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Abstract: This paper presents a new formula for the entropy of a distribution, that is conceived having
in mind the Liouville fractional derivative. For illustrating the new concept, the proposed definition
is applied to the Dow Jones Industrial Average. Moreover, the Jensen-Shannon divergence is also
generalized and its variation with the fractional order is tested for the time series.
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1. Introduction

The quest of generalizing the Boltzmann–Gibbs entropy has become an active field of research in the
past 30 years. Indeed, many formulations appeared in the literature extending the well-known formula
(see e.g., [1–4]):

S(p) = ∑
i
− ln(pi)pi. (1)

The (theoretical) approaches to generalize Equation (1) may vary considerably (see e.g., [1–3]). In this
work we are particularly interested in the method firstly proposed by Abe in [1], which consists of the
basic idea of rewriting Equation (1) as

S(p) = ∑
i
− d

dt
pt

i

∣∣∣∣∣
t=1

= ∑
i

d
dt

p−t
i

∣∣∣∣∣
t=−1

. (2)

Concretely, we substitute the differential operator d
dt in Equation (2) by a suitable fractional one (see Section 2

for the details) and then, after some calculations, we obtain a novel (at least to the best of our knowledge)
formula, which depends on a parameter 0 < α ≤ 1.

The paper is structured as follows. Section 2 introduces and discusses the motivation for the
new entropy formulation. Section 3 analyses the Dow Jones Industrial Average. Additionally,
The Jensen-Shannon divergence is also adopted in conjunction with the hierarchical clustering technique
for analyzing regularities embedded in the time series. Finally, Section 4 outlines the conclusions.

2. Motivation

Let us introduce the following entropy function:
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Sα(p) = ∑
i

Γ(1− ln(pi))

Γ(1− ln(pi)− α)
pi, α ∈ (0, 1], (3)

where Γ(t) =
∫ ∞

0 xt−1e−xdx is the gamma function.

We define the quantity Iα(pi) =
Γ(1−ln(pi))

Γ(1−ln(pi)−α)
as the Liouville information (See Figure 1).
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Figure 1. Liouville information Iα(pi) =
Γ(1−ln(pi))

Γ(1−ln(pi)−α)
.

Our motivation to define the entropy function given by Equation (3) is essentially due to the works of
Abe [1] and Ubriaco [4]. Indeed, in Section 3 of [4], the author notes (based on Abe’s work [1]) that the
Boltzmann-Gibbs and the Tsallis entropies may be obtained by

S = ∑
i

d
dt

p−t
i

∣∣∣∣∣
t=−1

,

and

S = ∑
i

d
dqt

p−t
i

∣∣∣∣∣
t=−1

, where
d

dqt
f =

f (qt)− f (t)
(q− 1)t

,

respectively. From this, he substitutes the above differential operator by a Liouville fractional derivative
(see Section 2.3 in [5]) and then he defines a fractional entropy (see (19) in [4]). With this in mind and taking
into account the generalization of the Liouville fractional derivative given by the “fractional derivative of
a function with respect to another function” (see Section 2.5 in [5]) we consider using it in order to define
a novel entropy. The Liouville fractional derivative of a function f with respect to another function g (with
g′ > 0) is defined by [5,6],

Dα
g f (t) =

1
Γ(1− α)g′(t)

d
dt

∫ t

−∞
[g(t)− g(s)]−αg′(s) f (s)ds, 0 < α ≤ 1. (4)
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It is important to keep in mind that our goal is to obtain an explicit formula for the entropy. Therefore,
we can think that a “good” candidate for g is the exponential function, due to the fact that p−t

i = e−t ln(pi)

and also the structure of Equation (4). We chose g(x) = ex+1. Let us then calculate Equation (4) with
f (t) = p−t

i and g(x) = ex+1. We obtain

Dα
g f (t) =

1
Γ(1− α)et+1

d
dt

∫ t

−∞
[et+1 − es+1]−αes+1e−s ln(pi)ds

=
1

Γ(1− α)et+1
d
dt

e−α(t+1)
∫ t

−∞
[1− es−t]−αes(1−ln(pi))+1ds

=
1

Γ(1− α)et+1
d
dt

e−α(t+1)
∫ 1

0
(1− u)−αe(t+ln(u))(1−ln(pi))+1 du

u

=
1

Γ(1− α)et+1
d
dt

e−α(t+1)+t(1−ln(pi))+1
∫ 1

0
(1− u)−αu− ln(pi)du

=
−α + 1− ln(pi)

Γ(1− α)et+1 e−α(t+1)+t(1−ln(pi))+1 Γ(1− α)Γ(1− ln(pi))

Γ(2− α− ln(pi))

= (1− α− ln(pi))e(−α−1)(t+1)+t(1−ln(pi))+1 Γ(1− ln(pi))

Γ(2− α− ln(pi))
.

It follows that,

Dα
g f (−1) = (1− α− ln(pi))pi

Γ(1− ln(pi))

Γ(2− α− ln(pi))
,

and after using the property Γ(x + 1) = xΓ(x), x > 0, we finally get

Dα
g f (−1) = pi

Γ(1− ln(pi))

Γ(1− α− ln(pi))
.

We have, therefore, motivated the definition provided in Equation (3).

Remark 1. We note that, if pi = 1 for some i ∈ N and α = 1, then in Equation (3) we have a division by zero. In
this case we are obviously thinking about the limit of that function, i.e.,

lim
(x,α)→(1,1)

Γ(1− ln(x))
Γ(1− ln(x)− α)

x = 0.

In addition, it is not hard to check that, for 0 < α ≤ 1, we have

lim
x→0+

Γ(1− ln(x))
Γ(1− ln(x)− α)

x = 0.

Therefore, we put in Equation (3): Γ(1−ln(0))
Γ(1−ln(0)−α)

0 = 0, with 0 < α ≤ 1.

Remark 2. The entropy function defined in Equation (3) brings interesting challenges. For instance, though
numerically the function

Γ(1− ln(x))
Γ(1− ln(x)− α)

x, x ∈ (0, 1)

for α ∈ (0, 1) seems to be concave (see Figure 2), a rigorous proof of that fact was not yet obtained.
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Figure 2. Plot of pi
Γ(1−ln(pi))

Γ(1−ln(pi)−α)
versus pi.

3. An Example of Application

The Dow Jones Industrial Average (DJIA) is an index based on the value of 30 large companies from
the United States traded in the stock market during time. The DJIA and other financial indices reveal
a fractal nature and has been the topic of many studies using distinct mathematical and computational
tools [7,8]. In this section we apply the previous concepts in the study of the DJIA in order to verify the
variation of the new expressions with the fractional order. Therefore, we start by analyzing the evolution
of daily closing values of the DJIA from January 1, 1985, to April 5, 2019, in the perspective of Equation (3).
All weeks include five days and missing values corresponding to special days are interpolated between
adjacent values. For calculating the entropy we consider time windows of 149 days performing a total of
n = 34 years.

Figures 3 and 4 show the time evolution of the DJIA and the corresponding value of Sα for α =

{0, 0.1, . . . , 0.9, 1}.
We verify that Sα(t) has a smooth evolution with α that plays the role of a parameters for adjusting

the sensitivity of the entropy index.
The Jensen-Shannon divergence (JSD) measures the similarity between two probability distributions

and is given by

JSD (P||Q) =
1
2

D (P||M) +
1
2

D (Q||M) , (5)

where M = 1
2 (P + Q), and D (P||M) and D (Q||M) represent the Kullback-Leibler divergence between

distributions P and M, and P and Q, respectively.
For the classical Shannon information I (pi) = − log (pi) the JSD can be calculated as:

JSD (P||Q) =
1
2

(
∑

i
pi log (pi) + ∑

i
qi log (qi)

)
−∑

i
mi log (mi). (6)
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Figure 3. Evolution of the Dow Jones Industrial Average (DJIA) versus time t from January 1, 1985, to April
5, 2019.
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Figure 4. Evolution of the Sα(t) versus time t from January 1, 1985, to April 5, 2019, and α =

{0, 0.1, . . . , 0.9, 1}.
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In the case of the Liouville information Iα(pi) =
Γ(1−ln(pi))

Γ(1−ln(pi)−α)
the JSD can be calculated as:

JSD (P||Q; α) =
1
2

(
∑

i
pi

Γ (1− ln (pi))

Γ (1− ln (pi)− α)
+ ∑

i
qi

Γ (1− ln (qi))

Γ (1− ln (qi)− α)

)
−∑

i
mi

Γ (1− ln (mi))

Γ (1− ln (mi)− α)
. (7)

Obviously, for α = 1 we obtain the Shannon formulation.
For processing the data produced by the JSD we adopt hierarchical clustering (HC). The main

objective of the HC is to group together (or to place far apart) objects that are similar (or different) [9–12].
The HC receives as input a symmetrical matrix D of distances (e.g., the JSD) between the n items under
analysis and produces as output a graph, in the form of a dendogram or a tree, where the length of
the links represents the distance between data objects. We have two alternative algorithms, namely the
agglomerative and the divisive clustering. In the first, each object starts in its own singleton cluster and, at
each iteration of the HC scheme, the two most similar (in some sense) clusters are merged. The iterations
stop when there is a single cluster containing all objects. In the second, all objects start in a single cluster
and at each step, the HC removes the ‘outsiders’ from the least cohesive cluster. The iterations stop when
each object is in its own singleton cluster. Both iterative schemes are achieved using an appropriate metric
(a measure of the distance between pairs of objects) and a linkage criterion, which defines the dissimilarity
between clusters as a function of the pairwise distance between objects.

In our case the objects correspond to the n = 34 years, from January 1, 1985, to December 31, 2018,
that are compared using the JSD and resulting matrix D (with dimension n× n) processed by means
of HC.

Figures 5–7 show the trees generated by the hierarchical clustering for the Shannon and the Liouville
Jensen-Shannon divergence measures (with α = {0.1, 0.5}), respectively. The 2-digit labels of the ‘leafs’ of
the trees denote the years.

We note that our goal is not to characterize the dynamics of the DJIA time evolution since it is outside
the scope of this paper. In fact, we adopt the DJIA simply as a prototype data series for assessing the effect
of changing the value of α in the JSD and consequently in the HC generated tree. We verify that in general
there is a strong similarity of the DJIA between consecutive years. In what concerns the use of the Shannon
versus the Liouville JSD, we observe that for α close to 1 both entropies lead to identical results, while
for α close to 0 the Liouville JSD produces a distinct tree. Therefore, we conclude that we can adjust the
clustering performance by a proper tuning of the parameter α.
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Figure 5. Tree generated by the hierarchical clustering for the Shannon JSD.

Figure 6. Tree generated by the hierarchical clustering for the Liouville JSD and α = 0.1.
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Figure 7. Tree generated by the hierarchical clustering for the Liouville JSD and α = 0.5.

4. Conclusions

This paper presented a new formulation for entropy based on the (generalized) Liouville definition
of fractional derivative. The generalization leads not only to a new entropy index, but also to novel
expressions for fractional information and Jensen-Shannon divergence. The sensitivity of the proposed
expression to variations of the fractional order is tested for the DJIA time series.
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