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Abstract: A holistic extension of classical propositional logic is introduced via Toffoli quantum gate.
This extension is based on the framework of the so-called “quantum computation with mixed states”,
where also irreversible transformations are taken into account. Formal aspects of this new logical
system are detailed: in particular, the concepts of tautology and contradiction are investigated in this
extension. These concepts turn out to receive substantial changes due to the non-separability of some
quantum states; as an example, Werner states emerge as particular cases of “holistic" contradiction.
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1. Introduction

In recent years, an increasing interest in logical systems related to quantum mechanics has arisen.
Most of these systems are not strictly related to the standard quantum logic, but they are motivated by
concrete problems related to quantum information and quantum computation [1–7].

The notion of quantum computation first appeared in the 1980s by Richard Feynman. One of the
central issues he posed was the difficulty to efficiently simulate the evolution of a quantum system
on a classical computer. He pointed out the computational benefits that arise by employing quantum
systems in place of classical ones. With this aim, he proposed a new kind of computer: a quantum
computer [8]. It was not conceived as a Turing machine, but as a different kind of machine able to
simulate any quantum system, including the physical world. Quantum computing can simulate all
computations that can be performed by classical systems. However, one of the main advantages of
quantum computation and quantum algorithms is that they can speed up computations.

In classical computation, information is encoded by a sequence of bits. A bit is viewed as a kind of
physical object that can assume one of two distinct classical states, represented by the binary numbers
0 or 1. Bits are manipulated via an ensemble of logical gates like NOT, OR, AND, etc, arranged in
circuits and providing the output of a calculation.

Standard quantum computing is based on quantum systems described by finite dimensional
Hilbert spaces, starting from C2, which is the two-dimensional space where any qubit lives.
A qubit—the unit of information in quantum computation—is represented by a unit vector in C2,
while n-qubits (where n is a positive integer) are represented by unit vectors in C2n

. Similarly to
the classical case, we can introduce and study the behaviour of a certain number of quantum gates
acting on n-qubits. These quantum gates are mathematically modelled by unitary operators applying
on pure states of an appropriate Hilbert space and thus they only represent reversible processes.
However, for many reasons, this restriction to unitary operators is undue. In fact, a quantum system is
rarely in a pure state. This may be caused, for example, by the incomplete efficiency in the preparation
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procedure and also by manipulations on the system as measurements over pure states; in both cases,
we are faced with statistical mixtures. Such restriction induced the formulation of more general models
for quantum computation, where density operators and quantum operations are employed in place of
pure states and unitary operators. This approach to quantum computing, where not only reversible
transformations are taken into account, is called quantum computation with mixed states.

In this powerful model, combinational structures associated with a set of quantum gates induce
new forms of quantum logical systems [7] that play a similar role to Boolean algebras with respect to
digital circuits. We focus our attention on the combinational structure of quantum circuits built from a
particular quantum gate: the Toffoli quantum gate.

The study of the combinational logic underlying the Toffoli quantum gate is interesting for several
reasons. One of these is related to the universality of quantum gates. In particular, the Toffoli gate
alone is universal for classical computation and, equipped with the Hadamard gate, is approximately
universal for quantum computation [9], i.e., a finite composition of the Toffoli and Hadamard gate
allows representing the behavior of any other quantum gate.

However, another reason that makes the logic of the Toffoli gate interesting is its connection with
fuzzy logic. Indeed, from a probabilistic point of view, the Toffoli gate behaves as the conjunction
of Product logic [10]. This logical system is related to the so-called fuzzy logic of continuous t-norms
introduced in the second part of the 1990s [11].

Focusing on the Toffoli quantum gate, the aim of this paper is to study an extension of classical
logic that arises from the holistic nature of bipartite quantum systems.

The paper is structured as follows: the first two sections provide all the necessary ingredients to
make the article self-contained. More precisely, in Section 2, we introduce some basic notion concerning
non-separability and bipartite quantum systems. In Section 3, we briefly describe the mathematical
model related to quantum computation with mixed states. In Section 4, we introduce the general logical
framework associated with quantum circuits. This new form of quantum logic is compared to the standard
quantum logic based on the closed subspaces of the Hilbert space, also-called Hilbert lattices.

Section 5 is devoted to studying the fuzzy extension arisen from Toffoli gate. This extension will
be defined by means of two particular instances of Toffoli gate: AND and NOT. In Section 6, a holistic
type extension for classical logic is investigated. This extension is motivated by the application of
AND gate on non-separable states. In Section 7, we study the notion of contradiction in the holistic
extension of classical logic and in Section 8 Werner states are introduced as particular cases of these
contradictions. Finally, in Section 9, some arguments and possible open discussions are briefly
introduced as conclusive remarks.

2. Bipartite Quantum Systems

In quantum mechanics, a compound system is represented as a tensor product of Hilbert spaces,
each of them representing the individual parts of the system. Unlike classical physics, standard
quantum mechanics systematically violate the above separability principle. This difference arises from
the tensor product structure related to Hilbert spaces and from the superposition principle [12–14].
More precisely, if ρ1 and ρ2 are two density operators in the Hilbert spacesH1 andH2, respectively,
the state of the compound system is represented by ρ = ρ1 ⊗ ρ2 inH1 ⊗H2. However, not all density
operators on H1 ⊗H2 are expressible in this form. The property of non-factorizability of quantum
states is given by the fact that the direct sum of H1 and H2 is a proper subset of H1 ⊗H2. In what
follows, we introduce some notation that turns out to be very useful to describe our holistic extension of
the classical logic based on the Toffoli quantum gate.

Let us remind readers that any density operator ρ can be expressed as ρ = 1
2 (I + s1σ1 + s2σ2 +

s3σ3), where I is the identity matrix, σ1, σ2, σ3 are Pauli matrices and s1, s2 and s3 are three real numbers
such as s2

1 + s2
2 + s2

3 ≤ 1. The triple (s1, s2, s3) represents a point of the Bloch sphere uniquely associated
with the density operator ρ. Similarly, it can be obtained for any n-dimensional Hilbert space by the
generalized Pauli-matrices.
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Definition 1. Let H be a n-dimensional Hilbert space and {|ψ1〉, . . . , |ψn〉} be the canonical orthonormal
basis of H. Let us consider k, j be two natural numbers such that: 1 ≤ k < j ≤ n. Then, the generalized
Pauli-matrices are defined as follows:

(n)σ
[k,j]
1 = |ψj〉〈ψk|+ |ψk〉〈ψj|

(n)σ
[k,j]
2 = i(|ψj〉〈ψk| − |ψk〉〈ψj|)

and for 1 ≤ k ≤ n− 1

(n)σ
[k]
3 =

√
2

k(k + 1)
(|ψ1〉〈ψ1|+ · · ·+ |ψk〉〈ψk| − k|ψk+1〉〈ψk+1|).

IfH = C2, one immediately obtains: (2)σ
[1,2]
1 = σ1, (2)σ[1,2]

2 = σ2 and (2)σ
[1]
3 = σ3.

Let ρ be a density operator of the n-dimensional Hilbert space H. For each j satisfying 1 ≤ j ≤
n2 − 1, let us consider

sj(ρ) = tr(ρσj).

The sequence 〈s1(ρ) . . . sn2−1(ρ)〉 is called the generalized Bloch vector associated with ρ, in view of
the following well-known result [15]: let ρ be a density operator of the n-dimensional Hilbert spaceH
and let σj ∈ Pn. Then, the density operator ρ can be represented as:

ρ =
1
n

I(n) +
1
2

n2−1

∑
j=1

sj(ρ)σj, (1)

where I(n) is the n× n identity matrix.
By using generalized Pauli matrices, it will be possible to formally describe a notion of holism for

bipartite states. In fact, by the Schlienz–Mahler decomposition [15], we can show how any quantum
bipartite state can be expressed as a sum of a factorizable state plus another quantity that represents a
kind of holistic component.

Let us consider the Hilbert space H = Ha ⊗Hb. For each density operator ρ on H, we shall
denote by ρa the partial trace of ρ with respect to the subsystemHb (i.e., ρa = trHb(ρ)) and, similarly,
by ρb the partial trace of ρ with respect to the subsystemHa (i.e., ρb = trHa(ρ)). For the next sections,
let us recall the following result:

let ρ be a density operator in the n-dimensional Hilbert spaceH = Ha ⊗Hb such that dim(Ha) =

m and dim(Hb) = k. By dividing ρ in m×m blocks Bi,j, each of them is a k-square matrix, then:

ρa = trHb(ρ) =


trB1,1 trB1,2 . . . trB1,m
trB2,1 trB2,2 . . . trB2,m

...
...

...
...

trBm,1 trBm,2 . . . trBm,m

 (2)

ρb = trHa(ρ) =
m

∑
i=1

Bi,i. (3)

Definition 2. Let ρ be a density operator in the Hilbert spaceHm⊗Hk, where dim(Hm) = m and dim(Hk) =

k. Then, ρ is (m, k)-factorizable iff ρ = ρm ⊗ ρk where ρm is a density operator in Hm and ρk is a density
operator inHk.

Note that, if ρ is (m, k)-factorizable as ρ = ρm ⊗ ρk, this factorization is unique and ρm and ρk
correspond to the reduced states of ρ onHm andHk, respectively [16].
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Let us suppose that H = Ha ⊗ Hb where dim(Ha) = m and dim(Hb) = k. Consider the
generalized Pauli matrices σa

1 , . . . , σa
m2−1 and σb

1 , . . . , σb
k2−1 arising from Ha and Hb, respectively.

By defining the coefficients:

Mj,l(ρ) = tr(ρ[σa
j ⊗ σb

l ])− tr(ρ[σa
j ⊗ I(k)])tr(ρ[I(m) ⊗ σb

l ])

and by considering the matrix M(ρ) defined as

M(ρ) =
1
4

m2−1

∑
j=1

k2−1

∑
l=1

Mj,l(ρ)(σ
a
j ⊗ σb

l )

then M(ρ) represents the “additional component” of ρ when ρ is not a factorized state. Thus, if ρ is a
density operator inH = Ha ⊗Hb, then

ρ = ρa ⊗ ρb + M(ρ). (4)

The above result provides a mathematical representation of the instance of holism mentioned at
the beginning of the section. Indeed, a state ρ inHa ⊗Hb does not only depend on its reduced states
ρa and ρb, but the summand M(ρ) is also involved. We notice that M(ρ) is not a density operator and
then it does not represent a physical state. We refer to M(ρ) as the holistic component of ρ.

3. Quantum Computation with Mixed States

As anticipated in the Introduction, we now provide some basic notions of quantum computing.
In quantum computation, information is elaborated and processed by means of quantum systems.
A quantum bit or qubit, the fundamental concept of quantum computation, is a pure state in the Hilbert
space C2. The standard orthonormal basis {|0〉, |1〉} of C2 is called logical basis. They are related to the
fact that the logical truth is represented by |1〉 and the falsity by |0〉. Therefore, a pure state |ψ〉 in C2

can be written as |ψ〉 = c0|0〉+ c1|1〉, where c0 and c1 are complex numbers such that |c0|2 + |c1|2 = 1.
Recalling the Born rule, any qubit |ψ〉 = c0|0〉+ c1|1〉may be regarded as a piece of information, where
the number |c0|2 corresponds to the probability-value of the information described by the basic state
|0〉, while |c1|2 corresponds to the probability-value of the information described by the basic state |1〉.
The two basis-elements |0〉 and |1〉 are usually taken as the encoding of the classical bit-values 0 and 1,
respectively. In this way, the qubit probability value we are interested in is p(|ψ〉) = |c1|2, which is
related to the basis vector associated with truth.

Quantum states considered in quantum computation live in the tensor product⊗nC2 = C2⊗C2⊗
. . .⊗C2 (n times) that is a 2n-dimensional complex space. A special basis, called the 2n-computational
basis, is chosen for ⊗nC2. In other words, it consists of the 2n orthogonal states |ι〉, 0 ≤ ι ≤ 2n

where ι is in binary representation and |ι〉 is a tensor product of states (Kronecker product) |ι〉 =
|ι1〉 ⊗ |ι2〉 ⊗ . . .⊗ |ιn〉, whit ιj ∈ {0, 1}. Then, a pure state |ψ〉 ∈ ⊗nC2 can be written as |ψ〉 = ∑2n

ι=1 cι|ι〉,
with ∑2n

ι=1 |cι|2 = 1.
In the usual representation of quantum computational processes, a quantum circuit is identified

with an appropriate composition of quantum gates, mathematically represented by unitary operators
acting on pure states of a convenient (n-fold tensor product) Hilbert space ⊗nC2 [17]. In other words,
the standard model for quantum computation is mathematically based on “qubits-unitary operators”.

As we said in the Introduction, in general, a quantum system is not in a pure state. Moreover, there
are interesting processes that cannot be encoded by unitary evolutions. For example, the measurement
at the end of the computation is a non-unitary operation, and the final state is a probability distribution
over pure states, i.e., a mixed state.

In this way, several authors [5–7,18,19] have considered a general model for quantum computing,
where pure states are changed with mixed states. In what follows, we provide a brief description
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of this powerful model for quantum computers based on mixed states, which is better suited to our
development.

As a particular case, we may associate to each vector of the logical basis of C2 two density
operators P0 = |0〉〈0| and P1 = |1〉〈1| that represent, in this framework, the falsity-property and the
truth-property, respectively. Let us consider the operator P(n)

1 = ⊗n−1 I ⊗ P1 on ⊗nC2. By applying
the Born rule, we shall consider the probability of a density operator ρ as follows:

p(ρ) = Tr(P(n)
1 ρ). (5)

Note that, in the particular case in which ρ = |ψ〉〈ψ|, where |ψ〉 = c0|0〉+ c1|1〉, we obtain that
p(ρ) = |c1|2. Thus, this probability value associated with ρ is the generalization of the probability
value considered for qubits.

A quantum operation [20] is a linear operator E : L(H1) → L(H2) where L(Hi) is the space
of linear operators in the complex Hilbert space Hi (i = 1, 2), representable as E(ρ) = ∑i AiρA†

i
where Ai are operators satisfying ∑i A†

i Ai = I (Kraus representation). It can be seen that a quantum
operation maps density operators into density operators. Each unitary operator U can be described
as has a quantum operation OU , where, for any density operator ρ, OU (ρ) = UρU †. Thus, quantum
operations generalize unitary operators. It provides a powerful model for quantum computation in
which irreversible processes can also be considered. This model founded on density operators and
quantum operations is known as “quantum computation with mixed states” ([7,18]).

4. Standard Quantum Logic vs. Quantum Computational Logic

The holistic extensions for classical logic in quantum computing, announced as the main goal
of this paper, is fully supported in the formalism of quantum computation with mixed states.
This naturally suggests a kind of quantum logical system related to quantum computation that allows
us to achieve the extension mentioned above. As expected, this logical system will be substantially
different than standard Birkhoff–von Neumann quantum logic [21]. In this section, we summarize the
differences between these two logical systems.

According to von Neumann’s axiomatization, quantum events are mathematically realized by
projectors of a Hilbert space H. Hence, any experimental proposition concerning a quantum system
corresponds to a projector in a convenient Hilbert space. Closed subspaces of H are in one-to-one
correspondence with the class of all projectors ofH and they form an algebra called Hilbert lattice (denoted
by L(H)). In any Hilbert lattice, the meet operation ∧ corresponds to the set theoretical intersection
between subspaces and the join operation ∨ corresponds to the smallest closed subspace ofH containing
the set theoretical union of subspaces. The ordering relation associated with the lattice L(H) is the
inclusion of subspaces. Note that L(H) is a bounded lattice where H is the maximum, denoted by 1,
while 0 denotes the minimum, i.e., the subspace containing only the origin. This lattice equipped with
the relation of orthogonal complement ⊥ can be described as an ortholattice [22]. Then, the propositional
structure that defines the standard quantum logic proposed by Birkhoff and von Neumann is given by the
ortholattice 〈L(H),∨,∧,⊥ , 1, 0〉. Let us notice that, unlike classical logic, in this structure, the distributive
law fails. However, L(H) satisfies a kind of weak distributivity. In case of a finite-dimensional Hilbert
spaceH, the ortholattice L(H) is modular, i.e., satisfies the following condition known as modular law:
x ≤ y =⇒ x ∨ (y ∧ z) = y ∧ (x ∨ z). In the case of an infinite-dimensional Hilbert space, the modular
law is not satisfied. In 1937, Husimi [23] showed that a weaker law, the so-called orthomodular law
(x ≤ y =⇒ x ∨ (x⊥ ∧ y) = y), is satisfied in the ortholattice L(H).

Quantum computational logic can be considered as a different kind of quantum logic. It arises
from the combinational structure associated with a set of quantum gates, mathematically represented
by quantum operations. Let us remember that the mathematical support for quantum computation
is given by finite dimensional Hilbert spaces of the form ⊗nC2. While the standard quantum logic
associated with a system represented by ⊗nC2 is given by the ortholattice L(⊗nC2), on the contrary,
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possible quantum computational logic systems are defined taking into account algebraic properties
of quantum operations acting over density operators on ⊗nC2. Although it is clear that these logical
systems are not Boolean, their notion of logical consequence is inspired by the following problem,
usually treated in classical computation and more precisely in digital techniques. If T is a combinational
circuit, we want to know whether a determinate input state of T, represented by a string of bits 0 and
1, forces a determinate output state of T given by a bit that could be either 0 or 1. As a general rule,
this problem can be solved through effective procedures based on classical logic.

Then, one may naturally extend this problem by considering circuits made from assemblies of
quantum gates. In this way, the input and the output of quantum circuits are labeled by density
operators and possible notions of logical consequence are defined by relations between the input
and the output of circuits. Several families of quantum computational logics arise from these
extensions [5,6,24]. These families of logics have a common semantics based on probability-values
introduced in Equation (5). More precisely, a language for a quantum computational logic is a
propositional language LF(X) where X is a non-empty set of variables and F is a set of connectives.
Propositional variables are interpreted in a set D of density operators and, for each connective f ∈ F, f
is naturally interpreted as a quantum operation U f closed onD. An interpretation of LF(X) inD is any
function e : LF(X)→ D such that, for any f ∈ F having arity k, e( f (x1, . . . , xk)) = U f (e(x1), . . . , e(xk)).
To define a relation of semantic consequence |= based on the probability assignment, it is necessary
to introduce the notion of valuations. In fact, valuations are functions over the unitary real interval
v : LF(X)→ [0, 1] such that f can be factorized in the following way:

-

? �
��≡

LF(X) [0, 1]

D

v

e
p

(6)

Since an interpretation always determines a valuation, for each interpretation e, we denote by ep the
valuation related to e. The abstract notion of semantical consequence |= related to D is given by:

α |= ϕ i f f R[v(α), v(ϕ)],

where R ⊆ [0, 1]2 is a reflexive and transitive relation. Note that the natural extension of classical
logical consequence can be formulated as follows:

α |= ϕ i f f ep(α) = 1 =⇒ ep(ϕ) = 1. (7)

More precisely, in this case,R[ep(α), ep(ϕ)] is defined by ep(α) = 1 =⇒ ep(ϕ) = 1. These kinds of
logical systems can be framed as generalizations of probabilistic logic. Probabilistic logic is the concept
that Adams [25] introduced for the logical investigation on the transmission of probability values
thorough valid inferences. In our context, the notion of probabilistic logial system can be generalized
by considering non-Kolmogorovian probability models [26] as it happens in the case of quantum
computational logics, which is semantically based on the Born rule.

5. A Fuzzy Extension for Classical Logic in Quantum Computation

As introduced in the previous section, the probabilistic semantic for a language LF(X) associated
with quantum computational logic assumes its truth value in the continuous [0, 1]. This suggests
a strong relation between quantum computational logic and fuzzy logic. Since we are interested
in an extension of classical logic in a quantum computational framework, it is quite natural for
above-mentioned logical systems to require the following condition: once a language LF(X) is fixed,
the elements of the set F have to be interpreted as quantum operations that are able to fully describe,
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from the truth-functionally point of view, classical logic. In other words, the set of connectives F,
restricted to the classical truth values {0, 1}, is functionally complete (we say that a set of classical
connectives is functionally complete if it is sufficient to express every truth-function) with respect to
propositional classical logic. In this section, we shall consider a logical system equipped with only one
connective, semantically interpreted as the well-known Toffoli quantum gate.

5.1. Classical Functional Completeness and the Extension via Toffoli Gate

Functionally completeness, besides being an important logical property, turns out to be crucial
also for technological applications. A paradigmatic case is represented by the digital techniques where
logical gates can be represented by propositional connectives and circuits by propositional formulas.
For technical reasons (standardization of integrated circuits, energy optimization), sometimes it is
necessary to build circuits by using a restricted set of logical gates. We focus our attention on the set
〈¬,∧〉, which is functionally complete for classical logic. Thus, by induction, a logical system 〈¬,∧〉
can represent all truth-functions of classical logic. However, the set 〈¬,∧〉 could not be functionally
complete for some extension of classical logic. The rest of this subsection is devoted to investigating a
natural extension of 〈¬,∧〉 to quantum computational logic with mixed states.

First of all, the classical negation is extended in the following way:

Definition 3. For each density operator ρ in ⊗mC2, the negation NOT(2m)(ρ) is defined as follows:

NOT(2m)(ρ) = (I(2
m−1) ⊗ NOT) ρ (I(2

m−1) ⊗ NOT),

where NOT =

[
0 1
1 0

]
.

In [27], it is proved that
p(NOT(2m)(ρ)) = 1− p(ρ). (8)

An extension of the classical conjunction can be implemented via the Toffoli gate. It was
introduced by Tommaso Toffoli [28] and it is represented by the ternary classical connective
T(x, y, z) = (x, y, xy+̂z), where +̂ is the sum modulo 2. When z = 0, T(x, y, 0) reproduces the
classical conjunction. Toffoli gate is naturally extended to qubits in the following way.

For any natural numbers m, k ≥ 1 and for any vectors of the standard basis |x〉 = |x1 . . . xm〉 ∈
⊗mC2 , |y〉 = |y1 . . . yk〉 ∈ ⊗kC2 and |z〉 ∈ C2, the Toffoli gate T(m,k,1) on ⊗m+k+1C2 is defined
as follows:

T(m,k,1)(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉 ⊗ |xmyk+̂z〉.

By ([29] Proposition 3.1), for any choice of m, k ≥ 1, T(m,k,1) is a unitary operator whose matrix
representation is given by

T(m,k,1) = I(2
m+k+1) + P(2m)

1 ⊗ P(2k)
1 ⊗ (Not− I) (9)

= I(2
m−1) ⊗

[
I(2

k+1) 0
0 I(2

k−1) ⊗ Xor

]
, (10)

where Xor =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

T(m,k,1) allows us to extend the classical conjunction as follows.
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Definition 4. Let ρm be a density operator in ⊗mC2 and ρk be a density operator in ⊗kC2. We define:

AND(m,k)(ρm ⊗ ρk) = T(m,k,1)(ρm ⊗ ρk ⊗ P0)T(m,k,1).

In [27], it is proved that

p(AND(m,k)(ρm ⊗ ρk)) = p(ρm)p(ρk). (11)

Let us consider the set Dn of all density operators on ⊗nC2. It is very important to remark that
AND(m,k) can be seen as a binary operator of the form

AND(m,k) : Dm ×Dk → Dm+k+1. (12)

In order to define a quantum computational logical system in the sense of Section 3 and based on
{AND(−,−),NOT(2−)}, we consider the set D =

⋃
nDn and we introduce the binary connective AND

and the unary connective NOT in D as

AND(ρ, σ) = AND(m,k)(ρ⊗ σ) iff, ρ ∈ Dm and σ ∈ Dk,
NOT(ρ) = NOT(2m)(ρ) iff ρ ∈ Dm.

Note that AND and NOT are closed operations in D. Thus, these operations define a quantum
computational logical system in the sense of Section 3 that we shall denote as QCAN . By Equations (8)
and (11), it is immediate to see that

p(NOT(ρ)) = 1− p(ρ), p(AND(ρ, σ)) = p(ρ)p(σ). (13)

From a probabilist point of view, NOT(2m) gate can be described as an instance of Toffoli gate. In
fact, by ([29] Theorem 3.1), for each density operator ρ in ⊗mC2, we can easily see that

p(NOT(2m)(ρ)) = p(T(m,k,1)(ρ⊗ P(k)
1 ⊗ P1)T(m,k,1)).

Thus, AND and NOT can be considered as two particular instances of Toffoli gate. Consequently,
QCAN can be seen as a logic construction arising from Toffoli gate only.

In the case where p(ρ) and p(σ) are 1 or 0, these quantum gates behave as the classical
negation and conjunction, respectively. In this way, QCAN provides an extension of the classical
propositional logic.

It is possible to characterize the subset of D for which the set of connectives {NOT,AND}
classically behaves. In fact: let ρ ∈ Dn and suppose that the diagonal of ρ is given by diag(ρ) =

{r1,1, r2,2 . . . r2n ,2n}. Note that p(ρ) ∈ {0, 1} iff ∑2n−1

i=1 r2i,2i ∈ {0, 1}. If we define the set

Dclass
n = {ρ = (ri,j)1≤i,j≤2n ∈ Dn :

2n−1

∑
i=1

r2i,2i ∈ {0, 1}},

then
Dclass =

⋃
n
Dclass

n (14)

is the subset of D in which {NOT,AND} classically behaves.

5.2. QCAN and the Connection with the Fuzzy Logic

In the general case,QCAN is strongly related to the Basic fuzzy logic introduced by Hájek at the end
of the 1990s [11]. This kind of fuzzy logic is conceived as a theory of the approximate reasoning based
on many-valued logic systems. Basic fuzzy logic is the logic associated with continuous t-norms i.e.,
continuous, commutative, associative, and monotone binary operations on [0, 1] with 1 as the neutral
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element. These operations are taken as possible truth-functions of conjunctions in these systems. Each
continuous t-norm determines a semantics of fuzzy propositional logic. For example, the Łukasiewcz
t-norm x�Ł y = max{0, x + y− 1} defines the conjunction of the Łukasiewcz infinite many valued
logic, where ¬Łx = 1− x is the negation in this logic. The product t-norm x�p y = x · y defines the
conjunction of the Product logic [10] and the Gödel t-norm x�p y = min{x, y} defines the conjunction
of the linear Heyting logic. In this subsection, we investigate the formal relation between QCAN and
the fuzzy logic system based on the product t-norm.

Since p(NOT(ρ)) = 1− p(ρ), we can identify NOT with the Łukasiewicz negation and since
p(AND(ρ, σ)) = p(ρ)p(σ), AND can be identified with the product t-norm. Thus, from a strictly
semantic point of view, we can establish the following identification:

{NOT,AND}
≈

semantic {¬Ł,�p}. (15)

We remark that connectives {¬Ł,�p} define a multiplicative fragment of the fuzzy logical system
known as product many valued logic or PMV-logic, studied in [30,31].

This semantic connection between two logical systems is even deeper and it is formally rooted in
the equivalence relation on D given by

ρ ≈ σ iff p(ρ) = p(σ). (16)

It is not very hard to see that the quotient set D/≈ can be identified to the real interval [0, 1] and≈
is a congruence with respect to {NOT,AND}. Thus, both operations naturally induce two operations
over the equivalence classes in D/≈ given by NOT≈([ρ]) = [NOT(ρ)] and AND≈([ρ], [σ]) =

[AND(ρ, σ)]. Then, the algebraic structures 〈D≈,NOT≈,AND≈〉 and 〈[0, 1],¬Ł,�p〉 coincide and
they induce the same algebraic semantic for both logical systems. As a consequence, the natural
{NOT,AND}-homomorphism π : D → D/≈ = [0, 1] is identifiable with the assignment of probability
in QCAN . In this way, QCAN is semantically related to basic fuzzy logic providing a fuzzy extension
for the propositional classical logic in quantum computation with mixed states.

5.3. Extending Classical Contradictions and Tautologies in QCAN

In classical logic, concepts of contradiction and tautology can be syntactically represented in terms
of {¬,∧}. Contradictions are those formulas equivalent to p ∧ ¬p and tautologies are those formulas
equivalent to ¬(p ∧ ¬p). From these facts, the formula p ∧ ¬p is sometimes referred to as syntactic
contradiction and ¬(p ∧ ¬p) (more precisely, the equivalent form p ∨ ¬p) is referred to as syntactic
tautology. In this work, we accord with this terminology.

In QCAN , a syntactic representation for contradictions and tautologies is lost. This fact can be
explained taking into account that real numbers do not contain zero divisors. Then, there is not an
algebraic expression built from {¬Ł,�p} that produces the constant functions 1 or 0. Hence, the
semantic identification given in Equation (15) does not exist a formula in the language of {AND,NOT}
that produces a contradiction or a tautology in QCAN . However, the QCAN-extensions of the syntactic
contradiction and the syntactic tautology have interesting properties. The QCAN are:

p ∧ ¬p
QCAN−→ AND(ρ,NOTρ) [syntactic contradiction],

¬(p ∧ ¬p)
QCAN−→ NOT(AND(ρ,NOTρ)) [syntactic tautology].

Since NOT is an involution on D, the QCAN-extension of the syntactic contradiction and
QCAN-extension of the syntactic tautology are dual concepts. Thus, for the sake of simplicity, we can
focus our attention on the notion of contradiction only. By Equation (15), we can see that:

p(AND(ρ,NOTρ)) = p(ρ)(1− p(ρ)) ≤ 1
4

. (17)
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Thus, p(AND(ρ,NOTρ)) = 0 iff p(ρ) ∈ {0, 1}. In other words, the fuzzy extension of the classic
syntactic contradiction AND(−,NOT(−)) has a classical behaviour over the set Dclass only.

6. A Holistic Type Extension for Classical Logic

Quantum computational logic with mixed states can also provide an interesting holistic type
extension for the classical propositional logic. This extension arises when non factorizable states are
considered as inputs in the Toffoli quantum gate. We will also note that the fuzzy system {¬Ł,�P}
plays an important role for describing the mentioned holistic extension.

The formal language in which classical logic and most of the logical systems are expressed are
regulated by strict syntax rules. The basic idea at the origin of these languages is the fact that each
proposition or formula can be built by means of a recursive procedure from a distinguished set of
propositions, which are called atomics propositions. In this way, complex propositions are recursively
obtained from atomic propositions assembled by connectives. For each connective a natural number,
the arity is assigned. The arity defines the number of propositions that the connectives assemble.
When an algebraic semantic for these logical systems is considered, an n-ary connective is interpreted
as an algebraic operation having n arguments. Thus, the arity is an invariant property associated
with a connective. All of these ideas were already taken into account in QCAN , where separability
conditions of the states were considered. More precisely, AND(m,k) is viewed as a 2-ary connective in
the ideal case in which a factorizable state of the form ρm ⊗ ρk is considered as input.

In general, of course, this is not the case. Quantum systems continually interact with environment,
building up correlations. For a more realistic approach, we can assume that the input of the
AND(m,k) can be also a non-factorizable mixed state ρ in ⊗m+kC2 taking into account its holistic
type representation given in Equation (4), i.e.,

ρ = ρm ⊗ ρk + M(ρ),

where ρm and ρk are the reduced states of ρ in ⊗mC2 and ⊗kC2, respectively.
Unlikely, with respect to Equation (12), when non factorized states are taken into account,

AND(m,k) behaves as a unary operator of the form AND(m,k) : Dm+k → Dm+k+1. This behavior
of AND(m,k) motivates a holistic type extension of classical conjunction. The following definition
formally introduces an operator that describes the unary behavior of AND(m,k).

Definition 5. For any density operator ρ ∈ ⊗m+kC2, we define:

AND(m,k)
Hol (ρ) = T(m,k,1)(ρ⊗ P0)T(m,k,1).

For the sake of the simplicity, we use the following notation: if ρ is a density operator in ⊗m+kC2,
then T(m,k,1)

p (ρ) denotes the matrix

T(m,k,1)
p (ρ) = P2m+k+1

1 (T(m,k,1)(M(ρ)⊗ P0)T(m,k,1)).

Then, by Equations (4) and (11), it follows that, if ρ is a density operator in ⊗m+kC2 and ρm, ρk are
the reduced states of ρ in ⊗mC2 and ⊗kC2, respectively, then:

AND(m,k)
Hol (ρ) = AND(m,k)(ρm ⊗ ρk) + T(m,k,1)(M(ρ)⊗ P0)T(m,k,1) (18)

and the probability of the holistic conjunction will assume the form:

p(AND(m,k)
Hol (ρ)) = p(ρm)p(ρk) + tr(T(m,k,1)

p (ρ)). (19)
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Furthermore, in the special case where ρ = ρm ⊗ ρk, Equation (18) clearly collapses in:

AND(m,k)
Hol (ρ) = AND(m,k)(ρm ⊗ ρk). (20)

The above result shows that AND(m,k) is implicitly acting in AND(m,k)
Hol (ρ) over the reduce states

of ρ.

In what follows, we provide a simple way to estimate p(AND(m,k)
Hol (ρ)), p(ρm), p(ρk) and

tr(T(m,k,1)
p (M(ρ))). We first introduce the following technical definition.

Definition 6. Let ρ = (ri,j)1≤i,j≤2m+k be a density operator in ⊗m+kC2 divided in 2m × 2m blocks Ti,j such
that each of them is a 2k-square matrix:

ρ =


T1,1 T1,2 . . . T1,2m

T2,1 T2,2 . . . T2,2m

...
...

...
...

T2m ,1 T2m ,2 . . . T2m ,2m

 .

Then, the (m, k)-Toffoli blocks of ρ are the diagonal blocks (Ti = Ti,i)1≤i≤2m of ρ. For the sake of
formal semplicity, we also introduce the following quantities:

βm,k(ρ) = ∑2m−1
j=1 ∑2k−1−1

i=0 r(2i+1)+j2k that is the sum of the odd diagonal elements of the even
(m, k)-Toffoli blocks T2i of ρ,

γm,k(ρ) = ∑2m−2
j=0 ∑2k−1

i=1 r2i+j2k that is the sum of the even diagonal elements of the odd
(m, k)-Toffoli blocks T2i+1 of ρ,

δm,k(ρ) = ∑2m−1
j=1 ∑2k−1

i=1 r2i+j2k that is the sum of the odd diagonal elements of the odd (m, k)-Toffoli
blocks T2i+1 of ρ.

By ([29] Proposition 4.3) for each density operator ρ in ⊗m+kC2 where m, k ≥ 1 and with ri i-th
diagonal element of ρ, then:

p(AND(m,k)
Hol (ρ)) =

2m−1

∑
j=1

2k−1

∑
i=1

r(2j−1)2k+2i. (21)

More precisely, p(AND(m,k)
Hol (ρ)) is the sum of the even diagonal elements of the even (m, k)-Toffoli

blocks T2i of ρ.
Equation (21) is a useful tool that allows us to evaluate in very simple way all the terms involved

in Equation (19), as the next theorem provides (for more technical details, see ([29] Proposition 4.4.))

Theorem 1. Let ρ be a density operator in ⊗m+kC2. Let ρm and ρk be the reduced states of ρ on ⊗mC2 and
⊗kC2, respectively. Then,

1. 1 = p(AND(m,k)
Hol (ρ)) + βm,k(ρ) + γm,k(ρ) + δm,k(ρ),

2. p(ρm) = p(AND(m,k)
Hol (ρ)) + βm,k(ρ),

3. p(ρk) = p(AND(m,k)
Hol (ρ)) + γm,k(ρ),

4. tr(T(m,k,1)
p (ρ)) = p(AND(m,k)

Hol (ρ))δm,k(ρ)− βm,k(ρ)γm,k(ρ).

Interestingly enough, Theorem 1 allows us to obtain some boundary estimation on the quantities
involved in Equation (19).
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By Theorem 1 (2–3) is immediate to see that

p(AND(m,n)
Hol (ρ)) ≤ p(ρm), p(ρk). (22)

Furthermore, the incidence of the holistic component M(ρ) on the probability of p(AND(m,n)
Hol (ρ))

lives in the bounded interval:

− 1
4
≤ tr(T(m,k,1)

p (ρ)) ≤ 1
4

. (23)

To show this, we have to consider the following maximum/minimum problem{
tr(T(m,k,1)

p (ρ)) = δm,k(ρ)2 − βm,k(ρ)γm,k(ρ),

2δm,k(ρ) + βm,k(ρ) + γm,k(ρ) = 1.

Note that max tr(T(m,k,1)
p (ρ)) is given when βm,k(ρ) + γm,k(ρ) = 0. Thus, max{tr(T(m,k,1)

p (ρ))} =

δm,k(ρ)2 = 1
4 . While min{tr(T(m,k,1)

p (ρ))} is given under the condition βm,k(ρ) + γm,k(ρ) = 1. In this

way, min{tr(T(m,k,1)
p (ρ))} −max{βm,k(ρ)(1− βm,k(ρ))} = − 1

4 .

Finally, in the special case where p(AND(m,k)
Hol (ρ)) = 1 the holistic component of ρ has not any

probability incidence, i.e., tr(T(m,k,1)
p (ρ)) = 0. In this case, p(ρm) = p(ρk) = 1. In fact, suppose that

p(AND(m,k)
Hol (ρ)) = 1; then, by Theorem 1-(1 and 2), p(ρm) = p(ρk) = 1 and βm,k(ρ) = γm,k(ρ) = 0.

Thus, 1 = p(AND(m,k)
Hol (ρ)) + δm,n(ρ) + βm,k(ρ) + γm,k(ρ) = 1 + δm,n(ρ) + 0 + 0 and then δm,n(ρ) = 0.

Hence, by Theorem 1-3, tr(T(m,k,1)
p (ρ)) = 0.

To define an holistic extension of the classical conjunction starting from AND(m,k)
Hol , we have to

deal with the following situation: if ρ is a density operator on ⊗nC2 where n = m + k = m′ + k′ and
m 6= m′, k 6= k′, then we generally have that

AND(m,k)
Hol (ρ) 6= AND(m′ ,k′)

Hol (ρ).

In other words, a logical connective based on AND(−,−)
Hol also requires a precise information

about the holistic representation of the argument in the sense of Equation (4). For this, we introduce
the following notions: ρ〈m,k〉 indicates that ρ is a density operator in ⊗m+kC2 where the holistic
representation ρ = ρm ⊗ ρk + M(ρ) is chosen. We also define the set DHol as:

DHol = {ρ〈m,k〉 : m, k ∈ N}.

If we consider the relation in DHol given by

ρ〈m,k〉 ≈H ρ〈m′ ,k′〉 iff m + k = m′ + k′, (24)

then ≈H is an equivalence and DHol/≈H = D.

We also note that, if ρ is a density operator on ⊗m+kC2, Proposition 9 suggests a privileged
(holistic) interpretation of the codomain for AND(m,k)

Hol (ρ). In fact:

AND(m,k)
Hol (ρ) = T(m,k,1)(ρ⊗ P0)T(m,k,1)

= (I(2
m+k+1) + P(2m)

1 ⊗ P(2k)
1 ⊗ (Not− I))(ρ⊗ P0)(I(2

m+k+1) +

P(2m)
1 ⊗ P(2k)

1 ⊗ (Not− I))

= ρ⊗ P0 + M(AND(m,k)
Hol (ρ)),
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where M(AND(m,k)
Hol (ρ)) = P(2m)

1 ⊗ P(2k)
1 ⊗ (Not− I))(ρ⊗ P0)(P(2m)

1 ⊗ P(2k)
1 ⊗ (Not− I)). This suggests

to consider (AND(m,k)
Hol (ρ))〈m+k,1〉 as a natural holistic representation for AND(m,k)

Hol (ρ). Thus, we define
the holistic extension of the classical conjunction as follows:

ANDHol(ρ〈m,k〉) = (AND(m,k)
Hol (ρ))〈m+k,1〉

In this way, ANDHol defines a unary connective in DHol . Note that Equation (18) provides a deep
relation between the connectives ANDHol and AND. In fact, for ρ〈m,k〉 = ρm ⊗ ρk + M(ρ), we have that

ANDHol(ρ〈m,k〉) = AND(m,k)(ρm ⊗ ρk) + T(m,k,1)(M(ρ)⊗ P0)T(m,k,1)

= AND(ρm ⊗ ρk) + T(m,k,1)(M(ρ)⊗ P0)T(m,k,1).

The connective NOT, formally defined on D, has a natural extension to DHol . Taking into
account the equivalence ≈H in DHol , introduced in Equation (24), for each ρ〈m,k〉 ∈ DHol , we can
define NOT(ρ〈m,k〉) = NOT([ρ〈m,k〉]≈H ) where the equivalence class [ρ〈m,k〉]≈H is identified to a density
operator on D. In this way, ≈H becomes a congruence with respect to NOT, and NOT is well defined
on DHol .

The pair ANDHol , NOT defines a holistic type extension for classical logic in the framework
of quantum computation with mixed states. We denote this logical system as QCHol

AN . We want
to remark two peculiarities about the system QCHol

AN . First: while classical logic needs at least
one binary connective to describe any possible truth-function, QCHol

AN can describe any possible
classical truth-function by involving two unary connectives. Second: since QCHol

AN is described by
unary connectives, the notion of classical syntactic contradiction—that had a natural extension in
QCAN—seems to not have an extension in QCHol

AN . The next section is devoted to this topic.

7. Syntactic Contradiction in QCHol
AN

QCHol
AN is a logical system having unary connectives only. This fact does not allow us to extend, in

a natural way, the syntactic representation of the classical contradiction given by p ∧ ¬p. However, it
is possible to characterize a sub class of DHol that preserves the notion of syntactic contradiction when
ANDHol takes arguments on this class.

Let us remind that the syntactic contradiction, extended to QCAN , is given by AND(ρ,NOT(ρ)),
where p(AND(ρ,NOT(ρ))) = p(ρ)(1 − p(ρ)). Following this idea, we want to characterize the
elements ρ〈m,k〉 in DHol such that p(ρm) = 1− p(ρk). In this way, if ρ〈m,k〉 is of the form ρ〈m,k〉 =

ρm ⊗NOT(ρm), then ANDHol(ρ〈m,k〉) = AND(ρm ⊗NOT(ρm)). It generalizes the fuzzy extension of
the syntactic contradiction in QCHol

AN . We first introduce the following set

Dcont
Hol = {ρ〈m,k〉 ∈ DHol : p(ρm) = 1− p(ρk)}. (25)

The elements of Dcont
Hol allow us to extend the notion of syntactic contradiction to QCHol

AN in the
following way:

Definition 7. An expression of the form ANDHol(ρ〈m,k〉) is said to be an holistic contradiction whenever
ρ〈m,k〉 ∈ Dcont

Hol .

We note that an holistic contradiction can be characterized by a special value of p(ANDHol(ρ〈m,k〉))

because
ρ〈m,k〉 ∈ Dcont

Hol i f f p(ANDHol(ρ〈m,k〉)) = δm,k(ρ). (26)
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In fact, by Theorem 1, we have that:

p(ρm) = 1− p(ρk) i f f p(ANDm,k
Hol(ρ)) + βm,k(ρ) = 1− p(ANDm,k

Hol(ρ))− γm,k(ρ)

i f f p(ANDm,k
Hol(ρ) = 1− p(ANDm,k

Hol(ρ))− γm,k(ρ)− βm,k(ρ)

i f f p(ANDm,k
Hol(ρ)) = δm,k(ρ).

In other words, the notion of holistic contradiction is completely determined by the elements of
Dcont

Hol . For this reason, if ρ〈m,k〉 ∈ Dcont
Hol , ρ〈m,k〉 will be called as holistically contradictory.

A version of Theorem 1 for the elements of the set Dcont
Hol is established below.

Theorem 2. Let ρ〈m,k〉 ∈ Dcont
Hol . Then:

1. p(ANDHol(ρ〈m,k〉) =
1−βm,k(ρ)−γm,k(ρ)

2 ,

2. tr(T(m,k,1)
p (ρ)) = δm,k(ρ)2 − βm,k(ρ)γm,k(ρ),

3. 0 ≤ p(ANDHol(ρ〈m,k〉) ≤ 1
2 ,

4. p(ANDHol(ρ〈m,k〉) =
1
2 iff βm,k(ρ) = γm,k(ρ) = 0 iff p(ρm) = p(ρk) =

1
2 iff tr(T(m,k,1)

p (ρ)) = 1
4 ,

5. p(ANDHol(ρ〈m,k〉) = 0 iff βm,k(ρ) + γm,k(ρ) = 1 iff tr(T(m,k,1)
p (ρ)) = 1− βm,k(ρ)(1− βm,k(ρ)) =

1− γm,k(ρ)(1− γm,k(ρ)).

Proof. 1) Since p(ANDHol(ρ〈m,k〉) = δm,k(ρ), by Theorem 1-1, 1 = p(ANDHol(ρ〈m,k〉) + βm,k(ρ) +

γm,k(ρ) + δm,k(ρ) = 2δm,k(ρ) + βm,k(ρ) + γm,k(ρ). Thus, p(ANDHol(ρ〈m,k〉) =
1−βm,k(ρ)−γm,k(ρ)

2 .
2) Immediate from Theorem 1-4 and Theorem 2.
3) Since 0 ≤ βm,k(ρ) + γm,k(ρ) ≤ 1, by item 1, 0 ≤ p(ANDHol(ρ〈m,k〉) ≤ 1

2 .
4) By item 1, p(ANDHol(ρ〈m,k〉) =

1
2 iff βm,k(ρ) = γm,k(ρ) = 0 iff p(ρm) = δm,k(ρ) = 1− p(ρk) =

1− δm,k(ρ) = 1
2 iff tr(T(m,k,1)

p (ρ)) = 1
2

2 − 0.
5) Immediate from item 1, item 2 and Theorem 2.

The above theorem allows us to describe in a simple way the truth-functional behaviour of the
holistic conjunction. It turns out to be very useful in the next section.

8. Werner States and Syntactic Contradiction

Werner states provide an interesting example of syntactic contradiction when a bipartition
is considered. Werner states, firstly presented in [32] for two particles to discriminate between
classical correlation and the Bell inequality satisfaction, have many interests for their applications in
quantum information theory. Instances of this are entanglement teleportation via Werner states [33],
the investigation on deterministic purification [34], etc.

Definition 8. LetH⊗H be a Hilbert space where dim(H) = n. A Werner state ρ defined on the spaceH⊗H
is a density operator ρ such that, for any n-dimensional unitary operator U,

ρ = (U ⊗U)ρ(U† ⊗U†).

Let us notice that any Werner states can be also written in terms of the identity and SWAP
operators ([35] § 6.4.3) as follows:

ρ = ρ
(n2)
w =

n + 1− 2w
n(n2 − 1)

I(n
2) − n + 1− 2wn

n(n2 − 1)
SWAP(n2), (27)
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where w ∈ [0, 1] and SWAP(n2) = ∑i,j |ψi〉〈ψj| ⊗ |ψj〉〈ψi|, |ψi〉, |ψj〉 being vectors of the standard
n-dimensional basis.

Let us consider the Werner state ρ
(22n)
w in ⊗n+nC2. Then, we can prove that (for more technical

details, see ([29] Proposition 5.3).):

1. p(ANDHol(ρ
(22n)
w 〈2n ,2n〉)) =

22n+2n(2w−1)−2
4(22n−1) ,

2. p(ρ(2
2n)

w n) =
1
2 , where ρ

(22n)
w n is the partial trace of ρ

(22n)
w with respect to the subspace ⊗nC2,

3. tr(T(2n ,2n ,1)
p (M(ρ

(22n)
w )⊗ P0)) =

w2n+1−2n−1
4(22n−1) .

By item 2 and by Equation (25), it can be proved that the Werner state ρ
(22n)
w 〈2n ,2n〉 is a syntactic

contradiction for each n ∈ N and for any w ∈ [0, 1].

Figure 1 allows us to see the behavior of the Werner state ρ
(22)
w as a syntactic contradiction taking

into account the contribution of each parameter that defines the probability value p(ANDHol(ρ
22
w 〈2,2〉)).

Figure 1. Werner as holistic contraddiction and incidence of tr(T(2n ,2n ,1)
p (M(ρ

(22n)
w )⊗ P0)).

9. Conclusions

In this work, two semantical extensions of classical logic based on quantum computation with
mixed states was investigated: the first, named QCAN , is a fuzzy type extension, while the second,
named QCHol

AN , is an improving of QCAN , where also holistic characteristics of bipartite quantum
systems are considered. Both extensions are conceived from logical connectives for which natural
interpretations are instances of Toffoli quantum gate acting on mixed states.

Formal aspects of these new logical systems were detailed in the paper, and they naturally suggest
many interesting open questions and further developments in connection with different research areas.
From the perspective of the philosophy of logic,QCAN motivates new interpretations of fuzzy connectives
in quantum computation. More precisely, some fuzzy logical systems, besides being related to the
approximate reasoning or many-valued reasoning [36], also admit quantum probabilistic interpretations
associated with quantum circuits. In the fuzzy context, notions like truth, tautology and logical
consequences, may have another interpretation in the quantum computational framework. Technically
speaking, QCAN provides a good probabilistic description of circuits built on Toffoli quantum gates
playing a similar role to classical logic in the digital techniques context. QCAN deals with the ideal case
where only factorizable states are taken into account. The holistic extension QCHol

AN, instead, is able to
describe combinational aspects of Toffoli quantum gate in a more general realistic way. As we have seen
in Section 5,QCHol

AN is strongly related to the fuzzy systems that definesQCAN. Furthermore, this logical
system provides an interesting connection between some holistic features arising from non-factorizable
bipartite states and standard fuzzy logic. From an epistemological point of view,QCAN andQCHol

AN can
be considered as probabilistic type logic defining new kinds of quantum logic.



Entropy 2019, 21, 636 16 of 17

From an implementative perspective, these logical extensions can be very useful in quantum
computing since the fuzzy content ofQCAN andQCHol

AN could be specially applied in fuzzy control [37],
allowing for modelling the so-called Pelc’s game [38] (a probabilistic variant of Ulam’s game). It also
suggests further developments in the study of error-correcting codes in the framework of quantum
computation.
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