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Abstract: Accurate face segmentation strongly benefits the human face image analysis problem. In this
paper we propose a unified framework for face image analysis through end-to-end semantic face
segmentation. The proposed framework contains a set of stack components for face understanding,
which includes head pose estimation, age classification, and gender recognition. A manually labeled
face data-set is used for training the Conditional Random Fields (CRFs) based segmentation model.
A multi-class face segmentation framework developed through CRFs segments a facial image into six
parts. The probabilistic classification strategy is used, and probability maps are generated for each
class. The probability maps are used as features descriptors and a Random Decision Forest (RDF)
classifier is modeled for each task (head pose, age, and gender). We assess the performance of the
proposed framework on several data-sets and report better results as compared to the previously
reported results.

Keywords: face analysis; face segmentation; head pose estimation; age classification; gender
classification

1. Introduction

The problem of human face image analysis is a fundamental and challenging task in computer
vision. It plays a key role in various real world applications such as surveillance, animation and
human computer interaction. However, it is still a challenging task due to changes in facial appearance,
visual angle, complicated facial expressions and the background. In particular, in the un-constrained
conditions it has much more complications.

Each of these face analysis tasks (head pose, age and gender recognition) are approached as
individual research problem through various sets of techniques [1–8]. We argue that all these tasks are
very closely related and essentially can help each other if a prior efficiently segmented face image is given
as input. It is also confirmed by psychology literature that face parts such as nose, hair, and mouth
helps human visual system in face identity recognition [9,10]. Therefore, performance of all related
applications can be improved if a well segmented face image is provided as input to the framework.

The facial attribute information such as head pose estimation, age classification, and gender
recognition is already being predicted using facial landmarks information [4,11]. However, the
performance of head pose and any other applications in such cases heavily depends on accurate
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localization of these landmarks [5,7,12]. Locating these face landmarks is itself a big challenge. These
points localization are greatly affected in certain cases such as occlusion, face rotation and if the quality
of the image is very low. Similarly, in far-field imagery conditions, these landmarks extraction are not
only difficult but some-times impossible. Lighting conditions and complicated facial expressions also
make the localization part challenging. Due to all problems mentioned above, we approach the face
analysis task in a complete different way.

In this paper we introduce a unified framework, which addresses all the three face analysis tasks
(head pose, age, and gender recognition) through a prior multi-class face segmentation model that was
developed through CRFs. We named the newly proposed multitask framework HAG-MSF-CRFs. It
is a jointly estimation probability task that tackles it using a very powerful random forest algorithm.
Specifically, the proposed framework can be formulated as;

(h, a, g) = arg max
h,a,g

p(h, a, g|I, B) (1)

where head pose, age, and gender recognition are represented by h, a and g respectively. Similarly, in
Equation (1), I is the input face image and B is the bounding box which is provided by the face detector.

In our previous work we already tackle the problem of multi-class semantic face segmentation
(MSF) [13] and its application to head pose estimation [14,15] (MSF-HPE) and gender classification [16].
In most of the previous works, face segmentation is considered as three or some-times four classes face
segmentation task. In the MSF, face segmentation is extended to six classes (eyes, nose, mouth, skin,
back and hair). However, we were facing some major problems in previously proposed MSF. Firstly,
the computation cost of MSF is quite high, as MSF provides a class label to each and every pixel in an
image, which ultimately takes a long time. A super-pixel based model is used instead which reduces
the processing cost. Secondly, the MSF does not consider any conditional hierarchy between different
face parts. For example, it is not possible for the eye region to be near to the mouth region and vice
versa. A CRFs based model is introduced in this paper, which couples all labels in a face image in a
scaled hierarchy. Going from MSF to the newly proposed MSF-CRFs improves the performance of the
segmentation part.

Our proposed multi-task framework is comparable to another approach known as the influence
model (IM). This model was first introduced by researchers in the MIT media laboratory [17,18].
The IM estimates how the state of one actor affects another in the system. Our proposed model is
somehow similar to the model proposed in [17,18]. In such cases, an outcome in one entity in a system
causes outcome in another entity in the same system. In simple words, if one domino is flipped, the
next domino will fall automatically and vice versa. In IM it is necessary to know how certain dominoes
interact with each other and how one is influenced by another. If the initial state of the dominoes
is known with relative location to another, then the outcome of the system is predicted with more
accuracy. When the system network structure is already known, the IM enables researchers to infer
interaction; however, information about signals from different observations are needed.

To summarize, contributions of the paper are three fold:

• We propose a new multi-class face segmentation algorithm MSF-CRFs. The MSF-CRFs model uses
the idea of CRFs between various face parts.

• We develop a new multi-tasks face analysis algorithm HAG-MSF-CRFs. The HAG-MSF-CRFs tackles
all the three tasks, which include head pose, age, and gender recognition in a single framework.

• Detailed experiments are conducted on state-of-the-arts (SOA) data-sets, and better results are
reported comparatively.

The structure of the remaining paper is as follows: Section 2 describes related works for all the
three cases i.e., head pose, age, and gender recognition. Several data-sets are use to evaluate the
framework. Details about these databases is given in Section 3. The segmentation model MSF-CRFs is
presented in Section 4, whereas the proposed algorithm for face analysis (HAG-MSF-CRFs) is discussed
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in Section 5. All obtained results are discussed and compared with SOA in Section 6. The paper is
summarized with some future directions in Section 7.

2. Related work

Our newly proposed model is closely related to IM based built systems. The IM framework
is already used in the automatic recognition tasks of social and task-oriented functional roles in
group-meetings [17,18]. The classification of social functional roles has been improved as compared
to Hidden Markov Models (HMM) and support vector machine (SVM) [18] through IM. The two
versions proposed in [18] outperform both HMM and SVM based results in the social functional role
problems. The IM methods showed excellent performance, particularly in less populated classes.
Media segmentation is performed with IM in cases particularly having rich information [19–21].
The keywords information are exploited in [22] to identify journalists, anchors, and guest speaker if
any in a radio program. The maximum entropy algorithm is used for getting the classification accuracy.
The IM based algorithms are applied to many audio and visual recognition tasks, for details, more
papers can be explored in [23–28].

Before describing the proposed framework, we briefly review related methods for head pose,
age, and gender classification. A rich literature and history is already present about all these three
topics. However, in this section of the paper we provide a cursory overview of how these tasks were
previously approached by researchers.

2.1. Head Pose Estimation

Pose of an image can be classified into three broad categories; yaw, pitch, and roll. The yaw angles
represents the horizontal orientation and the pitch vertical orientation of a face image. The image plane
is represented by the roll angles. We evaluated our proposed algorithm for head pose estimation on
four data-sets, which included Pointing’04 [29], Annotated Facial Landmarks in the Wild (AFLW) [30],
Boston University (BU) [31], and ICT-3DHPE [32] data-sets.

Two types of information were previously used to approach the head pose estimation i.e., facial
landmarks and face image appearance. In the former case, a POSIT algorithm [9] is used to find
correspondence between pints in 2D shapes and points in 3D models. In the latter case, various image
appearance features such as SIFT, LBP, HOG etc. are exploited for head pose estimation. Discriminative
learning models such as Random Forest and Support Vector Machine (SVM) are trained and tested
using the extracted features [4,10]. A more detailed survey on head pose estimation can be explored
in [5].

2.2. Age Classification

Age classification is a well-researched topic in computer vision society. Previously, age estimation
was studied as a classification or regression problem. In the first case, age is associated with a specific
range or age group. In the second case, the exact age of a face image is estimated. Recently a survey
paper was reported on age estimation in [33]. All data-sets used for age estimation were discussed and
a detailed overview was presented about the algorithms proposed thus far. A detailed investigation
of age classification between specific ranges or age groups was presented in [34]. Similarly, another
algorithm is introduced to classify age from facial images in [35]. Initially, the appearance of face
wrinkles is detected and then age categorization is performed based on the extracted wrinkles. The
previous idea [35] was further extended in [36] by first localizing the facial features. The modeling
of craniofacial growth was performed through psychophysical and anthropometric evidences in [36].
The main drawback of this approach was: accurate localization of facial features is needed in any case.

A subspace method called AGing PatErn subspace is introduced in [37,38]. In these algorithms,
aging features from face images were extracted and an adjusted robust regressor was trained to
categorize face ages. These methods showed excellent performance compared to SOA methods.
However, two serious weaknesses are faced by these algorithms. The input images must be frontal,
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and the face images must be well-aligned. The approaches proposed in these algorithms are suited for
databases collected in indoor environmental conditions. Practical applications of these methods in the
un-constrained conditions is almost impossible.

A cost-sensitive hyper-planes ranking method is introduced in [39]. The algorithm proposed
in [39] is a multi-stage learning method which is also known as ‘a grouping estimation fusion’ (DEF)
method in the literature. Similarly, a novel features selection method was proposed in [40]. In a
nutshell, all these previously mentioned methods showed good performances in indoor lab conditions,
but failed when exposed to the real-world conditions.

Recently introduced Deep Convolutional Networks (CNNs) showed excellent performance for
different visual recognition problems. A hybrid system for age and gender classification is proposed
in [41]. CNNs are used to extract features from the face images, whereas an extreme learning machine
(ELM) is used as a classification tool. The authors of the paper named their proposed method as
CNNs-ELM. The system is evaluated on two data-sets, MORPH-II [42] and Adience [43]. To the best of
our knowledge, this is the best algorithm performing on a joint problem of gender and age recognition
thus far. A weakness reported by the authors of the paper is: miss-classification occurs when the
system is exposed to younger faces.

2.3. Gender Classification

A detailed investigation about gender recognition was conducted by Makinen and Raisamo [44].
The early researchers who worked on gender recognition used neural network [45]. An SVM classifier
was used by Moghaddam and Yang [46]. Similarly, an Adaboost classifier was adapted by Baluja
and Rowley [47]. In all these methods image was used as one dimensional feature vector and certain
features are extracted from it. A joint framework of age and gender recognition was proposed by
Toews and Arbel [48]. The model proposed by the authors is a view-point invariant appearance model
which is robust to local scale rotations.

Gender classification analysis based on human gait and linear discriminant algorithms was
provided by Yu et a. [49]. A new benchmark to study age and gender classification was suggested
in [43]. Through the available data, a classification pipeline is presented by the authors of the paper.
Khan et al. [50] proposed a semantic pyramid, dealing both gender and action recognition. Annotation
for face and upper body was not needed in the proposed method. First part of the name was used as a
feature and a modeling mechanism of the name part and face images was performed in the next stage
in a method proposed in [51]. Higher accuracy was reported with proposed method as compared to
SOA. Recently, a generic algorithm to estimate gender, race, and age in a single framework is proposed
in [52].

All the above-mentioned approaches made lots of progress and contribution towards gender
recognition. However, most of these methods were aimed either at non-automated estimation methods
or only worked well in very constrained imaging environments.

3. Databases

In this paper we use six different face databases to perform the three tasks i.e., head pose, age
and gender classification. For head pose estimation we use Pointing’04, AFLW, BU, and ICT-3DHPE
data-sets. For age classification we use Adience and FERET [53] data-sets. For gender recognition we
perform tests with Adience database only.

3.1. Head Pose Estimation

• Pointing’04 database: The Pointing’04 database is a manually annotated face database. Even
though it is a comparatively old head pose data-set, it is still used for research purposes [54–56] due
to its challenging nature and large variety with consecutive poses. All the images in the Pointing’04
database are low resolution images captured in low lighting conditions. The Pointing’04 contains
15 sets of face images. Each set is further divided into 2 sets having 93 images for each candidate at
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various orientations. The age of each subject in the database is kept between the range 20-40 years.
To add more complexity to the database images, five subjects were included with facial hair and
seven were wearing glasses. The pan and tilt angle determined the head pose of a subject. Each
subject in the database acquisition was asked to look into 93 markers marked on the wall. Each
marker represented a specific pose. The given face localization in Pointing’04 may not be accurate
due to manual labeling. A sample of the images of a single candidate at 93 different locations is
shown in Figure 1. For yaw, the head orientation varied between -90◦ to +90◦ with a step size of
15◦ between two adjacent poses. For pitch, the positive values corresponded to the top poses and
negative to the bottom poses. The difference between two consecutive poses in the pitch is 30◦.

• AFLW Data-set: Images in AFLW exhibited variations in facial expression, lighting conditions,
face appearance, and some other environmental factors. All these images were obtained from
the internet. The AFLW contained both the frontal and non-frontal images. The frontal images
had six facial expressions. More difficulties were added to the images in the form of certain facial
accessories. The images were collected from 9 different lighting conditions. In short, AFLW is a very
challenging data-set, since the data-set is collected in the real world with un-constrained conditions.

• BU Data-set: The BU data-set has two image sequences, i.e., images collected in uniform lighting
conditions and images exposed to rather complex scenarios by changing the lighting conditions.
We used RGB images only for the experiments. We considered all the three rotations, which
included pitch, roll and yaw. A total of 5 subjects participated in the image acquisitions process.
A magnetic tracker was attached to each subject’s head to obtained the ground truth images.

• ICT-3DHPE: A Kinect sensor was used to collect the ICT-3DHPE images. This data-set contains
both the depth and RGB images. However, we only used the RGB images in our work. Six male
and four females participated in the image collection process. The ground truth images were more
accurate in this case as well (like BU data-set), because a magnetic tracker was attached to each
participant’s head. It must be noted that the ground truth images creation method for Pointing’04
and AFLW is a type of manual labeling method. The chances of error exists while providing labels
to the ground truth data.

Figure 1. Pointing’04 database images of a single subject in all 93 poses.

3.2. Age and Gender Classification Data-Sets

• Adience Benchmark: It is a recently released un-constrained image database which is used both for
age and gender recognition. All these images were created from smart phone devices. These images
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included variations such as pose, lighting, appearance, noise, and more—meaning the data-set
has all conditions of un-constrained image database. The total number of images in Adience are
26,580, whereas the total number of participants are 2284. The exact age of each candidate is not
specified, and each subject is assigned to 8 different age groups i.e., [0,2], [4,6], [8,13], [15,20], [25,32],
[38,43], [48,53], [60,+]. The data-set can be obtained from the Open University of Israel (computer
vision lab).

• LFW data-set: The LFW database consists of 13,233 images for 5,749 subjects. The data-set was
collected in un-constrained conditions. All these face images were collected from the web. It is an
imbalanced database, because the number of male candidates are 10,256 whereas female images
are 2,977.

• FERET data-set: This is also an old data-set that is widely used to develop and evaluate various
facial recognition methods. The database was collected in controlled indoor conditions with gender
information for each subject. The data-set is composed of 14,126 images whereas the total number
of participants were 1,199. We used the colored version from the FERET database. Some variations
of facial expressions, lighting conditions and face pose were kept while image acquisition – made
the database a rather challenging one. The database consists of both frontal and non-frontal images.
We applied our algorithm to both set of images (between -45◦ and +45◦).

4. Proposed MSF-CRFs

The overview of the MSF-CRFs model for semantic face segmentation is shown in Figure 2.
The labeling problem is modeled efficiently with the proposed MSF-CRFs, which combines the output
from the built classifier with image location information. This modeling process helps in maximizing a
posteriori. The unary potential models each pixel belonging to each class and the pairwise potential
models the relationship between two pixels.

Figure 2. The MSF-CRFs graphical model. The input face image in grid cell represents a random
variable. The unary potentials are represented by the white circles and the pairwise potential by solid
white lines.

As face parts are not localized in most of the images, a face localization algorithm is applied in
start. In the literature there are many good methods for face detection, so we use a CNNs based face
detector [57]. After localizing the face parts, all face images are re-scaled to a fixed size with a height
256 pixels and the width is adjusted accordingly to keep the original image ratio.

The proposed MSF-CRFs model encodes segmentation probability with features of an image.
Initially an image is segmented into super-pixels. The segmentation is represented by Z and this can
be represented as Z = z1, z2, ..., zn, where n is the total number of super-pixels in the input image. zi
can take the value of any of the six face parts (nose, eyes, mouth, hair, back and skin). For super-pixel
segmentation we use SEEDs [58] algorithm.
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We also need to develop some conventions about node and edge features. We represent the node
features by Zm and edge features by Ze. We develop a log linear CRFs model which can be written as:

ψ(si = q, zm
i ) =

Fm

∑
f=1

(Xm
q ) f (zm

i ) f (2)

ψ(si = q1, sj = q2,= ze
i,j) =

Fe

∑
f=1

(Xe
q1,q2

) f (ze
i,j) f (3)

In Equations (2) and (3), super-pixel features are represented by Fm whereas Zm
i represents a vector

having length Fm. The neighboring super-pixels features are represented by Fe. The final resultant
feature vector developed is Ze

i,j. Similarly, each node and edge weight are adjusted with Xm and Xe

respectively. A pair of classification labels in the above Equations is represented by q1, q2. In the
proposed MSF-CRFs model we use symmetric edge potential.

The probability of segmentation conditional on Z can be represented as:

P(s|z) =

exp(−
m

∑
i=1

ψ(si, zm
i )−∑

i,j
ψ(si, sj, ze

i,j))

N(Z)
(4)

N(Z) represents the partition function in Equation (4). This function acts as a normalization factor
for the distribution. We use Bethe Approximation [55] for the partition function in the MSF-CRFs
model. Similarly, for marginal approximation we use a loopy belief propagation algorithm. For CRFs
optimization, we use the algorithm as in L-BFGS [59]. For weight regulations we also added the
Gaussian to the model.

To assess the accuracy of the segmentation estimates, we apply an L1 error to each segmentation
estimate. We also penalize each super-pixel as per the difference between the correct label prediction
probability and a value 1.0. For example, if a super-pixel has a probability value of 0.7 for being skin
(and skin is also the ground truth label of the super-pixel), a penalty value of 0.3 will be incurred as
a result.

We compute three types of features for the node listed as; position, HSV color and shape related
information (HOG).

For spatial information an 8 × 8 grid is considered, and then the relative location of the central
pixel is extracted. This location is defined as:

floc = [x/W, y/H] ∈ R2 (5)

Where W represents the width and H height of the input face image.
For color features, the information from HSV histogram is extracted. The three values (hue,

saturation, and variance) are encoded in a single vector constituting a unique feature vector for color
information. The dimension of each patch for HSV is kept as DHSV= 16 × 16, whereas the number
of bins are set 32. The resulting feature vector for the color information with these values will be
F16

HSV ∈ R48.
For shape information we use HOG. We keep the dimension of the patch for HOG as DHOG=

64 × 64, which results a feature vector F64×64
HOG ∈ R1764

All the three features are concatenated with each other to form a single vector.

5. Proposed HAG-MSF-CRFs

Our proposed algorithm is summarized in Algorithm 1. Initially a segmentation model is
developed through the CRFs. For face segmentation, the built model MSF-CRFs outputs the most likely
class for each super-pixel. The same label is then assigned to each pixel within the super-pixel. For the
classification of head pose, age and gender we use the probability maps created during segmentation
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of each class. Probability maps generated for each class are represented as: Pnose, Pback, Peyes, Pskin,
Pmouth, and Phair. Figure 3 show some images from Pointing’04 data-set and their probability maps.
In the gray-scale images in Figure 3, higher intensity represents higher probability of prediction
for a particular class and vice versa. For each task (head pose, age, and gender) we train an RDF
classifier with a feature vector of the corresponding probability maps. The probability maps are used
as feature descriptor.

Algorithm 1 proposed HAG-MSF-CRFs algorithm
Input: Mtrain = {(In,Tn)}m

n=1, Mtest.

where Mtrain is the data used for training model A, Mtest is the testing data, I is the input training
image and T(i,j) ∈ {1,2,3,4,5,6} is the ground truth data.

a: Face segmentation part:

Step a.1: Training a segmentation model A through training data (training images and labels)

Step a.2: Finding the center of each super-pixel, extracting patches and passing to the model A

Step a.3: Using the probabilistic classification method and creating probability maps for each class,
represented as:

pskin, pmouth, peyes, pnose, phair, and pback

b. Head pose, age and gender classification part:

if head pose estimation:

f = pskin + pmouth + peyes + pnose + phair

Else if age classification:
f = pskin + pmouth + peyes + pnose + phair

Else if gender recognition:
f = pskin + peyes + pnose + phair

where f is the feature vector.

c. Training an RDF classifier for each case (head pose, age and gender)

Output: estimated pose, age class and gender.

5.1. Head Pose Estimation

We manually labeled 10 images from each pose of each data-set. The manually labeled images
are used to build an MSF-CRFs model as discussed previously. For all images of every data-set, the
probability maps are generated. When a test image is given as input, the MSF-CRFs model creates the
probability maps for all classes and all images.

To understand which facial parts help in head pose estimation we conducted a large number of
experiments. We use probability maps for the eyes, nose, mouth, skin, and hair. Probability maps in
the form of feature descriptors are concatenated to train and test an RDF classifier. We use 10-fold
cross validation experiments in our work. Those 10 images, which were previously used to create an
MSF-CRFs model were not included in the 10-fold cross validation experiments. The probability maps
of a single subject from Pointing’04 data-set are shown in Figure 3. From the Figure 3, it is clear that
variation occurs as the pose changes from one position to another. For example taking the skin class
(third row), forehead is more exposed to the camera in frontal images. As a result, probability map
for brighter part is more concentrated to the center part. Similarly, on extreme left and right profile
images, high intensity values are occupied on smaller area. We encoded this information for all classes
in the form of feature descriptors and developed a new head pose estimation algorithm.



Entropy 2019, 21, 647 9 of 20

Figure 3. Probability maps of a single subject from Pointing’04. Poses vary from -90◦ to +90◦ with
a step of 15◦ in the horizontal orientation. Row wise order of the images is as: 1—original images,
2—ground truth images, 3—probability maps for skin, 4—probability maps for hair, 5—probability
maps for mouth, 6—probability maps for nose, and 7—probability maps for eyes.

5.2. Age Classification

In age classification a face image is assigned to one of the specific age range. From each age group
of each data-set, 10 images are manually labeled. The manually labeled images are used to build an
MSF-CRFs model. The test face images are passed to the MSF-CRFs model to produce segmentation
results and probability maps.

We noted during the experiments that each face part has a contribution towards age classification.
Probability maps for each face part differ from one age group to another. Therefore, for age classification
we use information about all five face classes, i.e., skin, mouth, hair, and eyes. The probability maps
generated are used to train and test an RDF classifier. As in case of head pose, 10-fold cross validation
experiments are performed here as well. Manually labeled images which were previously used to
create MSF-CRFs model were not included in the 10-fold cross validation experiments.

5.3. Gender Recognition

For gender classification, we manually label 30 images for each gender and each data-set. These
total 60 images are used to build an MSF-CRFs model for the gender test. A number of qualitative and
quantitative experiments are conducted to know which face parts help in gender recognition. After
these experiments we train an RDF classifier through probability maps of four classes namely; nose,
hair, eyes, and skin.

We perform a detailed study from computer vision and human anatomy literature to know which
face parts make a face more feminine or masculine. In the following paragraphs we summarize why
we use four classes (skin, nose, hair, and eyes) for gender recognition.

• Usually male forehead is larger compared to female - as the hair line in male lags behind. In male
hairline is completely missing in some cases (baldness). This results a larger forehead in male as
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compared to female. Consequently, brighter part of probability map for the skin is on larger area in
case of male.

• Female eyelashes are larger and curly type. Our MSF-CRFs part mis-classified these eyelashes with
hairs in females in most of the cases. Even this mis-classification reduces the pixel labeling accuracy
of the segmentation part. However, this helps the gender differentiation. In the case of male,
pixel labeling accuracy noted was 79%, resulting better segmentation with brighter probability
map. For female the labeling accuracy reduced to 69%, which results a comparatively dimmer
probability map.

• A female nose is comparatively smaller with less bridge. On the other hand, male nose is larger
and also comparatively longer. A reason reported in the literature for this fact is: as compared
to female, the male body is bigger which requires larger lungs and enough passage of air supply
towards lungs. Consequently, the male nostrils are larger than female.

• Hairstyle has a very complicated geometry that varies from subject to subject. Our proposed
MSF-CRFs reports a pixel labeling accuracy of 97.23%. From the segmentation results (please see
Figures 4 and 5), it is clear how efficiently boundary line for hair is detected by our MSF-CRFs
model. We encode this information in the form of probability maps and used it in the gender
recognition part.

• Sometimes, even eyebrows also help in gender recognition. Male eyebrows are mis-managed and
larger, whereas female eyebrows are thinner and curl at the end. In our face segmentation model,
we use the same label for eyebrow as hair.

• Literature reports that the mouth must help male and female differentiation. Female lips are
clear and visible, whereas in most of the cases upper lip is somehow missing in male images.
Unfortunately, we noted no improvement in gender recognition performance with inclusion of the
mouth class. Therefore, we did not include mouth class for gender recognition algorithm.

Figure 4. Face segmentation results with MSF-CRFs for frontal images on Pointing’04. Images in rows
are in order as: row 1-original images, row 2-manually labeled images, row 3-segmentation results
produced by MSF-CRFs
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Figure 5. Face segmentation results with MSF-CRFs for profile images (+60◦) on Pointing’04. Images
in rows are in order as: row 1-original images, row 2-manually labeled images, row 3-segmentation
results produced by MSF-CRFs

Thus, probability maps for skin, nose, hair, and eyes are concatenated with each other to form
a single feature vector. We perform 10-fold cross validation experiments here as well. However, we
excluded 60 images which were previously used for training part from each database tests.

6. Results and Discussion

6.1. Face Segmentation Results

To the best of our knowledge, previously proposed MSF is the first work that considered all six
face parts in face segmentation. The main problem with MSF is its computational cost. To remove
this deficiency, we used a super-pixel based segmentation in the current model (MSF-CRFs). The
processing time of segmentation was improved four times with the MSF-CRFs as compared to the MSF.
For example, an image with a 256 × 240 pi size took 1.2 min in the MSF model. The same image was
segmented with MSF-CRFs in just 18 seconds.

An image is segmented into super-pixels initially. Super-pixel segmentation reduces processing
time of segmentation as the number of pixels to be labeled are reduced immensely. In the proposed
method we used SEEDs [58] algorithm for super-pixel segmentation. We prefer SEEDS over SLIC
and other methods as the speed of the SEEDS is much better than other methods used in SOA [58].
Moreover, SEEDS has much better super-pixel segmentation as reported in standard error metrics.

Face segmentation results for frontal images are much better than profile images. For different
super-pixel parameters setting we performed experiments. We noticed better segmentation results
with 900 super-pixels. The exact number of super-pixels were less than 900 due to certain segmentation
restrictions. The number of super-pixels obtained during the experiments depended on the block
levels used and the image size. The super-pixel segmentation was better when the block levels were
higher. We used the number of block levels 3, and histogram bins 5. For better accuracy iteration
accuracy was kept twice.
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Few images from Poinint’04 dataset are shown in Figures 4 and 5. Figure 4 shows some good
segmentation results. In Figures 4 and 5, the first row shows the original images, row 2 shows
manually labeled images and row 3 shows images segmented with the MSF-CRFs. The frontal images
are segmented in Figure 4, whereas the same images rotated at +60◦ are shown in Figure 5. From these
Figs. it is clear that pixel labeling accuracy for frontal images is much better than profile images. It can
be noted that as the pose moves to the left or right, labeling accuracy dropped particularly for smaller
classes (eyes, nose, and mouth). For extreme profile poses (+90◦ and -90◦) these smaller classes in some
images were completely missing.

Performance of the segmentation part highly depends on the quality of the images as well. For
example, in the case of AFLW data-set, the images were collected from the internet which included
very low quality images. Therefore, poor segmentation results were noticed, ultimately leed to the
poor performance of head pose and gender recognition.

6.2. Head Pose Estimation

We used two evaluation methods for head pose estimation. The first one is a regression measure
i.e., mean absolute error (MAE). MAE is the absolute error between the estimated and ground truth
pose. The second one is a classification measure i.e., pose estimation accuracy (PEA). PEA estimates
how a particular pose is predicted by a model.

Pointing’04 data-set: The results obtained with HAG-MSF-CRFs on the Pointing’04 data-set and
its comparison with SOA for both yaw and pitch angles is shown in Table 1. From the Table 1, it is
clear that we achieved better results as compared to previously reported results for both the MAEs and
PEAs. All possible combination of the six face classes were tried in the experiments. The best results for
yaw (average MAE = 2.32◦ and average PEA = 87%) and pitch (average MAE =1.18◦ and average PEA
= 95%) were obtained with five classes i.e., ‘nose’, ‘mouth’ ’skin’, ‘hair’, and ‘eyes’. It must be noted
that some of the previous methods mentioned in Table 1 may have used a differential experimental
setup. For example, 5-fold cross validation experiments were performed in the MLD. We performed
our experiments with 10-fold cross validation protocol. Corresponding papers can be explored for the
experimental setup and more details for each case.

Table 1. Head pose estimation results and its comparison with SOA on Pointing’04 database.

Method MAE (Yaw) Accuracy (Yaw) MAE (Pitch) Accuracy (Pitch)

HAG-MSF-CRFs 2.32◦ 87.7% 1.18◦ 95.0%
MSF-HPE [14] 3.75◦ 77.40% – –

MLD [37] 4.24◦ 73.30% 6.45◦ 86.24%
CNN [60] 5.17◦ 69.88% 5.36◦ 77.87%
MGD [61] 6.90◦ 64.51% 8.00◦ 62.72%

kCovGa [62] 6.34◦ – 7.14◦ –
CovGA [62] 7.27◦ – 8.69◦ –

For a more clear comparison with SOA methods, we also reported the results for each pose both
for the MAEs and PEAs. The MAEs results are compared in Figures 6 and 7 for pitch and yaw angles
respectively. We had the best results for MAE for all yaw poses (except, 0◦ and +30◦). Similarly,
Figures 8 and 9 shows the PEAs results obtained with proposed method and its comparison with SOA
for each discrete pose. From the Figure 8, we can see that better results are obtained as compared to
SOA for pitch angles. However, CNNs and KCovGA algorithms were performing better at pose -30◦.
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For the remaining three data-sets (AFLW, BU and ICT-3DHPE), the results were previously
reported in the literature for MAE values only. For a fair comparison, we also compared our results
with SOA for MAE only. The summary of the results for all the three cases is reported and compared
with SOA in Tables 2–4 for all the three data-sets respectively. From the Tables, it is clear that we had
better results in the two cases (BU and ICT-3DHPE) and competitive results for the AFLW database.

AFLW is a database that is collected from the internet. All the images in AFLW are real-world
images which are obtained in un-constrained conditions. Importantly, the quality of the images in
most of the cases is very poor. Due to this reason, our proposed MSF-CRFs model was not producing
promising segmentation results. As a result, we had poor performance as can be seen in the Table 2.

Table 2. Head pose estimation results and its comparison with SOA on AFLW database.

Method Pitch Yaw Roll Average

QuatNet [63] 4.31◦ 3.93◦ 2.59◦ 3.61◦

HAG-MSF-CRFs 4.89◦ 4.25◦ 3.20◦ 4.11◦

HyperFace [64] 5.33◦ 6.24◦ 3.29◦ 4.96◦

Multi-Loss [65] 5.89◦ 6.26◦ 3.82◦ 5.32◦

The BU and ICT-3DHPE data-sets are also collected in the real-wold conditions. However, in these
cases, the quality of the images is much better. We had better results for both the BU and ICT-3DHPE
data-sets, as can be seen in the Tables 3 and 4.

Table 3. Head pose estimation results and its comparison with SOA on BU database.

Method Pitch Yaw Roll Average

HAG-MSF-CRFs 2.9◦ 2.1◦ 2.2◦ 2.4◦

OpenFace2.0 [66] 3.2◦ 2.4◦ 2.4◦ 2.6◦

OpenFace [67] 3.3◦ 2.8◦ 2.3◦ 2.8◦

Chehra [68] 4.6◦ 3.8◦ 2.8◦ 3.8◦

CLM [6] 3.5◦ 3◦ 2.3◦ 2.9◦

FLPD [69] 5.3◦ 4.9◦ 3.1◦ 4.4◦

Table 4. Head pose estimation results and its comparison with SOA on ICT-3DHP database.

Method Pitch Yaw Roll Average

HAG-MSF-CRFs 3.2◦ 2.6◦ 2.7◦ 3.0◦

OpenFace2.0 [66] 3.5◦ 3.1◦ 3.1◦ 3.2◦

OpenFace [67] 3.6◦ 3.6◦ 3.6◦ 3.6◦

CLM [6] 4.2◦ 4.8◦ 4.5◦ 4.5◦

Reg. Forest [70] 9.4◦ 7.2◦ 7.5◦ 8.0◦

Chehra [68] 14.7◦ 13.9◦ 10.3◦ 13.0◦

From the head pose estimation results, it is clear that we had better results in most of the cases,
even considering recently proposed CNNs based methods. Through this comparison, we are not
disparaging deep learning based methods – rather we believe we need better understanding of the
deep learning based methods and their implementation to various tasks.

6.3. Age Classification

We reported our age and gender recognition results with term the Classification Rate (CR). We
use Adience data-set for age classification. The Adience data-set has eight age categories. We manually
labeled 10 images from each age category. A total of 80 images were used to build the MSF-CRFs
model for age test. The MSF-CRFs model was used to create segmented images and probability maps.
After generating probability maps for all images and all classes, 10-fold cross validation experiments
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were performed on the remaining images (excluding 80 images which were previously used to build
MSF-CRFs model).

For age classification we tried all combination of facial features, as in head pose estimation
(excluding background). We noticed that every face part contributed to the age classification.
The results reported with HAG-MSF-CRFs and its comparison with SOA are shown in Table 5. From
the Table 5, It is clear that we had better results for Adience data-set. Interestingly, for age classification
we obtained better results as compared to previous results by a big margin.

Table 5. Comparative experiments on age classification using Adience databas.

Method Database CR (%)

HAG-MSF-CRFs Adience 66.5
Dehghan et al. [71] Adience 61.3 ± 3.7

Hou et al. [72] Adience 61.1 ± NR
CNNs-EML [41] Adience 45.1 ± 2.6

Hassner et al. [73] Adience 50.7 ± 5.1
CNN-ELM [41] Adience 95.00

We created Ground truth masks through a commercial image editing software. We did this
labeling without any automatic segmentation tool. Such kind of labeling has two main drawbacks.
Firstly, this labeling highly depends on subjective perception of a single subject involved in this labeling
process. Hence it is very difficult to provide an accurate label to all pixels in an image – particularly on
the boundary region of the different face parts. For example, differentiating the nose region from the
skin and drawing a boundary between the two is very difficult. Secondly, creating manually labeled
images is very time consuming and tedious work. Due to this reason, our age part is limited to age
classification only. We did not perform tests on the regression part of the age task. For that case, we
would need a large number of manually labeled face images for each age number.

6.4. Gender Recognition

We performed gender recognition tests with three data-sets, which included Adience, LFW and
FERET. The CR values for all three data-sets are shown in Table 6. We also compared our reported
results with SOA methods in Table 6.

As in head pose estimation, the possible combinations for all facial features were tried. We
obtained the best results with skin, hair, eyes, and nose. After localizing face parts, each image was
re-scaled to a height 256 and width was varied accordingly. We manually labeled 30 images from each
gender and each data-set. A total of 60 images were used to train an MSF-CRFs (gender) model for
each database individually. We performed no cross tests, same database images were used to train an
MSF-CRFs model and then some other images of the same data-set were used to evaluate the model.

A fair and exact comparison is very hard to achieve, as different authors use different image
settings and different validation protocols. For evaluation of gender recognition, we performed 10-fold
cross validation experiments. We manually labeled 60 images, performed 10-fold cross validation
experiments, while excluding 60 images which were previously used to build MSF-CRFs model
for gender.

Gender classification results with proposed HAG-MSF-CRFs and its comparison with SOA are
reported in Table 6. In general, classification accuracy was better than previously reported results.
Again, we had poor results as compared to other results for LFW data-set.

As a whole, performance of the newly proposed HAG-MSF-CRFs was very interesting. We
introduced a new idea of face image analysis which is using pixel level labeling information for a
face image. In a nutshell, we derived an important observation from the reported results "a strong
correlation exists between face parts segmentation and its pose, age and gender. An accurate face segmentation
leads to exact head pose, age and gender recognition and vice versa."
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Table 6. Comparative experiments on gender recognition using Adience, LFW and FERET data-sets.

Method Database CR (%)

HAG-MSF-CRFs Adience 89.7
Levi et al. [74] Adience 86.8

Lapuschkin et al. [75] Adience 85.9
CNNs-EML [41] Adience 77.8

Hassner et al. [73] Adience 79.3

Van et al. [76] LFW 94.4
HyperFace [64] LFW 94.0

LNets+ANet [77] LFW 94.0
HAG-MSF-CRFs LFW 93.9
Moeini et al. [78] LFW 93.6

PANDA-1 [79] LFW 92.0
ANet [40] LFW 91.0

Rai and Khanna [80] LFW 89.1

HAG-MSF-CRFs FERET 100
Moeini et al. [78] FERET 99.5

Tapia and Perez [81] FERET 99.1
Rai and Khanna [80] FERET 98.4

Afifi and Abdelrahman [82] FERET 99.4
A priori-driven PCA [83] FERET 84.0

7. Conclusion

In this paper we propose an end-to-end semantic face segmentation algorithm (MSF-CRFs) which
tries to solve the challenging problems of head pose, age, and gender recognition. The segmentation
model is built using the idea of CRFs between various face parts. Three kinds of features are extracted
to build the segmentation model. The MSF-CRFs model classify each pixel in the face image to one of
the six classes (hair, eyes, skin, nose, mouth, and background). A probabilistic classification strategy
is used to generate probability maps for each face class. Random Decision Forest classifier is trained
for each task (head pose, age and gender) through different probability maps combination. A large
number of experiments are conducted to know which face parts help in head pose, age and gender
recognition. Experimental results are validated on six different face data-sets obtaining better or
competitive results compared to SOA.

The segmentation results provide sufficient information for different hidden variable in a face
image. A route towards different more classification problems in a face image is provided. For example,
we are planing to add some more tasks to the framework such as complicated facial expression
recognition, ethnicity classification and many more. We are also planing to improve performance of
the segmentation part for example using recently introduced CNNs based methods.
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