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Abstract: The maximum entropy principle is effective in solving decision problems, especially when
it is not possible to obtain sufficient information to induce a decision. Among others, the concept
of maximum entropy is successfully used to obtain the maximum entropy utility which assigns
cardinal utilities to ordered prospects (consequences). In some cases, however, the maximum entropy
principle fails to produce a satisfactory result representing a set of partial preferences properly. Such a
case occurs when incorporating ordered utility increments or uncertain probability to the well-known
maximum entropy formulation. To overcome such a shortcoming, we propose a distance-based
solution, so-called the centralized utility increments which are obtained by minimizing the expected
quadratic distance to the set of vertices that varies upon partial preferences. Therefore, the proposed
method seeks to determine utility increments that are adjusted to the center of the vertices. Other
partial preferences about the prospects and their corresponding centralized utility increments are
derived and compared to the maximum entropy utility.

Keywords: decision analysis; utility; maximum entropy

1. Introduction

The maximum entropy principle is effective in solving decision problems, especially when it is
not possible to obtain sufficient information to induce a decision [1–5]. Applications of the entropy
principle to the multiple criteria decision-making (MCDM) problems can be found in [6–8]. Abbas [9]
presents a method to assign cardinal utilities to ordered prospects (consequences) in the presence
of uncertainty. The ordered prospects which are included in the category of partial preferences are
easily encountered in practice [9–11]. The use of partial preferences about the prospects can provide
a decision-maker with comfort in specifying preferences but in view of decision-making may fail
to result in a final decision. Thus, an elegant approach to circumvent this problem is needed to
solve real-world decision-making problems. To this end, Abbas [9] developed the maximum entropy
approach to assigning cardinal utility to each prospect when only the ordered prospects are known.
However, we doubt if the maximum entropy approach results in cardinal utilities representing a set of
partial preferences properly where some other partial preferences about the prospects are additionally
incorporated. In another context of true maximum ignorance where the state of prior knowledge is not
strong, the maximum a posteriori probability can be better estimated by classical Bayesian theory; it is
not necessary to introduce a new and exotic approach such as maximum entropy [12].

We discuss the maximum entropy utility approach further using the notations and definitions
from Abbas [9].

2. Does the Maximum Entropy Principle Always Guarantee a Good Solution?

A utility vector contains the utility values of prospects starting from the lowest to the highest,
where a utility value of zero (one) is assigned to the lowest (highest) according to a von Neumann and
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Morgenstern type utility assessment. We assume that there is at least one prospect, which has a strict
preference to exclude the case of absolute indifference. The utility vector for (K + 1) prospects can be
denoted by

U , (U0, U1, · · · , UK−1, UK)

= (0, U1, U2, · · · , UK−1, 1)

where 0 ≤ U1 ≤ U2 ≤ · · · ≤ UK−1 ≤ 1.
A utility increment vector ∆U, whose elements are equal to the difference between the consecutive

elements in the utility vector, can be denoted by

∆U , (U1 − 0, U2 −U1, · · · , 1−UK−1) = (∆u1, ∆u2, ∆u3, · · · , ∆uK).

A utility increment vector ∆U satisfies two properties: (1) ∆ui ≥ 0, i = 1, · · · , K and (2)
∑K

i=1 ∆ui = 1.
Thus, it represents a point in a K-dimensional simplex, so-called the utility simplex. To assign cardinal
utility to each ∆ui, Abbas [9] presumed that “If all we know about the prospects is their ordering,
it is reasonable to assume, therefore, that the location of the utility increment vector is uniformly
distributed over the utility simplex.” This idea led to the following nonlinear program (Equation (1))
of which the objective function is the maximum entropy constrained by a normalization condition and
non-negativity constraints:

∆Umaxent = maximize
∆u1, ∆u2,··· , ∆uK

−
∑K

i=1 ∆ui log(∆ui)

such that ∑K
i=1 ∆ui = 1

∆ui ≥ 0, i = 1, · · · , K.

(1)

The optimal solution to this program is a utility increment vector with equal increments, that is

∆ui =
1
K

, i = 1, · · · , K. (2)

This result seems to properly represent the utility simplex, since its extreme points simply consist of K
unit vectors ei (one in the ith element and zeroes elsewhere) of which the coordinate-wise average
yields 1

K .
Let us assume an ordered increasing utility (OIU) increment (in the latter part of the paper, we

provide the ordered decreasing utility (ODU) increment defined by ∆u1 ≥ ∆u2 ≥ · · · ≥ ∆uK):

∆u1 ≤ ∆u2 ≤ · · · ≤ ∆uK, (3)

which can be further rewritten as U1 − 0 ≤ U2 −U1 ≤ · · · ≤ 1 −UK−1 in terms of the utility vector.
Studies regarding this partial preference, also called comparable preference differences, degree of
preference, strength of preference, or preference intensity to utility theory, are found in Fishburn [13]
and Sarin [14].

The incorporation of the ordered utility increment vector in the system of constraints of Equation (1)
leads to the mathematical program (Equation (4)) and surely restricts the utility simplex as depicted in
Figure 1, when considering a case of K = 3.

∆Umaxent = maximize
∆u1, ∆u2,··· , ∆uK

−
∑K

i=1 ∆ui log(∆ui)

such that
∆u1 ≤ ∆u2 ≤ · · · ≤ ∆uK∑K

i=1 ∆ui = 1
∆ui ≥ 0, i = 1, · · · , K.

(4)

The solution to Equation (4) however still yields a utility increment vector with equal increments,
∆ui = 1

K , i = 1, · · · , K since nothing other than vK can result in a larger maximum entropy in
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a set of extreme points {v1, v2, · · · , vK} where v1 = (0, 0, · · · 0, 0, 1), v2 =
(
0, 0, · · · , 0, 1

2 , 1
2

)
, · · · ,

vK =
(

1
K , 1

K , · · · 1
K , 1

K

)
.

Technically, we always obtain this result when the constituent constraints in the maximum entropy
program contain vK as one of their extreme points. To illustrate, let us incorporate a constraint
∆u3 − ∆u2 ≥ ∆u2 − ∆u1 which more restricts the utility simplex in Figure 1 (see Figure 2). The set of
extreme points is composed of v1 = (0, 0, 1), v2 =

(
0, 1

3 , 2
3

)
, v3 =

(
1
3 , 1

3 , 1
3

)
, which also leads to a

maximum entropy merely anchored at v3.
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Figure 1. A utility simplex constrained by an ordered increasing utility increment.
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Figure 2. Utility simplex with additional constraints in case of K = 3. (a) ∆U1 =

{∆u : ∆u3 ≥ ∆u2 ≥ ∆u1,
∑3

i=1 ∆ui = 1} (b) ∆U2 = ∆U1 ∩{∆u : ∆u3 − ∆u2 ≥ ∆u2 − ∆u1,
∑3

i=1 ∆ui = 1}.

Therefore, it is doubtable if such equal utility increments adequately represent the feasible region
(i.e., the restricted utility simplex) and if the assignment of such values will eventually be valid.

Let us consider another case where the maximum entropy principle does not work properly. We
present the discrete version of preference inclusion in the maximum entropy utility, originally dealt
with by Abbas [9] in a continuous case. Let us assume that a decision-maker specifies indifference
between a lottery

〈
x1, p1; x2, p2; · · · ; xK, pK

〉
and a reference lottery

〈
xK, p, x1

〉
, thus yielding∑K

i=1
piUi(xi) = p where x1 ≤ x2 ≤ · · · ≤ xK. (5)

Equation (5) can be rewritten in terms of the utility increments ∆ui such that
∑K

i=1 Fi−1∆ui = 1 − p
where Fi =

∑i
j=1 p j (F0 = 0, FK = 1).

Then, the principle of maximum entropy utility leads to the following program:
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∆Umaxent = maximize
∆u1, ∆u2,··· , ∆uK

−
∑K

i=1 ∆ui log(∆ui)

such that ∑K
i=1 Fi−1∆ui = 1− p∑K
i=1 ∆ui = 1

∆ui ≥ 0, i = 1, · · · , K.

(6)

The solution to Equation (6) is obtained by

∆ui =
exp(βFi−1)∑K

i=1 exp(βFi−1)
(7)

where β corresponds to the Lagrange multiplier and is determined iteratively from the equation∑K
i=1(Fi−1 − (1− p)) exp(βFi−1) = 0. A formulation similar to Equation (6) and its solution (Equation (7))

are found in different contexts [15–17]. If a decision-maker is uncertain about the probability that
equates a discrete lottery with a reference lottery and thus specifies a probability interval p ≤ p̃ ≤ p as
in [18], the expected utility of the prospects in Equation (5) can be expressed in the form of an interval:

p ≤
∑K

i=1
piUi(xi) ≤ p, or 1− p ≤

∑K

i=1
Fi−1∆ui ≤ 1− p. (8)

With Equation (8) added in Equation (1), we obtain the optimal utility increments vector to Equation (9)
that is anchored at either the lower or the upper bound in Equation (8).

∆Umaxent = max
∆u1, ∆u2,··· , ∆uK

−
∑K

i=1 ∆ui log(∆ui)

such that
1− p ≤

∑K
i=1 Fi−1∆ui ≤ 1− p∑K

i=1 ∆ui = 1
∆ui ≥ 0, i = 1, · · · , K.

(9)

For example, let K = 5, Fi =
i
5 , i = 1, · · · , 5, and p̃ ∈ [0.6, 0.7]. Then, if we simply let ∆ui =

1
5

for all i, we obtain the maximum entropy value while they satisfy all the constraints in Equation (9),
that is,

∑5
i=1

Fi−1
5 = 0.4 = 1− p and

∑5
i=1

1
5 = 1. Rather than this optimal solution, however, it is more

reasonable to expect to obtain utility increments corresponding to somewhere between ∆ui(0.6) and
∆ui(0.7) in Equation (7). Further, this undesirable result is observed while uncertain p̃ varies upon
[0.6, 0.6 + α] or [0.6− α, 0.6], α > 0.

3. Centralized Utility Increments

We have shown two examples in which the maximum entropy principle works improperly when
the utility simplex is restricted by additional partial preferences. This undesirable outcome can be
attributed to the fact that the maximum entropy value is always attained when the equal utility
increments vector is one of the extreme points characterizing the restricted utility simplex. Clearly,
the utility increments representative of the restricted utility simplex are more likely to be found by
considering as many extreme points as possible. Toward this end, we propose new utility increments
that minimize the sum of the squared distances from all the extreme points (MSDE) to physically locate
the utility increments at the center of the restricted utility simplex. Specifically, the MSDE approach
considers the utility increments that minimize the expected quadratic distance to the set of vertices
that varies upon types of partial preferences. This leads to the MSDE program in Equation (10):
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minimize
∑K

i=1
∑M

j=1

(
∆ui − vi j

)2

such that ∑K
i=1 ∆ui = 1

∆ui ≥ 0, i = 1, · · · , K

(10)

where vi j is the ith entry of the jth extreme point for the ordered prospects and M is the number of
extreme points.

The solution to Equation (10) yields

∆ui =
1
M

∑M

j=1
vi j =

1
K

(11)

since M = K and v j = e j for all j.
This result is identical to Equation (2), which is compatible with the maximum entropy utility

under the utility simplex. If we add the ordered utility increment vector (Equation (3)) to the system of
constraints in Equation (10), the MSDE yields a solution:

∆ui =
1
K

∑K

j=K−i+1

1
j
, i = 1, · · · , K (12)

since v1 = (0, · · · , 0, 1), v2 =
(
0, · · · , 0, 1

2 , 1
2

)
, · · · , vK =

(
1
K , · · · , 1

K , 1
K

)
.

This solution, so-called the centralized utility increments, is quite different from the equal increments
that would have resulted had we solved the program using the maximum entropy principle. In the
case of K = 3, simply compare

(
2

18 , 5
18 , 11

18

)
based on the centralized utility increments with

(
1
3 , 1

3 , 1
3

)
based on the maximum entropy principle.

To show that the solution in Equation (12) truly represents the center of vertices of the restricted
utility simplex, we first develop a cumulative discrete utility increments function for ∆ui, F

(
i
K

)
=∑i

j=1 ∆u j, i = 1, · · · , K and then its continuous function as follows [19]:

fOIU(x) =
{

x + (1− x) ln(1− x) for 0 ≤ x < 1
0 for x = 1

. (13)

Similar computations yield a continuous function for ordered decreasing utility increments as follows:

fODU(x) =
{

x(1− ln x) for 0 < x ≤ 1
0 for x = 0

. (14)

It is interesting to note that both fOIU(x) and fODU(x) include the entropy expression −x ln x as
their component. As shown in Figure 3, the continuous functions fOIU(x) and fODU(x) bisect the lower

triangle and upper triangle (of an area of 1
2 ) respectively since

∫ 1
0 fOIU(x)dx = 1

4 and
∫ 1

0 fODU(x)dx = 3
4 .

Noting that the straight line f (x) = x generates equal increments (for ∆ui =
1
K , F

(
i
K

)
=

∑i
j=1 ∆u j =

i
K

and lim
K→∞

FK(x) = f (x) =) for any K, fOIU(x) produces the centralized utility increments among

numerous continuous functions that generate the utility increments satisfying ∆u1 ≤ ∆u2 ≤ · · · ≤ ∆uK.
Further, we consider two categories of partial utility values that are widely used in MCDM

problems: loose articulation (i.e., open-ended partial preferences of utility values) and interval
expressions of utility values. The open-ended partial preferences of utility values may include the
following types of preferences (see Ahn [20]):

• Weak preference of utility values (WPU): UWPU = {Ui ≥ Ui−1, i = 1, · · · , K}
• Strict preference of utility values (SPU): USPU = {Ui −Ui−1 ≥ εi > 0, i = 1, · · · , K}
• Weak difference of utility values (DPU): UDPU = {UK −UK−1 ≥ · · · ≥ U1 −U0}

• Ratio preference of utility values (RPU): URPU = {Ui ≥ αi−1Ui−1, αi−1 ≥ 1, i = 1, · · · , K}.
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The interval expressions of utility values may include the following types of preferences:

• Interval utility values (IU): UIU = {LBi ≤ Ui ≤ UBi, i = 2, · · · , K − 1}
• Interval differences of utility values (IDU): UIDU = {LBi ≤ Ui −Ui−1 ≤ UBi, i = 1, · · · , K}
• Interval ratios of utility values (IRU): UIRU = {LBi ≤ Ui/Ui−1 ≤ UBi, i = 2, · · · , K}

where LBi and UBi represent the lower and upper bounds, respectively.
Finally, we summarize in Table 1 the formulas of the maximum entropy utility and the centralized

utility assignments for the case of the open-ended partial preferences (see more details in Appendix A
for types of open-ended partial utility values and Appendix B for types of interval partial utility values
respectively).
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Table 1. Partial information about utility values and their centralized utility values.

Partial Utility
Value Maximum Entropy Utility Centralized Utility Assignment

WPU ∆ui =
1
K

Ui =
i
K

∆ui =
1
K

SPU
∆ui =

1
K if εi ≤

1
K for all i{

∆ui = εi for i ∈ L =
{
l : εl ≥

1
K

}
∆ui = (1−

∑
i∈L εi)/(K − |L|) elsewhere

Ui =
∑i

j=1 ε j +
i
K (1−

∑K
j=1 ε j)

∆ui = εi +
1
K (1−

∑K
j=1 ε j)

DPU ∆ui =
1
K

Ui =
1
K

∑K
j=K−i+1

j+i−K
j

∆ui =
1
K

∑K
j=K−i+1

1
j

RPU
maximize −

∑K
i=1 ∆ui log (∆ui)

s.t.
∑i

j=1 ∆u j ≥ αi−1
∑i−1

j=1 ∆u j for all i∑K
i=1 ∆ui = 1, ∆ui ≥ 0

Ui =
i
K (

∏K−1
j=i α j)

−1

∆ui =
i
K (

∏K−1
j=i α j)

−1
−

i−1
K (

∏K−1
j=i−1 α j)

−1

4. Conclusions

We have shown two examples in which the maximum entropy principle fails to produce an
outcome representative of partial preferences about prospects. Therefore, we have to be cautious when
we rely on the maximum entropy formulation to determine a representative vector over the feasible
region of constraints. As an alternative, we propose the centralized utility increments that minimize the
sum of squared distances from all the extreme points to physically locate the utility increments at the
center of the restricted utility simplex. In particular, discrete and continuous functions are derived to
demonstrate better performance of centralized utility increments over maximum entropy utility when
the ordered utility increments are incorporated. Further, a range of partial utility values are introduced
and their centralized utility assignments are compared with the maximum entropy utilities. However,
it should be mentioned that we proposed other partial preferences beyond DPU in an attempt to show
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how to extend the MSDE approach to other partial preferences, which may not be directly related to
the resolution of the problem inherent in the maximum entropy utility approach.

A final remark is that our proposed approach has the limitation of a deterministic one.
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Appendix A. (Open-Ended Partial Preferences of Utility Values [20])

Appendix A.1. Strict Preference of Utility Values (SPU): USPU = {Ui −Ui−1 ≥ εi > 0, i = 1, · · · , K}

Let the utility vector ∆ui denote ∆ui = Ui −Ui−1, i = 1, · · · , K. These substitutions lead to an
equivalent set in terms of ∆ui

{∆ui ≥ εi > 0, i = 1, · · · , K,
∑K

i=1
∆ui = 1}.

Then, we use variable ri to denote ri = ∆ui − εi and si to denote si = ri/(1−
∑K

i=1 εi), which yields Ur

and Us in sequence:

Ur = {ri ≥ 0, i = 1, · · · , K,
∑K

i=1
ri = 1−

∑K

i=1
εi}

and
Us = {si ≥ 0, i = 1, · · · , K,

∑K

i=1
si = 1}.

The extreme points of Us can be easily determined as an identity matrix with a dimension K,
and using the identity matrix, we obtain the extreme points of Ur as (1−

∑K
i=1 εi)ei, i = 1, · · · , K.

More computations are required to obtain the extreme points in terms of ∆ui from Us. For example,
given rK = (0, · · · , 0, 1−

∑K
i=1 εi), we obtain (ε1, ε2, ε3, · · · , εK−1, 1−

∑K
i=1 εi + εK) from ∆ui = ri + εi,

i = 1, · · · , K. Continuing in this manner for all ri, we obtain a set of extreme points in terms of ∆ui:
(1− t + ε1, ε2, · · · , εK−1, εK), (ε1, 1− t + ε2, ε3, · · · , εK−1, εK), · · · , (ε1, ε2, ε3, · · · , εK−1, 1− t + εK)

where t =
∑K

i=1 εi.
The coordinate averages of these vectors result in the centralized utility assignments ∆ui =

εi +
1
K (1−

∑K
j=1 ε j) and Ui =

∑i
j=1 ε j +

i
K (1−

∑K
j=1 ε j) from ∆ui = Ui − Ui−1. If εi = 0 for all

i, then a set of strict preference USPU simply reduces to a set of weak preference UWPU such as
UWPU = {1 = UK ≥ UK−1 ≥ · · · ≥ U1 ≥ U0 = 0}.

Therefore, the centralized utility assignments for UWPU prove to be ∆ui =
1
K and Ui =

i
K from the

results of USPU.

Appendix A.2. Weak Difference of Utility Values (DPU): UDPU = {UK −UK−1 ≥ · · · ≥ U1 −U0}

Using equations such that ∆ui = Ui −Ui−1, i = 1, · · · , K leads to a set

{∆uK ≥ ∆uK−1 ≥ · · · ≥ ∆u1,
∑K

i=1
∆ui = 1}

and its extreme points are well-known and widely-used in multi-attribute decision analysis with ranked
attribute weights [21–24]: (0, · · · , 0, 1),

(
0, · · · 0, 1

2 , 1
2

)
, · · · ,

(
1
K , · · · , 1

K

)
. The coordinate averages of these

vectors result in the centralized utility assignments ∆ui =
1
K

∑K
j=K−i+1

1
j and Ui =

1
K

∑K
j=K−i+1

j+i−K
j .

Appendix A.3. Ratio Preference of Utility Values (RPU)

The ratio preference of utility values, URPU = {Ui ≥ αi−1Ui−1, αi−1 > 0, i = 1, · · · , K} can be
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rewritten as

URPU = {UK ≥ αK−1UK−1 ≥ αK−1αK−2UK−2 ≥ · · · ≥ αK−1 · · ·α1U1 ≥ αK−1 · · ·α0U0}.

The use of variables ri such that

ri =
∏K−1

j=i
α jUi −

∏K−1

j=i−1
α jUi−1, i = 1, · · · , K − 1 and rK = UK − αK−1UK−1

leads to a set Ur:

Ur = {ri ≥ 0, i = 1, · · · , K,
∑K

i=1
ri = 1}.

Stating from the extreme points ei, i = 1, · · · , K of Ur, we solve a set of equations recursively to obtain
the extreme points in terms of Ui. For example, given e1 = (1, 0, · · · , 0), we obtain U1 = 1

α1···αK−1
,

U2 = 1
α2···αK−1

, · · · , UK−1 = 1
αK−1

, UK = 1 by solving the following set of equations:

r1 = αK−1 · · ·α1U1 − αK−1 · · ·α0U0 = 1,

r2 = αK−2 · · ·α2U2 − αK−1 · · ·α1U1 = 0,

· · ·

rK−1 = αK−1UK−1 − αK−1αK−2UK−2 = 0,

rK = UK − αK−1UK−1 = 0.

Continuing in this manner for all ei, we obtain a set of extreme points represented in terms of Ui:(
1

α1···αK−1
, 1
α2···αK−1

, · · · , 1
αK−1

, 1
)
,
(
0, 1

α2···αK−1
, · · · , 1

αK−1
, 1

)
, · · · ,

(
0, 0, · · · 0, 1

αK−1
, 1

)
, (0, · · · , 0, 1). The

coordinate averages of these vectors result in the centralized utility assignments ∆ui =
i
K (

∏K−1
j=i α j)

−1
−

i−1
K (

∏K−1
j=i−1 α j)

−1
using Ui =

i
K (

∏K−1
j=i α j)

−1
, i = 1, · · · , K − 1, UK = 1.

Appendix B. (Interval Expressions of Utility Values)

Appendix B.1. Interval Utility Values: UIU = {LBi ≤ Ui ≤ UBi, i = 2, · · · , K − 1}

In this case, each extreme point is determined by taking the lower and upper bounds of each Ui
alternately, and thus the total number of extreme points is 2K−2. To list them,

(0, LB2, LB3, · · · , LBK−1, 1), (0, LB2, · · · , LBK−2, UBK−1, 1), · · · , (0, UB2, UB3, · · · , UBK−1, 1).

Appendix B.2. Interval Differences of Utility Values: UIDU = {LBi ≤ Ui −Ui−1 ≤ UBi, i = 1, · · · , K}

To start with, we make the change of variables ∆ui = Ui −Ui−1, which transforms the original set
of bounded differences into

{LBi ≤ ∆ui ≤ UBi, i = 1, · · · , K,
∑K

i=1
∆ui = 1}.

The extreme points are easily identified by taking at least K − 1 lower or upper bounds of ∆ui that sum
to one. Suppose that

∑K−1
i=1 LBi + α = 1, α ∈ [LBK, UBK]. Then we solve a set of equations to determine

the extreme point in terms of Ui:
U1 −U0 = LB1,

U2 −U1 = LB2,

· · ·

UK−1 −UK−2 = LBK−1,
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UK −UK−1 = α.

The resulting extreme points will be (0, LB1, LB1 + LB2, · · · ,
∑K−1

i=1 LBi, 1). To illustrate, suppose that
with K = 4 (U0 = 0, U3 = 1),

{0.3 ≤ U1 −U0 ≤ 0.5, 0.2 ≤ U2 −U1 ≤ 0.3, 0.1 ≤ U3 −U2 ≤ 0.3}.

By introducing ∆ui = Ui −Ui−1, i = 1, 2, 3, we obtain

{0.3 ≤ ∆u1 ≤ 0.5, 0.2 ≤ ∆u2 ≤ 0.3, 0.1 ≤ ∆u3 ≤ 0.3,
∑3

i=1
∆ui = 1}.

Then, the extreme points are simply reduced to
{
(0.5, 0.2, 0.3), (0.5, 0.3, 0.2), (0.4, 0.3, 0.3)

}
. The first

extreme point is determined by selecting three end points of ∆ui, and the last two by selecting two end
points and one interior point lying between the lower and upper bounds of ∆ui [25]. Now, we solve a
set of equations to obtain the extreme point in terms of Ui such as (0, 0.5, 0.7, 1),

U1 −U0 = 0.5, U2 −U1 = 0.2, U3 −U2 = 0.3.

Similar computations give the other extreme points (0, 0.5, 0.8, 1) and (0, 0.4, 0.7, 1).

Appendix B.3. Interval Ratios of Utility Values: UIRU = {LBi ≤ Ui/Ui−1 ≤ UBi, i = 2, · · · , K}

To illustrate, suppose without loss of generality that every judgment on Ui, i = 1, 2, is made
relative to the most preferred U3:

2 ≤ U3/U1 ≤ 3, 4 ≤ U3/U2 ≤ 5.

We can further identify a ratio U2/U1, say 2
5 ≤ U2/U1 ≤

3
4 from the given interval ratios. Then, we

denote q1 = U2/U1, q2 = U3/U2, and q3 = U1/U3 to obtain

Q = {
2
5
≤ q1 ≤

3
4

, 4 ≤ q2 ≤ 5,
1
3
≤ q3 ≤

1
2

, q1·q2·q3 = 1}.

The extreme points of Q are determined as follows:(2
5

, 5,
1
2

)
,
(3

4
, 4,

1
3

)
,
(3

5
, 5,

1
3

)
,
(1

2
, 4,

1
2

)
.

To obtain the extreme points in terms of Ui, we solve a system of equations. For example, with respect
to

(
2
5 , 5, 1

2

)
, we construct the following set of equations to obtain

(
0, 1

2 , 1
5 , 1

)
U2

U1
=

2
5

,
U3

U2
= 5,

U1

U3
=

1
2

.

Similarly, we can find other extreme points such as(
0,

1
3

,
1
4

, 1
)
,
(
0,

1
3

,
1
5

, 1
)
,
(
0,

1
2

,
1
4

, 1
)
.
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