) method proposed in Reference [31] and described in Section 2.5. Both methods
can be viewed from decision theory perspective. The MOCU method seeks to minimize the expected
regret which is the difference between the gained utility using the current model and the optimal
utility. On the other hand, the EVPI method aims to maximize the difference between the optimal
utility before and after acquiring a certain evidence. Accordingly, the MOCU method minimizes
the deviation from the optimal decision. However, the EVPI method maximizes the expected utility
improvement before and after acquiring a certain piece of information.
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5.4. Balancing Exploration and Exploitation Strategies

This section describes several active learning strategies that seek to achieve the balance between
exploration and exploitation.

5.4.1. Upper Confidence Bound (UCB)

The Upper Confidence Bound (UCB) strategy is proposed by Auer et al. in [36] in the context of
multi-armed bandit problems [35]. We apply the UCB method as an active learning baseline strategy
to compare with. The main advantage of this method is that it combines exploitation and exploration
in a simple, yet an elegant way. The UCB strategy picks the unlabeled example maximizing the upper
confidence bound of the random variable of interest, representing the utility function u.

xUCB = arg max
x∗

E[u(x∗)|D] + ησu(x∗)|D (69)

where u is the objective utility function to be maximized, E[u(x∗)|D] and σu(x∗)|D denote the expected
value and the standard deviation of the utility function for query point x∗ given the training data
acquired so far D.

5.4.2. Probabilistic-Based Exploration-Exploitation (PEE)

This active learning strategy is originally inspired by simulated annealing [50]. More specifically,
the probabilistic-based exploration-exploitation strategy is built on the ε-decreasing greedy
algorithm [51]. In order to manage the trade-off between exploration and exploitation, this algorithm
combines exploration and exploitation in a probabilistic way. With probability pR, the exploration
is performed via any exploratory strategy mentioned in Section 5.2 such as mutual information,
Kullback–Leibler divergence and model entropy strategies. Furthermore, other exploration strategies
in active learning literature can be incorporated into this method, such as uncertain sampling [4,15]
and random sampling.

The exploration probability pR is calculated as follows:

pR = αt−1 (70)

where α is less than 1 and t is the current time step or iteration number. The exploration probability
intuitively decays over time as seen in Equation (70) since the learning model gets to be more robust
and capable of performing some exploitation to achieve the ultimate goal of utility maximization.

To implement this strategy, a uniform random variable Z is generated, if Z ≤ pR, any reasonable
exploration strategy can be performed, otherwise pure exploitation is applied via maximizing the
expected utility (the greedy strategy). However, any other exploitation strategy can be employed.

For the probabilistic-based exploration-exploitation strategy, we have implemented all of our
proposed exploration based strategies in Section 5.2 in addition to uncertain sampling and random
sampling. To perform exploitation, we use the greedy strategy since it is the simplest method. Although
the greedy strategy is myopic since it does not account for enhancing the learning model estimate,
in this PEE method the greedy strategy is integrated with an exploration strategy which already
achieves an accurate model estimate.

5.4.3. Uncertainty of Strategy (UoS)

Similar to the probabilistic-based exploration-exploitation (PEE) strategy, this proposed active
learning method seeks to balance the trade-off between exploration and exploitation in a probabilistic
manner. Naturally, active learning querying strategies require a learning model estimate. Furthermore,
many active learning strategies including: uncertain sampling [1] and greedy sampling, build their
selection decisions entirely based on the learning model estimate. However, active querying methods
that fully trust their estimate of the learning model and do not account for the learning model
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uncertainty could probably yield inaccurate querying decisions. This argument motivates us to design
a novel active learning method named Uncertainty of Strategy (UoS). The UoS method accounts for
the inherent uncertainty of the querying criterion which is mainly caused by the model uncertainty or
due to any other randomness in the active querying method.

The UoS strategy seeks to achieve the balance between exploitation and exploration.
The exploitation can be easily performed using the current model estimate, for example, using greedy
sampling. On the other hand, the exploration is done as follows: the UoS strategy sets a window of
exploration around the active learning strategy’s best estimate of a data point, which is returned by
exploitation. The length of the exploration window can be estimated using the model uncertainty as
described subsequently.

Let the query sample xUoS follow a Gaussian distribution as follows:

xUoS ∼ N (xs, σs
2) (71)

where the mean of this Gaussian distribution xs represents the data point returned using pure
exploitation. For the Gaussian distribution’s variance σs

2, it essentially depends on the model
uncertainty. We estimate the strategy variance σs

2 using two different ways. The first method, named
UoS-1 assumes that the strategy variance σs

2 is proportional to the model uncertainty, where the model
uncertainty is estimated using the covariance matrix of the vector of model parameters β. Equation (72)
defines the estimation of σs

2 in terms of the model uncertainty.

σs
2 = K×

bσ|D
aσ|D − 1

trace[Σβ|D ] (72)

where K is a parameter set to adapt the units of the query point and the model parameters and to
control the exploration/exploitation trade-off.

Like the PEE method, we set the K parameter to be time variant, in order to shrink the exploration
window as iterations proceed since the model would become more reliable, so more emphasis should
be devoted to exploitation.

K = Zt−1 (73)

The second method, named UoS-2, estimates the strategy variance σs
2 empirically using a simple

Monte Carlo simulation. This simulation runs for n iterations, where each iteration i proceeds as
follows: first, an instance of model parameters vector βi is generated according to the multivariate
Student-T distribution using Equation (9). Then, this model parameters’ instance βi is used to evaluate
the query point using a pure exploitation strategy xsi, this is, generally, a simple step as done in greedy
strategy Equation (60) for example. Finally, after the n iterations finish, the strategy variance σs

2 is
statistically evaluated as follows:

σs
2 =

K
n− 1

n

∑
i=1

(xsi − x̄s)
2 (74)

where K is a parameter for adapting units of the query point and model variance and for controlling
the exploration-exploitation trade-off, akin to the UoS-1 method, K is defined in Equation (73).
The expectation of strategy returned points x̄s is evaluated as the statistical mean over the n iterations
as follows:

x̄s =
1
n

n

∑
i=1

xsi (75)

The UoS-2 method is akin to the UoS-1 method for evaluating the strategy variance σs
2 defined

in Equation (72) in since that it depends on the model uncertainty. However, this dependency is
incorporated indirectly through the described Monte Carlo simulation. Algorithm 4 describes the
UoS-2 method.
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The proposed UoS active learning method, with its two variants, is general and can be combined
with any exploitation-based strategy. Furthermore, the UoS method could be integrated with other
popular active learning methods such as uncertain sampling [1] and expected model change [12], since
most active learning strategies adhere to the greedy approach by querying a data point that maximizes
or minimizes a certain selection criterion. In other words, the UoS querying approach could be used as
a wrapper for any ordinary active learning method S that is greedy in its nature or does not consider
the uncertainty of the learned model. This could be achieved by using S as the exploitation-based
strategy used in the UoS method and adopting either of the two variants of the UoS method to estimate
the strategy uncertainty.

Algorithm 4 The Uncertainty of Sampling Second Variant (UoS-2) Querying Method

Input: A dataset D = (xi, yi), an exploitation active learning strategy S, the number of simulation
iterations n and a scaling parameter K.
Output: A query sample x∗.
Train the regression model using the training samples D to obtain the mean µβ|D and the covariance
Σβ|D of the model parameters’ vector β and the posterior estimates of aσ|D and bσ|D .
for i = 1 to n do

Sample βi from t2aσ|D (µβ|D ,
bσ|D
aσ|D

Σβ|D).
xsi ← the query sample returned after applying exploitation strategy S, using the sampled model
parameters βi.

end for
Evaluate the average query sample x̄s: x̄s =

1
n

n
∑

i=1
xsi

σs
2 ← K

n−1

n
∑

i=1
(xsi − x̄s)2.

x∗ ← Generate a query sample according to a Gaussian distribution as follows: N (x̄s, σs
2).

5.4.4. Utility minus Model Entropy (UME)

The Utility minus Model Entropy (UME) strategy controls the trade-off between exploration and
exploitation in a novel way. The UME querying method adjusts the exploration and exploitation by
explicitly modeling both of them in a formulated single objective function. Specifically, the UME
method combines the ultimate goal of maximizing a certain utility function u, representing exploitation
and the secondary but necessary target of minimizing model entropy, representing exploration, into
one objective function. Then, the strategy queries the data sample x∗ maximizing this hybrid objective
as follows:

xUME = arg max
x∗

E[u(x∗)|D]− ηH[β|x∗,D] (76)

where the model entropy H[β|p∗,D] is evaluated using Equation (58) and η is the exploration-
exploitation trade-off control parameter. We conveniently let η be exponentially decreasing in time
according to Equation (77). At early iterations, more emphasis is imposed on exploration to have better
estimate for model parameters, however at later iterations since the model estimates get more robust
over time, then more attention should be paid to the exploitation.

η = η0e−αt (77)

where t is iteration number and α > 0.
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Substituting from Equation (58) into Equation (76) results in:

xUME = arg maxx∗ E[u(x∗)|D]− η
2 log det(Rβ|D∪(x∗ ,y∗)) + φ(2aD∪(x∗ ,y∗), d)+

(aD∪(x∗ ,y∗) +
d
2 )
((

Ψ(aD∪(x∗ ,y∗) +
d
2 + 1))−Ψ(aD∪(x∗ ,y∗))

))
e
−

(aσ|D∪(x∗ ,y∗)−1)µβ
T
D∪(x∗ ,y∗)Σβ

−1
D∪(x∗ ,y∗)µβD∪(x∗ ,y∗)

2bσ|D∪(x∗ ,y∗)
+1

(78)

Since φ(2a∗, d) does not depend on the query sample x∗, then:

xUME = arg max
x∗

E[u(x∗)|D]− η

2
log det(Rβ|D∪(x∗ ,y∗))(aD∪(x∗ ,y∗) +

d
2
)×

((
Ψ(aD∪(x∗ ,y∗) +

d
2
+ 1))−Ψ(aD∪(x∗ ,y∗))

))
e
−

(aσ|D∪(x∗ ,y∗)−1)µβ
T
D∪(x∗ ,y∗)Σβ

−1
D∪(x∗ ,y∗)µβD∪(x∗ ,y∗)

2bσ|D∪(x∗ ,y∗)
+1

(79)

6. Case Study: Dynamic Pricing with Demand Learning

We apply the proposed active learning framework described in Section 5 to a real-world
application which is dynamic pricing for revenue maximization in case of unknown behavior of
the customers’ demand.

The main challenge of dynamic pricing with unknown demand is that the chosen prices should
achieve some balance between exploitation and exploration. Exploitation represents choosing prices
aiming to maximize the achieved revenue. On the other hand, exploration selects prices that promote
learning the demand model parameters. This motivates us to apply our proposed active learning
framework in Figure 1 to this application.

We assume a linear demand elasticity for modeling the customers’ demand behavior as typically
used in the economics/finance literature (see Equation (80)). The price is the main controlling variable
for demand. We assume a monopolist seller, who has a sufficient inventory to satisfy all potential
demand and we, specifically, consider pricing a single product over a finite selling horizon T.

The linear demand model equation is defined as follows:

y = a + bp + ε (80)

such that b < 0 and ε ∼ N (0, σ2).
The parameter b represents the price-demand sensitivity, so it is naturally negative since the price

and demand have an inverse relationship. For example, if price rises by 10%, demand would diminish,
On the other hand, when price decreases by 10%, demand would increase.

In order to estimate the demand model parameters a and b defined in Equation (80), we
apply the Bayesian linear regression model described in Section 4. We employ the active learning
framework with its different query generation schemes defined in Section 5.1 and described in detail
in Algorithm 1, Algorithm 2 and Algorithm 3. Applying active learning formulation to the dynamic
pricing problem, the training data D consists of some pairs of prices and their corresponding demands
(pi, yi). In addition, the query point x∗ denotes the vector [1 p∗]. For this application, the utility
function after querying a certain price p represents the gained revenue R , which is defined as follows:

R = p(a + bp) (81)

where a and b are the demand model parameters defined in Equation (80).

6.1. Active Learning Framework Application

In this section, we apply the active learning formulations represented in Section 5 to the dynamic
pricing with demand learning problem. First, the exploration-based strategies hinge on minimizing
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the regression model error, without considering the utility function u in their formulations. So,
the formulations presented in Section 5.2 can be exactly used for the underlying dynamic pricing
application. On the other hand, for the exploitation-based and the balancing strategies described in
Section 5.3 and Section 5.4 respectively, specific formulations should be derived for the considered
application, setting the utility function u to the gained revenue defined in Equation (81).

6.1.1. Exploration-Based Strategies

In our experiments, we apply the four presented strategies in Section 5.2 with pool-based and
query synthesis schemes. Moreover, for mutual information, modified mutual information and
Kullback–Leibler divergence, we implement the query synthesis approach without a predefined pool
as described in Section 5.1 and Algorithm 3. When applying the query synthesis method without a
predefined pool to the dynamic pricing problem, we construct U defined in Algorithm 3 as follows:
since the dynamic pricing application has one controlling variable, the product price, we consider the
range of all potential prices between pmin and pmax and along the active learning iterations, we exclude
the prices that are previously queried, added to the training set DL. This set of prices P are used as
unlabeled samples for evaluating the information-theoretic metrics as defined in (Equations (25), (41)
and (47)).

6.1.2. Exploitation-Based Strategies

In this section, we apply the exploitation-based strategies introduced in Section 5.3 to the dynamic
pricing with demand learning problem.

• Greedy Strategy

Given Equation (60) and setting the utility function u, to the gained revenue defined in
Equation (81) results in:

pG = arg max
p∗

E[R|p∗,D] (82)

Using the revenue definition in Equation (81), the expected revenue E[R|p∗,D] for any price p∗ is
evaluated using:

E[R∗|p,D] = p∗(x∗Tµβ|D) (83)

where x∗ = [1 p∗].

We apply the greedy strategy in pool-based setting. In addition, we apply it in the query
synthesis setting as well by maximizing the expected revenue as stated in Equation (82), using
any optimization method or even using a simple grid search if the range of prices between pmin
and pmax is limited.

By differentiating the expected revenue E[R|p∗] w.r.t price p∗, the myopic price pG maximizing
the expected immediate revenue would be calculated as follows:

pG =
−â|D
2b̂|D

(84)

where â|D and b̂|D are the estimates of the demand model parameters a and b defined in
Equation (80) using the labeled data gathered so far D.

• Expected Value of Perfect Information (EVPI)

When applying the value of information strategy to the considered problem, the action α defined
in Equation (61) is querying a price p∗. The initial evidence e represents the training labeled
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data points so far D. Similarly, ej denotes the acquired demand y of the query price p∗, which
represents the piece of information we seek to evaluate.

Accordingly, for the considered problem, the expected utility of taking action p∗ given the
evidence D and after revealing evidence yj, the expected utility term, EU(αejk|e, Ej = ejk), defined
in Equation (65) can be formulated as:

E[u(p∗yj
|D, yj)] = max

p
R(p|D, yj) (85)

where the utility u can be set to the immediate revenue R.

Using the linear demand model defined in Equation (80) and then applying the optimal price
maximizing the immediate revenue defined in Equation (84) of the greedy strategy. Consequently,
E[u(p∗yj

|D, yj)] would be defined as follows:

E[u(p∗yj
|D, yj)] =

−â2|D, (x∗, yj)

4b̂|D, (x∗, yj)
(86)

The second term of Equation (61) could be safely ignored, since the objective is to experiment a
price p∗, maximizing EVPI and this term is independent of p∗. This is implied by the following
equation, Equation (87), it can be observed that this term does not affect the process of maximizing
EVPI.

EU(p∗|D) = max
p

R(p|D, p∗) = max
p

R(p|D) = −â2|D
4b̂|D

(87)

Then, evaluating the EVPI method for revenue maximization problem, by substituting from
Equation (86) into Equation (61) results in the following formula:

EVPID(y∗) =
∫

yj

P(yj|D, x∗)
−â2|D, (x∗, yj)

4b̂|D, (x∗, yj)
dyj (88)

Finally, maximizing Equation (88) by differentiating it with respect to p∗, equating the derivative
to zero and solving the resulting equation or using any direct optimization method, we get the
price maximizing the expected value of perfect information as follows:

pEVPI =
∗

arg max
x

∫
yj

P(yj|D, x∗)
−â2|D, (x∗, yj)

4b̂|D, (x∗, yj)
dyj (89)

6.1.3. Balancing Exploration and Exploitation Strategies

In this section, we consider applying the balancing strategies that combine both aspects of
exploration and exploitation and attempt to achieve balance between both of them.

• Upper Confidence Bound (UCB)

Applying the UCB strategy to the dynamic pricing problem and setting the utility function u
defined in Equation (69) to the immediate revenue R results in:

pUCB = arg max
p∗

E[R|p∗,D] + ησR|p∗ ,D (90)

where E[R|p∗,D] and σR|p∗ ,D are the expectation and the standard deviation of the estimated
immediate gained revenue R in response to price p∗ and using training data labeled so far D.

The expected revenue E[R∗|x∗,D] is calculated as:
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E[R∗|p∗,D] = p∗E[y|x∗,D] (91)

where the expected demand E[y|x∗,D] is computed using the Bayesian linear regression (see
Equation (23)) presented in Section 4.

Accordingly:
E[R∗|x∗,D] = p∗(x∗Tµβ|D) (92)

Using revenue definition in Equation (81) and the posterior variance for demand defined in
Equation (24), the variance of revenue σ2

R∗ |x∗ ,D is calculated as follows:

σ2
R∗ |x∗ ,D = p∗2 bσ|D

aσ|D − 1
(
1 + x∗TΣβ|Dx∗

)
(93)

Substituting from Equations (92) and (93) into Equation (90), then the price maximizing the UCB
criterion can be evaluated as defined in Equation (94).

pUCB = arg max
p∗

p∗(x∗Tµβ|D) + ηp∗
√

bσ|D
aσ|D − 1

(
1 + x∗TΣβ|Dx∗

)
(94)

where Σβ|D is evaluated using Equation (6). For the Gamma distribution parameters aσ|D and
bσ|D , they are evaluated using Equations (7) and (8), respectively.

• Probabilistic-based Exploration-Exploitation (PEE)

In our experiments, we apply several instances of this hybrid strategy. We combine the pure
exploitation, greedy, strategy as defined in Equation (84), with all the proposed exploration-based
methods in addition to the popular active learning method, uncertain sampling [15] and we apply
random sampling as a representative for random exploration.

• Uncertainty of Strategy (UoS)

For the uncertainty of strategy method, defined in Equation (71), the resulting price pUoS follows
a Gaussian distribution:

pUoS ∼ N(ps, σs
2) (95)

where the mean of this Gaussian distribution, ps, represents the price returned using pure
exploitation, which is the greedy strategy as defined in Equation (84). Regarding the variance
of strategy σs

2, it can be evaluated using two variants: in terms of model uncertainty and using
Monte Carlo simulation as described in Section 5.4, specifically using Equations (72) and (74),
respectively.

• Utility minus Model Entropy (UME)

The UME criterion as defined in Equation (76) is a function of the utility which is the immediate
revenue and the model entropy. Consequently, substituting from Equations (31), (58) and (92)
into Equation (76) results in the following equation:

pUME = arg max
p∗

p∗(x∗Tµβ|D)−
η

2
log det(Rβ|D∪(x∗ ,y∗))(aD∪(x∗ ,y∗) +

d
2
)×

((
Ψ(aD∪(x∗ ,y∗) +

d
2
+ 1))−Ψ(aD∪(x∗ ,y∗))

))
e
−

(aσ|D∪(x∗ ,y∗)−1)µβ
T
D∪(x∗ ,y∗)Σβ

−1
D∪(x∗ ,y∗)µβD∪(x∗ ,y∗)

2bσ|D∪(x∗ ,y∗)
+1

(96)



Entropy 2019, 21, 651 28 of 45

where x∗ = [1 p∗] and d is the dimensionality which equals to 2 in the dynamic pricing
application, with linear demand elasticity as defined in Equation (80). Therefore, by differentiating
the objective function defined in Equation (96) and equating the resulting equation to zero, we
can get the price maximizing the UME.

7. Experiments

7.1. Experimental Setup

In order to evaluate the performance of the proposed active learning framework summarized in
Figure 1, as well as three baseline active learning methods including: random sampling (RS), the greedy
or myopic strategy (check Section 5.3.1) and upper confidence bound method, which is intensively
used in the multi armed bandit context [36] (see Section 5.4.1). In our experiments, we apply the
proposed active learning framework to the dynamic pricing with demand learning problem described
in Section 6. In the presented experiments, we mainly focus on analyzing the exploitation strategies
introduced in Section 5.3 and the strategies balancing between exploitation and exploration presented
in Section 5.4 since the main interest of the paper is applying active learning to utility optimization,
which is exploitation.

In this work, we aim to perform a qualitative analysis to evaluate the performance of the
pool-based approach versus the query synthesis approach since the query synthesis approach is
computationally more efficient than the commonly adopted pool-based approach. Furthermore, the
query synthesis approach could be more beneficial for objective optimization, such as maximizing
revenue or even minimizing the learning model error, since it is not restricted to a certain given
pool of samples. For mostly, all of the proposed active learning strategies including: our proposed
strategies and the baseline methods, we implement two variants: one in pool-based setting and the
other using query synthesis. In addition to these two active learning schemes, we further apply the
third method, query synthesis without a predefined pool described in Section 5.1, to our proposed
active learning methods that require the existence of a pool of unlabeled samples such as mutual
information (MI), modified mutual Information (MMI) and Kullback–Leibler divergence (KL), in
addition to the probabilistic-based exploration-exploitation (PEE) methods using either of MI, MMI or
KL strategies for exploration.

In our experiments, we experiment different variants of the the probabilistic-based exploration-
exploitation (PEE) approach combining greedy exploitation strategy with several exploration methods
including our proposed approaches described in Section 5.2 in addition to random sampling and
uncertain sampling [15]. The implemented PEE methods combining our proposed exploration methods
presented in Section 5.2 with greedy sampling are denoted as KL-G, MI-G, MMMI-G and ME-G.
In addition, we denote combining random and greedy sampling as (RS-G). Similarly, the method
combining uncertain and greedy sampling is denoted as (US-G).

Some strategies such as the two variants of uncertainty of strategy (UoS) are basically designed so
that the query point is generated or derived by optimizing an objective function. So, for these strategies
we consider the query synthesis approach only since the pool-based approach does not apply for UoS.

In the adopted experiments, we apply the Bayesian linear regression model with conjugate prior
of the model parameters β and σ, as described in Section 4, for estimating the demand at each iteration.

We conduct our experiments on synthetic and real datasets. The advantage of using artificial data
is that the true model parameters β = [a; b] are known. Accordingly, the ground truth value for the
objective function, that is, the gained revenue, can be accurately computed with the knowledge of
the true optimal model parameters as defined in Equation (81). Moreover, the estimation error of the
model parameters β can be properly evaluated.
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Evaluation Metrics

We assess the performance of our proposed active learning framework in terms of two aspects:
the gained utility (revenue) and the accuracy of estimating the regression model parameters.

In order to evaluate the utility maximization, we measure the revenue gain or a normalized version
of the total discounted utility uT achieved in the considered time period as defined in Equation (97).
We adopt discounted utilities to place more emphasis on getting rewards soon, as widely used in
reinforecement learning [52].

uGain =
∑T

i=1 γi−1ui

∑T
i=1 γi−1uopt

(97)

where ui is the revenue obtained at iteration i and uopt is the optimal revenue given the true model
parameters a and b, which is calculated as:

uopt = popt(a + bpopt) (98)

where popt is the optimal price, which equals to −a
2b in case of linear demand model defined in

Equation (80). Simplifying the term ∑T
i=1 γi−1 using the summation of geometric series formula,

as follows:

uGain =
∑T

i=1 γi−1ui

(1− γT)/(1− γ)uopt
(99)

For the applications where the optimal utility is not known or cannot be evaluated, the total
discounted utility can be used as an evaluation metric.

Concerning the demand model estimation error, we evaluate it in terms of the deviation of the final
estimated demand model parameters ∆β, from the true parameters β as indicated in Equation (100).
The final model estimate is evaluated using the expectation of β given the training data µβ|D , as defined
in Section 4.

∆β =
||β− µβ|D ||2
||β||2

(100)

7.2. Experiments Using Synthetic Datasets

We perform a Monte Carlo simulation, generating 12 synthetic datasets of different parameters a,
b and noise levels σ. We use two values for a, a = 100 and a = 1000. For each value for a, we adopt
three different values for the sensitivity parameter b representing elastic demand (b = −2), neutral
demand (b = −1) and inelastic demand (b = −0.5). Two different values are adopted for the noise
parameter σ representing low (5%) and high (40%) noise levels. Investigating different noise levels
enables us to analyze the impact of the noise on the different active learning strategies and evaluate
their immunity towards noise. Moreover, for the dynamic pricing problem, we use different noise
levels as a way for aggregating all other influencing factors that could affect the demand and may be
hard to model, such as competition, seasonality or perishability of the products.

For each dataset, we run the experiment 10 runs and we present the average results over the
runs. The synthetic datasets are created as follows: first, we generate N = 1000 price points from a
Gaussian distribution with mean µp and variance σp

2. Then, we assign values for demand elasticity
parameters a and b. After that, assuming a linear demand model, we calculate the corresponding
demands using Equation (80). We express the noise level parameter σ in terms of a percentage of the
maximum possible demand a.

In our experiments, we set µp and σp of the Gaussian distribution used for generating the pricing
data, using the pricing boundaries given by the seller pmin and pmax. For µp, it is the mean price of
the prices in range of the [pmin, pmax], which equals to pmin+pmax

2 . Similarly, for the standard deviation
sigmap, it is estimated using the standard deviation of the potential prices in the range of [pmin, pmax].
We set multivariate Gaussian prior for β as follows: µ = [10,−0.5], Σ = 104I. For the inverse Gamma
prior distribution parameters of the noise parameter σ2, we set aσ = 2 and bσ = 1.



Entropy 2019, 21, 651 30 of 45

The simulation proceeds as follows: for each problem, we generate a pool of price-demand
data points, starting with a very limited number of data points, Ninit = 3 points, then we train a
Bayesian regression model to obtain an initial estimate for the model parameters β. After that, we run
the different exploitation and balancing active learning strategies described in Sections 5.3 and 5.4,
respectively, with different schemes: pool-based, query synthesis and query synthesis without a
predefined pool. For the query synthesis strategies (with and without pool variants), we assume that
there is an oracle revealing the true demand value y∗ for the chosen query point x∗. For each active
learning strategy, we evaluate its performance by measuring the percentage revenue gain defined in
Equation (99) and model estimation error defined in Equation (100).

Generally, most of the strategies balancing between exploration and exploitation have a
hyper-parameter that controls the trade-off between exploration and exploitation. We set the controlling
parameters of the balancing strategies introduced in Section 5.4 as follows: for the UCB method, the η

parameter in Equation (69) is set to 0.01. For the PEE method, the α parameter in Equation (70) is set to
0.7. The K parameter of UoS strategy first variant, UoS-1, the parameter Z in Equation (73) is set to 0.5,
while it is set to 0.7 for the second variant UoS-2. Finally, we set α parameter defined in Equation (77),
such that at the last iteration T, where the exploration is nearly diminished, η equals to a small value:
η = 0.3. Regarding the η0 parameter of the same equation, Equation (77), we use values to let the
impacts of the exploitation and exploration be comparable at the first iteration.

For the price-demand curve estimation problem, we enforce a constraint that the chosen price p∗

at each iteration is within the pricing interval defined by the seller where the minimum allowable price
is pmin and the maximum possible price pmax, accordingly pmin ≤ p∗ ≤ pmax. The active learning loop
continues till reaching a certain predefined number of iterations T = 100. For the pool-based strategies,
the pool size N = 1000. We set the discount factor of revenue gained γ used in Equation (99) to 0.99.

The average results for the revenue gain and the regression model estimation error for different
active learning strategies using different noise levels are represented in Tables 1 and 2, respectively.

Table 1. The average revenue gain of the active learning methods, over twelve synthetic datasets, using
different noise levels σ. The strategies are sorted descendingly according to their average revenue gain
over the two noise levels. The bold entries represent the maximum revenue gain per column (over
all strategies).

Active Learning Strategy σ = 5% σ = 40% Average over Noise levels

KL-G-Pool 99.17% 93.40% 96.28%
KL-G-Synth-Nopool 98.17% 90.65% 94.41%

UoS-1-Synth 99.64% 88.71% 94.18%
RS-G-Pool 98.02% 89.78% 93.90%

MMI-G-Synth-Nopool 99.31% 88.41% 93.86%
MMI-G-Synth 99.17% 88.50% 93.84%

MI-G-Synth-Nopool 99.19% 88.34% 93.77%
UME-Synth 99.60% 87.11% 93.36%
UoS-2-Synth 99.17% 87.43% 93.30%
RS-G-Synth 95.38% 90.49% 92.94%

G-Synth 99.49% 85.25% 92.37%
KL-G-Synth 98.85% 85.30% 92.08%
ME-G-Synth 99.22% 83.48% 91.35%
MI-G-Synth 99.41% 82.97% 91.19%
MI-G-Pool 99.11% 83.18% 91.14%

MMI-G-Pool 98.93% 80.17% 89.55%
ME-G-Pool 99.17% 79.74% 89.46%
EVPI-Synth 89.12% 86.33% 87.73%
EVPI-Pool 85.97% 87.86% 86.92%
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Table 1. Cont.

Active Learning Strategy σ = 5% σ = 40% Average over Noise levels

G-Pool 99.57% 68.28% 83.92%
UME-Pool 99.49% 68.13% 83.81%

US-G-Synth 85.15% 80.66% 82.91%
UCB-Pool 99.64% 64.19% 81.92%

UCB-Synth 99.48% 58.31% 78.90%
RS 77.61% 78.58% 78.09%

US-G-Pool 96.43% 57.67% 77.05%

Table 2. The average percentage model error of the active learning methods, over twelve synthetic
datasets, using different noise levels σ. The strategies are sorted ascendingly according to their model
estimation error over the two noise levels. The bold entries represent the minimum estimation error
per column (over all strategies).

Active Learning Strategy σ = 5% σ = 40% Average over Noise levels

RS 0.67% 8.74% 4.70%
RS-G-Synth 1.49% 10.35% 5.92%
EVPI-Pool 3.10% 9.46% 6.28%
RS-G-Pool 2.75% 10.10% 6.42%

EVPI-Synth 3.47% 10.49% 6.98%
MI-G-Pool 3.84% 11.11% 7.48%

KL-G-Synth-Nopool 2.61% 13.56% 8.09%
KL-G-Pool 2.88% 14.73% 8.81%

US-G-Synth 0.64% 17.64% 9.14%
UCB-Synth 4.38% 14.48% 9.43%

UoS-1-Synth 5.38% 15.20% 10.29%
KL-G-Synth 2.05% 18.90% 10.47%
UoS-2-Synth 6.02% 15.77% 10.90%
UME-Pool 2.63% 19.70% 11.17%
US-G-Pool 5.02% 17.53% 11.27%

G-Pool 3.64% 19.31% 11.48%
ME-G-Pool 5.14% 18.08% 11.61%
MI-G-Synth 3.42% 23.01% 13.21%
MMI-G-Pool 5.02% 22.76% 13.89%

MMI-G-Synth-Nopool 3.27% 25.01% 14.14%
MMI-G-Synth 4.11% 27.14% 15.62%

MI-G-Synth-Nopool 4.21% 27.54% 15.87%
UME-Synth 5.28% 26.66% 15.97%

G-Synth 5.24% 27.82% 16.53%
ME-G-Synth 6.02% 27.37% 16.69%

UCB-Pool 4.64% 30.13% 17.39%

One of the main contributions of this work is to perform a comparative analysis between the query
synthesis and pool-based active learning approaches and demonstrate the benefits of applying active
learning query synthesis based strategies for utility maximization. Accordingly, in the performed
experiments, for each active learning, except random sampling since it is considered a passive learning
method, we adopt a pool-based version and a query synthesis one. We provide an empirical analysis
between both approaches. We include both aspects of the achieved revenue gain and model estimation
error. Tables 3 and 4 represent the average revenue gain and the average model estimation error,
respectively, for pool-based methods versus query synthesis ones.
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Table 3. The average revenue gain for the pool-based versus query synthesis approaches, over twelve
synthetic datasets, using different noise levels σ. The bold entries represent the maximum average
revenue gain per row (over the two active learning approaches).

Dataset Noise Level σ Pool-Based Query Synthesis

a = 100, b = −0.5 σ = 5% 98.66% 98.36%
σ = 40% 80.44% 80.85%

a = 100, b = −1 σ = 5% 96.41% 95.24%
σ = 40% 88.92% 90.86%

a = 100, b = −2 σ = 5% 98.45% 98.47%
σ = 40% 83.80% 91.81%

a = 1000, b = −0.5 σ = 5% 97.71% 97.99%
σ = 40% 56.24% 78.17%

a = 1000, b = −1 σ = 5% 97.49% 96.25%
σ = 40% 89.12% 82.93%

a = 1000, b = −2 σ = 5% 96.59% 97.84%
σ = 40% 64.92% 84.16%

Average σ = 5% 97.55% 97.36%

Average σ = 40% 77.24% 84.80%

Average 87.40% 91.08%

Table 4. The average percentage model error for the pool-based versus query synthesis approaches,
over twelve synthetic datasets, using different noise levels σ. The bold entries represent the minimum
average estimation error per row (over the two active learning approaches).

Dataset Noise Level σ Pool-Based Query Synthesis

a = 100, b = −0.5 σ = 5% 3.21% 4.60%
σ = 40% 12.59% 26.55%

a = 100, b = −1 σ = 5% 2.79% 2.51%
σ = 40% 6.39% 9.01%

a = 100, b = −2 σ = 5% 4.73% 2.63%
σ = 40% 16.58% 20.75%

a = 1000, b = −0.5 σ = 5% 4.03% 2.68%
σ = 40% 14.33% 17.72%

a = 1000, b = −1 σ = 5% 4.79% 3.97%
σ = 40% 31.24% 28.39%

a = 1000, b = −2 σ = 5% 3.64% 6.66%
σ = 40% 22.61% 17.95%

Average σ = 5% 3.87% 3.84%

Average σ = 40% 17.29% 20.06%

Average 10.58% 11.95%

In addition, in order to investigate the superiority of either active learning approach, we evaluate
the percentage of the pool-based strategies versus the query synthesis strategies existing in the top-10
performing methods in terms of achieving revenue gain, averaged over the different synthetic datasets,
as presented in Table 5. Similarly, Table 6 shows the percentage of strategies from both approaches,
pool-based and query synthesis, placed in the top-10 strategies achieving minimum regression model
estimation error.
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Table 5. The percentage of strategies in the top-10 strategies achieving revenue gain belonging to
the pool-based approach versus the query synthesis approach, over twelve synthetic datasets, using
different noise levels σ. The bold entries represent the maximum percentage per row (over the two
active learning approaches).

Dataset Noise Level σ Pool-Based Query Synthesis

a = 100, b = −0.5 σ = 5% 50.00% 50.00%
σ = 40% 30.00% 70.00%

a = 100, b = −1 σ = 5% 50.00% 50.00%
σ = 40% 40.00% 60.00%

a = 100, b = −2 σ = 5% 50.00% 50.00%
σ = 40% 60.00% 40.00%

a = 1000, b = −0.5 σ = 5% 50.00% 50.00%
σ = 40% 70.00% 30.00%

a = 1000, b = −1 σ = 5% 60.00% 40.00%
σ = 40% 20.00% 80.00%

a = 1000, b = −2 σ = 5% 50.00% 50.00%
σ = 40% 50.00% 50.00%

Average σ = 5% 51.67% 48.33%

Average σ = 40% 45.00% 55.00%

Average 48.33% 51.67%

Table 6. The percentage of strategies in the top-10 strategies achieving the least regression model error,
belonging to the pool-based approach versus the query synthesis approach, over twelve synthetic
datasets, using different noise levels σ. The bold entries represent the maximum percentage per row
(over the two active learning approaches).

Dataset Noise Level σ Pool-Based Query Synthesis

a = 100, b = −0.5 σ = 5% 30.00% 70.00%
σ = 40% 20.00% 80.00%

a = 100, b = −1 σ = 5% 50.00% 50.00%
σ = 40% 40.00% 60.00%

a = 100, b = −2 σ = 5% 60.00% 40.00%
σ = 40% 40.00% 60.00%

a = 1000, b = −0.5 σ = 5% 70.00% 30.00%
σ = 40% 20.00% 80.00%

a = 1000, b = −1 σ = 5% 40.00% 60.00%
σ = 40% 40.00% 60.00%

a = 1000, b = −2 σ = 5% 20.00% 80.00%
σ = 40% 60.00% 40.00%

Average σ = 5% 45.00% 55.00%

Average σ = 40% 36.67% 63.33%

Average 40.83% 59.17%

7.3. Experiments Using Real Datasets

To have the parameters more realistic, we have used several real datasets described in Table 7.
We have gathered the first dataset in the table, transport, online though surveying. The dataset is a
transportation ticket pricing data, where we ask users about the minimum and maximum fares they
would pay for an economy class bus ticket of an air-conditioned bus between any general two cities,
City A and City B, such that City A is away around 220 km from City B. We collected 41 responses
from different users. In order to have data in the form of price and demand pairs, we perform the
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following. For each price, we calculate the corresponding demand as the number of users who can
afford this price according to the minimum and maximum prices of the data.

For beef dataset, it is obtained from the USDA Red Meats Yearbook [53]. The sugar dataset is
adopted from Reference [54] and the spirits dataset is originated from Reference [55]. Finally, the coke
dataset is adopted from Reference [56].

Table 7. A description for the real-world datasets.

Dataset Size â b̂ σ̂ Mean of Prices µp Standard Deviation of Prices σp

Transport 41 41.3778 −0.1378 3.3902 145.00 90.8295
Beef 91 30.0515 −0.0465 0.5670 250.44 37.01

Sugar 18 1.3576 −0.3184 0.0292 1.005 0.0824
Spirits 69 4.4651 −1.2723 0.0573 2.1184 0.2089
Coke 20 50.5700 −0.3406 1.9319 22.96 3.2376

There is one hurdle in using such real datasets. In our proposed active learning framework,
especially the query synthesis approach, the chosen data point or chosen price p∗ could potentially be
outside the available prices provided in the dataset. Thus, we utilize the dataset mainly for estimating
linear demand model parameters vector β using ordinary least squares linear regression. Concerning
the noise parameter σ2, we estimate it using the maximum likelihood estimator. The estimated model
parameters â, b̂ and σ̂ for all the real datasets, are listed in Table 7. Using the obtained demand model
parameters, we generate synthetic data using these parameters, with the same methodology described
in Section 7.2. However, the mean and variance of the Gaussian distribution for generating pricing
data mup and vp, are estimated using the original prices of the real datasets.

Tables 8 and 9 represent the revenue gain and the estimation error of the regression model
parameters, respectively, for the five considered real datasets described in Table 7.

Table 8. The revenue gain for the different active learning strategies using the five real datasets. The
bold entries represent the maximum revenue gain per column (over all strategies).

Active Learning Strategy Transport Beef Sugar Spirits Coke

G-Pool 98.53% 99.61% 79.17% 99.23% 63.49%
G-Synth 98.85% 99.81% 99.25% 99.08% 98.59%

EVPI-Pool 84.65% 94.28% 72.31% 94.32% 51.90%
EVPI-Synth 99.38% 87.95% 89.02% 86.11% 97.50%
UCB-Pool 98.94% 99.60% 79.17% 99.26% 63.49%

UCB-Synth 98.76% 99.77% 98.72% 99.44% 98.41%
MI-G-Pool 98.52% 99.55% 79.01% 99.43% 63.08%

MI-G-Synth 98.62% 99.04% 98.58% 99.26% 97.14%
MI-G-Synth-Nopool 98.75% 99.50% 98.73% 99.23% 97.27%

MMI-G-Pool 98.19% 99.57% 79.06% 99.40% 63.01%
MMI-G-Synth 98.51% 99.43% 98.51% 99.29% 96.82%

MMI-G-Synth-Nopool 98.16% 99.40% 98.37% 99.39% 97.19%
KL-G-Pool 98.70% 99.22% 78.79% 99.32% 63.05%

KL-G-Synth 99.10% 98.42% 99.00% 98.77% 99.13%
KL-G-Synth-Nopool 98.19% 98.66% 99.41% 98.62% 99.21%

ME-G-Pool 98.83% 99.58% 79.03% 98.86% 63.09%
ME-G-Synth 98.88% 99.47% 98.59% 99.35% 97.33%
US-G-Pool 95.53% 99.74% 79.15% 98.18% 63.46%

US-G-Synth 84.86% 86.34% 89.95% 93.42% 86.53%
RS-G-Pool 97.84% 98.94% 78.57% 99.28% 62.81%

RS-G-Synth 95.40% 97.00% 97.17% 96.22% 96.15%
UoS-1-Synth 98.61% 99.69% 99.31% 99.27% 98.70%
UoS-2-Synth 98.01% 99.70% 98.72% 99.50% 99.15%
UME-Synth 98.63% 99.68% 93.60% 99.15% 99.85%
UME-Pool 98.53% 99.53% 78.90% 99.14% 62.38%

RS 78.54% 93.45% 71.89% 94.12% 52.10%
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Table 9. The percentage error of regression model parameters for the different active learning strategies
for the real datasets. The bold entries represent the minimum estimation error per column (over
all strategies).

Active Learning Strategy Transport Beef Sugar Spirits Coke

G-Pool 7.19% 5.36% 4.56% 3.36% 1.71%
G-Synth 9.60% 3.36% 1.02% 6.50% 1.31%

EVPI-Pool 2.24% 2.26% 3.62% 0.43% 2.34%
EVPI-Synth 4.62% 0.52% 1.17% 5.78% 1.53%
UCB-Pool 6.14% 4.89% 4.56% 3.28% 1.95%

UCB-Synth 9.15% 3.47% 1.45% 4.36% 1.44%
MI-G-Pool 7.18% 4.60% 3.66% 3.22% 1.79%

MI-G-Synth 9.76% 1.87% 1.16% 3.98% 1.89%
MI-G-Synth-Nopool 9.34% 3.47% 1.41% 5.17% 1.07%

MMI-G-Pool 10.78% 4.69% 4.26% 2.77% 1.65%
MMI-G-Synth 11.45% 2.35% 1.09% 4.90% 1.01%

MMI-G-Synth-Nopool 11.81% 4.07% 1.11% 3.79% 1.71%
KL-G-Pool 3.95% 4.87% 3.37% 3.42% 1.94%

KL-G-Synth 4.16% 1.59% 1.91% 0.70% 1.57%
KL-G-Synth-Nopool 8.50% 2.21% 1.60% 2.23% 1.54%

ME-G-Pool 5.64% 4.44% 3.81% 4.14% 1.70%
ME-G-Synth 8.84% 3.42% 0.94% 3.41% 1.81%
US-G-Pool 10.23% 2.87% 4.12% 1.48% 1.86%

US-G-Synth 3.17% 0.82% 0.50% 0.77% 0.85%
RS-G-Pool 6.23% 2.50% 5.38% 1.70% 3.41%

RS-G-Synth 2.22% 1.02% 1.00% 0.92% 1.10%
UoS-1-Synth 10.38% 4.10% 1.35% 3.04% 2.24%
UoS-2-Synth 10.86% 3.39% 1.50% 3.57% 1.05%
UME-Synth 9.93% 3.30% 0.59% 4.64% 1.05%
UME-Pool 8.16% 4.53% 7.35% 3.14% 1.94%

RS 1.49% 1.46% 2.59% 1.43% 2.72%

Table 10 summarizes the average utility (revenue) gain and average model percentage error,
averaged over the five real datasets described in Table 7, for all the considered active learning strategies.

Table 10. The average results of active learning methods in terms of the average revenue gain and
average percentage error, over the five considered real datasets. The strategies are sorted descendingly
according to their average obtained revenue gain. The bold entries for the first column represent the
maximum average revenue gain over all strategies and the bold entries for the second column represent
the minimum estimation error over all strategies.

Active Learning Strategy Average Revenue Gain Average Model Percentage Error

UoS-1-Synth 99.12% 4.22%
G-Synth 99.12% 4.36%

UCB-Synth 99.02% 3.97%
UoS-2-Synth 99.02% 4.07%
KL-G-Synth 98.88% 1.99%

KL-G-Synth-Nopool 98.82% 3.22%
ME-G-Synth 98.72% 3.68%

MI-G-Synth-Nopool 98.70% 4.09%
MI-G-Synth 98.53% 3.73%

MMI-G-Synth 98.51% 4.16%
MMI-G-Synth-Nopool 98.50% 4.50%

UME-Synth 98.18% 3.90%
RS-G-Synth 96.39% 1.25%
EVPI-Synth 91.99% 2.72%
US-G-Synth 88.22% 1.22%
UCB-Pool 88.09% 4.16%

G-Pool 88.01% 4.44%
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Table 10. Cont.

Active Learning Strategy Average Revenue Gain Average Model Percentage Error

MI-G-Pool 87.92% 4.09%
ME-G-Pool 87.88% 3.95%

MMI-G-Pool 87.85% 4.83%
KL-G-Pool 87.82% 3.51%
UME-Pool 87.70% 5.02%
RS-G-Pool 87.49% 3.84%
US-G-Pool 87.21% 4.11%
EVPI-Pool 79.49% 2.18%

RS 78.02% 1.94%

We have experimented different values for the number of initial training points Ninit in order to
evaluate the impact of varying the number of initial training points on the performance of the different
active learning methods. Tables 11 and 12 show the average revenue gain and model percentage
error, respectively, averaged over the five considered real datasets described in Table 7. For space
considerations, we include the results of this experiment for the real datasets only. The synthetic
datasets exhibit a very similar behavior.

Table 11. The average revenue gain of active learning methods versus different number of initial
training points Ninit, averaged over the five considered real datasets. The bold entries represent the
maximum average revenue gain per row (over the different number of initial training points Ninit).

Active Learning Strategy Ninit = 3 Ninit = 5 Ninit = 10

G-Pool 88.01% 88.14% 88.14%
G-Synth 99.12% 99.46% 99.82%

EVPI-Pool 79.49% 80.87% 80.06%
EVPI-Synth 91.99% 94.81% 97.33%
UCB-Pool 88.09% 88.21% 88.19%

UCB-Synth 99.02% 99.47% 99.82%
MI-G-Pool 87.92% 87.68% 87.92%

MI-G-Synth 98.53% 98.85% 99.21%
MI-G-Synth-Nopool 98.70% 98.92% 98.96%

MMI-G-Pool 87.85% 87.93% 87.88%
MMI-G-Synth 98.51% 98.87% 99.14%

MMI-G-Synth-Nopool 98.50% 98.65% 99.14%
KL-G-Pool 87.82% 87.72% 87.65%

KL-G-Synth 98.88% 99.08% 98.47%
KL-G-Synth-Nopool 98.82% 98.40% 99.00%

ME-G-Pool 87.88% 88.11% 87.98%
ME-G-Synth 98.72% 98.95% 99.31%
US-G-Pool 87.21% 86.74% 87.52%

US-G-Synth 88.22% 86.88% 88.33%
RS-G-Pool 87.49% 87.64% 87.77%

RS-G-Synth 96.39% 95.76% 97.22%
UoS-1-Synth 99.12% 99.39% 99.76%
UoS-2-Synth 99.02% 99.12% 99.30%
UME-Synth 98.18% 98.13% 99.20%
UME-Pool 87.70% 87.79% 87.74%

RS 78.02% 79.15% 79.30%
Average 92.66% 92.87% 93.24%
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Table 12. The average model percentage error of active learning methods versus different number of
initial training points Ninit, averaged over the five considered real datasets. The bold entries represent
the minimum average estimation error per row (over the different number of initial training points
Ninit).

Active Learning Strategy Ninit = 3 Ninit = 5 Ninit = 10

G-Pool 4.44% 3.02% 1.72%
G-Synth 4.36% 2.99% 1.90%

EVPI-Pool 2.18% 1.35% 1.07%
EVPI-Synth 2.72% 1.94% 2.07%
UCB-Pool 4.16% 2.93% 1.83%

UCB-Synth 3.97% 2.56% 1.77%
MI-G-Pool 4.09% 2.37% 1.79%

MI-G-Synth 3.73% 2.11% 1.12%
MI-G-Synth-Nopool 4.09% 1.98% 1.00%

MMI-G-Pool 4.83% 3.16% 1.65%
MMI-G-Synth 4.16% 2.77% 0.67%

MMI-G-Synth-Nopool 4.50% 2.67% 2.12%
KL-G-Pool 3.51% 2.43% 2.76%

KL-G-Synth 1.99% 3.17% 2.37%
KL-G-Synth-Nopool 3.22% 2.13% 2.18%

ME-G-Pool 3.95% 2.56% 1.51%
ME-G-Synth 3.68% 2.78% 1.38%
US-G-Pool 4.11% 3.16% 1.70%

US-G-Synth 1.22% 1.47% 1.04%
RS-G-Pool 3.84% 1.83% 1.67%

RS-G-Synth 1.25% 1.53% 1.08%
UoS-1-Synth 4.22% 3.10% 1.80%
UoS-2-Synth 4.07% 2.61% 1.75%
UME-Synth 3.90% 3.48% 1.97%
UME-Pool 5.02% 3.91% 1.59%

RS 1.94% 1.46% 0.98%
Average 3.58% 2.52% 1.63%

Similar to the synthetic datasets, we compare both active learning approaches, pool-based and
query synthesis over the five real datasets in terms of the revenue gain and the model estimation error.
Thus, Tables 13 and 14 demonstrate the average revenue gain and average model estimation error for
both approaches over the five real datasets presented in Table 7.

The percentage of pool-based strategies versus query synthesis strategies ranked within the top-10
strategies in terms of the revenue gain is presented in Table 15. Similarly, for model estimation error,
Table 16 shows the percentage of strategies of both active learning approaches placed within the top-10
strategies achieving the least model estimation error.

Table 13. The average revenue gain for the pool-based approach versus query synthesis approach,
using the five real datasets. The bold entries represent the maximum average revenue gain per row
(over the two active learning approaches).

Dataset Pool-Based Approach Query Synthesis Approach

Transport 96.83% 97.51%
Beef 98.96% 97.59%

Sugar 78.32% 97.13%
Spirits 98.64% 97.74%
Coke 61.98% 97.26%

Average 86.94% 97.45%
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Table 14. The percentage model error for the pool-based versus query synthesis strategies, using five
the real datasets. The bold entries represent the minimum average estimation error per row (over the
two active learning approaches).

Dataset Pool-Based Approach Query Synthesis Approach

Transport 6.77% 8.25%
Beef 4.10% 2.60%

Sugar 4.47% 1.19%
Spirits 2.69% 3.58%
Coke 2.03% 1.41%

Average 4.01% 3.41%

Table 15. The percentage of pool-based versus query synthesis strategies, ranked within the top-10
strategies achieving the highest revenue gain, using the five real datasets. The bold entries represent
the maximum percentage per row (over the two active learning approaches).

Dataset Pool-Based Approach Query Synthesis Approach

Transport 30.00% 70.00%
Beef 50.00% 50.00%

Sugar 0.00% 100.00%
Spirits 40.00% 60.00%
Coke 0.00% 100.00%

Average 24.00% 76.00%

Table 16. The percentage of pool-based versus query synthesis strategies ranked within the top-10
strategies with respect to achieving the least percentage model error, using the five real datasets. The
bold entries represent the maximum percentage per row (over the two active learning approaches).

Dataset Pool-Based Approach Query Synthesis Approach

Transport 60.00% 40.00%
Beef 30.00% 70.00%

Sugar 0.00% 100.00%
Spirits 50.00% 50.00%
Coke 0.00% 100.00%

Average 28.00% 72.00%

8. Discussion

In this section, we investigate the empirical results presented in Section 7. The main findings
inferred from the experimental results are summarized as follows:

• It is evident from the presented results presented in Tables 1 and 10, that our proposed active
learning strategies, especially the balancing methods, outperform the standard baselines: the
upper confidence bound method, greedy sampling and random sampling, in terms of the achieved
utility function (the revenue gain). There are several reasons for this compelling performance.

First, our proposed balancing methods attain the balance between exploration and exploitation
using several novel approaches as described in Section 5.4. For example, for the proposed
uncertainty of sampling method (UoS), it combines both aspects of utility maximization and
regression model estimation in a probabilistic way, where the exploration is controlled using the
model uncertainty.

In addition, the utility minus entropy (UME) method incorporates the model uncertainty, in
addition to the utility function into one hybrid objective function to be optimized, as indicated in
Equation (76). The explicit formulation of exploration in the active learning selection criterion
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imposes an emphasis over the exploration in order to obtain accurate model estimation and hence
achieve high future utility returns along the active learning iterations.

Finally, in the probabilistic-based exploration-exploitation method, we employ several powerful
exploration methods, with the pure exploration method, the simple greedy sampling. The
proposed exploration methods presented in Section 5.2, which are Kullback–Leibler divergence,
mutual information and model entropy, have a great impact on estimating the regression model
parameters, which indirectly helps boosting the gained utility (revenue).

• Table 1 shows the revenue gain for different artificial datasets, using different noise levels. It could
be observed from this table that our proposed balancing strategies between exploration and
exploitation such as the two variants of UoS, the four variants of PEE method combining the
information theoretic exploration and pure exploitation: KL-G, MI-G and MMMI-G, ME-G and
UME, show a significant revenue gain compared to the pure exploitation strategies such as greedy
sampling and EVPI, especially for noisy datasets where σ = 40%.

• Moreover, Table 1 indicates that the proposed balancing strategies outperform the baselines
including: random sampling, greedy method and the UCB method. It can be observed that our
proposed balancing strategies yield a substantial utility (revenue) gain in case of large noise
40%. For example, the KL-G strategy in both pool-based and synthetic settings, achieves around
2%–4% improvement, on average, over greedy sampling (GS). Furthermore, the KL-G method
achieves 13%–15% improvement over the upper confidence bound (UCB) method [36] and around
16%–18% over random sampling RS.

• Table 2 demonstrates the estimation error of the regression model parameters, averaged over
different artificial datasets for all the considered active learning strategies. Our proposed balancing
strategies achieving high utility (revenue) gain such as KL-G in both pool and synthesis settings,
UoS-1 and UoS-2, are not the best performing methods in terms of the model estimation error.
However, these methods eventually yield a better model estimation than the baselines including:
greedy sampling and UCB as indicated in Table 2. Furthermore, the main target is utility (revenue)
optimization and the model estimation is a necessary but secondary objective. Moreover, the other
proposed balancing strategies such as KL-G, MI-G and MMI-G have comparable performance to
the baselines.

• For the real datasets, it can be observed from Table 10 that our proposed first variant of the
uncertainty of strategy (UoS-1) is the best performing method in terms of the revenue gain.
Although G-Synth has the same average revenue gain as UoS-1 method’s gain, the UoS-1 method
has lower estimation error rates than G-Synth. As mentioned in Section 5.4, the UoS-1 method
accounts for the model uncertainty to control the exploration window (see Equation (72)). In
addition to its promising performance, the UoS method is practically simple to implement.

• The two variants of our introduced balancing method, uncertainty of strategy (UoS), achieve
significant performance in terms of the achieved revenue gain as indicated in Tables 1 and 10 for
synthetic and real datasets, respectively. The major reason for the significant performance of the
UoS method is that it accounts for the uncertainty of the selection criterion itself. Furthermore,
this method combines the exploration and exploitation probabilistically like the UCB and the
PEE methods.

• Regarding the proposed PEE methods: KL-G, MI-G, MMMI-G and ME-G, they produce
substantial performance in terms of the achieved revenue gain for synthetic and real datasets,
as shown in Tables 1 and 10, respectively. Specifically, the KL-G method is the best performing
method in terms of the achieved revenue gain for the synthetic datasets (see Table 1).

• Furthermore, for the results of the real datasets presented in Table 10, the KL-G, MI-G, MMI-G and
ME-G methods are of the top-10 strategies with respect to the achieved revenue gain. Moreover,
for the model estimation error, they are comparable to the considered baselines. However, the
KL-G variants provide competitive model estimation for both synthetic and real datasets as shown
in Tables 1 and 10, respectively.
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• There are three major reasons for the promising results of the PEE strategies: KL-G, MI-G, MMI-G
and ME-G. First, these strategies are based on information theoretic concepts: Kullback–Leibler
divergence [44] and entropy [43], as described in Section 5.2. Second, these methods adopt a
probabilistic approach for balancing the exploration and exploitation as presented in Section 5.4,
unlike the UCB method. The third reason is that the employed exploration strategies perform an
effective exploration since they take into account the information of the unlabeled samples and
the model uncertainty.

• In addition to our proposed strategies of the probabilistic-based exploration-exploitation (PEE)
method, we have extended two more PEE methods combining uncertainty sampling [1] and
random sampling, to perform exploration, with greedy sampling for exploitation. We experiment
these two baselines for comparison purposes. For synthetic datasets, it could be noticed from
Table 2 that the RS-G method with both versions, pool-based and query synthesis, achieves
comparative model estimation. However, the RS-G method compromises the achieved revenue
gain as indicated from Table 1, since it obtains a revenue gain that is around 3%–4% below the top
method, KL-G-Pool. Similarly, for the real datasets’ results presented in Table 10, the two methods
US-G and RS-G obtain accurate model estimate, however both of these methods compromise the
achieved revenue.

• These results essentially elucidate the significance of our proposed information-theoretic
exploration strategies presented in Section 5.2. Although the same exploitation method is used,
the greedy sampling and the same probabilistic approach, the PEE method, is followed for
combining exploration and exploitation (see Section 5.4), the proposed methods, specifically,
KL-G and MMMI-G, exhibit better performance than the US-G and RS-G methods in terms of the
achieved revenue, which is the main target.

Furthermore, our proposed methods obtain model estimation performance close to the US-G and
RS-G methods, for both synthetic and real datasets as presented in Tables 1 and 10, respectively.
The other two proposed methods MI-G and ME-G, also outperform the RS-G and US-G methods,
for real datasets and produce comparable performance for the synthetic datasets.

The reason for the performance preeminence of our proposed information theory-based strategies
over the US-G and RS-G methods in terms of revenue gain is that the proposed methods essentially
exploit the potential information of the unlabeled data and the model uncertainty. Moreover,
these strategies not only improve the model estimation error but also query representative data
samples that minimize the model uncertainty, which promotes the exploitation performance.

• From Table 10, it can be noticed that the greedy sampling performs well in the real datasets, since
the considered real datasets have very low noise, expressed in terms of σ̂ in Table 7. Also, the
UCB baseline [36] performs comparably well on the real datasets due to the datasets’ robustness.
Similarly for artificial datasets, Table 1 shows that for the low noise datasets, having σ = 5%,
both of the greedy sampling and the UCB methods perform quite well, comparable to the best
performing method, our proposed balancing method UoS-1. On the other hand, for the noisy
datasets where σ = 40%, both of the greedy sampling and the UCB methods result in poor
performance, in terms of the gained revenue. This could be apparently observed from Table 1.

• Regarding the other developed pure exploitation method, namely the expected value of
information (EVPI), it could be noticed from Tables 2 and 10, the EVPI strategy results in better
model estimation than the greedy sampling as EVPI chosen samples incur some diversity unlike
the points chosen by the greedy method which essentially queries points maximizing the utility
function. However, the greedy sampling, adequately, outperforms EVPI in case of low noise and
for real datasets (see Tables 1 and 10, respectively). On the other hand, for the noisy datasets, the
EVPI approach, in both settings pool-based and query synthesis, attains larger revenue gain than
the corresponding methods for greedy sampling as shown in Table 1 since the EVPI method is
less myopic than the greedy sampling, so it is more immune to the noisy datasets.

• Concerning the random sampling (RS) baseline method, since it is a pure exploration strategy,
convincingly, it does not achieve high revenue gains for synthetic and real datasets as indicated
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in Tables 1 and 10, respectively. However, since random sampling could be regarded as a pure
exploration methods, it, intuitively, performs well with respect to the model estimation error as
shown in Tables 1 and 10, for synthetic and real datasets, respectively. However, as previously
mentioned, random sampling considerably jeopardizes the gained revenue.

• In this work, we perform a comparative empirical analysis between the pool-based and query
synthesis active learning approaches. The empirical analysis considers both evaluation metrics,
the achieved gained utility (revenue) and the percentage regression model error. As we
mentioned in Section 7, we exclude the random sampling from this analysis since it is a passive
learning method.

• Concerning the revenue gain, Tables 3 and 13 demonstrate the average revenue for the strategies
of each approach, for synthetic and real datasets, respectively. It could be observed that the query
synthesis approach clearly outperforms the pool-based approach for both the artificial (with
improvement around 3.5%) and real datasets (with improvement around 10%). The improvement
is more significant in case of real datasets as will be discussed subsequently. Moreover, as
indicated in Table 15, the query synthesis approach is more dominant within the top-10 strategies
in terms of achieving revenue gain, for real datasets. Specifically, 76% of the top-10 strategies
achieving revenue gain, belong to the query synthesis approach, whereby only 24% strategies are
pool-based methods.

• Regarding the low noise synthetic data, both of pool-based and query synthesis approaches result
in similar performance in terms of average revenue gain as shown in Table 3.

• On the other hand, in case of large noise level, it could be inferred from Table 3 that the query
synthesis approach surpasses the pool-based one. In other words, the revenue gain improvement
of the query synthesis over the pool-based approach is around 7.5%. In addition, the query
synthesis methods have higher ranks than the pool-based ones in terms of the average revenue
gain. Specifically, the ratio between the former and the latter is 55% to 45%, respectively. These
results are persuasive since for noisy data, the pool of samples could be misleading, so querying a
synthetic data sample in the global input space, that is not necessarily belonging to a specific set
of data samples, would be more effective for optimizing a certain utility function.

• Regarding the model percentage error, the pool-based approach produces a slightly better model
estimate for artificial datasets (see Table 4). However, the query synthesis methods have more
advanced ranks than the pool-based methods as presented in Table 6, for both of the low and
high noise levels.

• By examining the real datasets results, we can find that the query synthesis approach accomplishes
less error rates than the pool-based approach as shown in Table 14. In addition, when investigating
the top-10 strategies in terms of minimizing the model estimation errors in Table 16, one could
observe that the query synthesis methods occupy 72% of the top-10 strategies, compared to 24%
for the pool-based methods.

• The two real datasets, namely the sugar and coke datasets, described in Table 7 represent typical
cases where the pool-based approach suffers from a major performance hurdle in terms of the
obtained revenue gain as presented in Table 13. The reason for the poor performance of the pool
based approach for these two datasets is that the available pool of data samples is limited and not
representative enough. Furthermore, the available data samples do not contain the optimal price
maximizing the target utility function, which is the gained revenue.

• For example, for the coke dataset, according to the linear demand model parameters presented in
Table 7 and using the revenue equation (Equation (81)), the optimal price maximizing revenue is
−â
2b̂

= 74.24. However, the mean and the standard deviation, of the available prices of this dataset
are µp = 22.96 and σp = 3.2376, respectively. Accordingly, the available prices of the pool are
too far from optimal, that is why the pool-based strategies do not perform well on this dataset.
The sugar dataset exhibits a very similar behavior as well. The lack of diversity in the pool is
considered a serious drawback for the pool-based approach. In contrast, the query synthesis
approach is not affected by such problem since the query synthesis approach chooses the data
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sample to be labeled from the entire input space and it is not restricted by the available pool of
data (see Tables 13 and 15).

• One could infer from Tables 1 and 10 that the two variants of query synthesis approach with
a predefined pool (see Algorithm 2) and without a predefined pool (see Algorithm 3), yield
comparable performance for the different strategies. This is reasonable since both methods are
logically equivalent, they only differ in implementation details. The query synthesis without a
predefined pool approach, defined in Section 5.1 is essentially designed for the applications where
it could be complicated to have a pool of representative data samples to be used for the information
theory-based active learning strategies, namely KL, MI and MMI. In our experiments, we utilize
the domain knowledge of the pricing data and construct a set of data samples belonging to the
price range defined by the seller [pmin, pmax] to be used by the information theoretic methods: KL,
MI and MMI.

• Finally, Tables 11 and 12 show that increasing the initial training points enhances the performance
of most of the active learning methods, in terms of both the revenue gain and the model estimation
accuracy. These results are reasonable since having more initial data samples promotes the
regression model’s accuracy, so the gained revenue is improved as well. In addition, Table 12
indicates that as the number of initial training samples increases, the performance of the different
active learning methods gets closer to each other since the initial model estimate gets more robust.
For the revenue gain, the query synthesis methods achieve similar performance as indicated in
Table 11 for Ninit = 10. However, most of the pool-based methods do not achieve a significant
performance improvement due to the limitation of the pool-based approach, previously discussed,
for some real datasets, the sugar and coke datasets.

9. Conclusions

In this paper, we propose a novel active learning framework for optimizing a general utility
function. Specifically, this work targets the class of problems incurring some trade-off between
exploration and exploitation. We introduce several novel active learning methods for exploration,
exploitation and for balancing both. The presented exploration strategies are essentially based on
information theory concepts such as mutual information (MI), Kullback–Leibler divergence (KL) and
model entropy (ME). Consequently, when combined with exploitation, such information theoretic
exploration methods achieve promising performance in terms of the achieved utility and the learning
model error as well. Furthermore, we develop new approaches for balancing exploration and
exploitation such as the uncertainty of strategy (UoS) method that controls the exploration window
according to the model uncertainty. In addition, we present another balancing method, utility minus
entropy (UME) where the model entropy is explicitly modeled and augmented with the target utility
function into one hybrid objective function to be optimized.

In this work, we investigate two main approaches of active learning, the pool-based approach
which is widely used in active learning literature and the membership query synthesis approach.
Moreover, we present an empirical analysis for comparing both approaches. The experiments show
the exceptional performance of the query synthesis approach compared to the pool-based approach
for the synthetic and real datasets. The compelling results for query synthesis approach could help
boosting the active learning research towards employing the query synthesis approach.

We have applied the proposed framework to an operation research related application, namely,
dynamic pricing with demand learning. However, our proposed framework can easily be adapted
to other applications. We perform several experiments using synthetic and real datasets. In our
experiments, we compare our proposed active learning strategies to several baselines and our presented
strategies yield a significant performance improvement in terms of both aspects: the achieved gained
revenue and the regression model error.
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