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Abstract: Quantum turbo codes (QTC) have shown excellent error correction capabilities in the setting
of quantum communication, achieving a performance less than 1 dB away from their corresponding
hashing bounds. Existing QTCs have been constructed using uniform random interleavers. However,
interleaver design plays an important role in the optimization of classical turbo codes. Consequently,
inspired by the widely used classical-to-quantum isomorphism, this paper studies the integration of
classical interleaving design methods into the paradigm of quantum turbo coding. Simulations results
demonstrate that error floors in QTCs can be lowered significantly, while decreasing memory
consumption, by proper interleaving design without increasing the overall decoding complexity of
the system.
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1. Introduction

Classical turbo codes, introduced by Berrou et al. in Reference [1], marked a breakthrough in
classical coding theory as the first practical codes closely approaching Shannon’s channel capacity [2].
Motivated by their success, serial concatenation of Quantum Convolutional Codes (QCC) was proposed
in Reference [3]. The use of a serial structure in Reference [3] is explained by the laws of quantum
mechanics, in particular by the underlying classical-to-quantum isomorphism [4] applied in the
design of quantum error correction codes (QECC): Classical turbo codes are generally systematic,
interleaved parallel concatenations of convolutional codes but in the quantum domain such a
systematic parallel structure is prohibited by the no-cloning theorem.

The performance of the Quantum Turbo Codes (QTCs) proposed in Reference [3] is not on par with
that of classical serial turbo codes. The reason is that unassisted QCCs cannot be both non-catastrophic
and recursive at the same time, properties that are required for the inner code of a turbo code
so that the minimum distance grows with the block length and the iterative decoding algorithm
achieves convergence. Consequently, non-catastrophic, non-recursive QCCs were used in Reference [3],
resulting in codes with bounded minimum distance. Utilizing the entanglement-assistance (EA)
techniques (Entanglement-assistance techniques utilize entangled qubits pre-shared between the
sender and the receiver, which simplifies the construction of stabilizer QECCs by relaxing the
stringent commutativity conditions that the stabilizers need to satisfy.) for QECCs presented in
Reference [5], this issue was addressed by Wilde et al. in [6], which proposed QTCs operating
within 1 dB of their corresponding EA hashing bounds. Taking a step further, Babar et al. proposed in
Reference [7] an EXtrinsic Information Transfer (EXIT) chart technique to narrow the gap to the Hashing
bound, resulting in codes with a performance as close as 0.3 dB to the hashing bounds. However,
these QTC codes present error floors that are higher than in the original distance-spectra-based codes
in Reference [6]. Based on the use of Quantum IrRegular Convolutional Codes (QIRCC) as outer
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codes, the authors in Reference [8] showed a performance in the turbo-cliff region similar to that of
the EXIT optimized codes in Reference [7] but with lower error floors. An entanglement-assisted
version of QIRCCs was introduced in Reference [9] with the aim of designing efficient concatenated
QECCs for asymmetric depolarizing channels. Finally, a Quantum Unity Rate Code (QURC) aided
QTC scheme was proposed in Reference [10] in order to improve the performance of the outer code
without experiencing code rate reduction due to the inner code.

The serial concatenation of the inner and outer QCCs used to construct QTCs is realized by means
of an interleaver, which permutes the symbols so that the error locations are randomized and error
correction can be improved. The reason for the use of an interleaver in concatenated coding schemes is
that the first stage in the decoding process generates bursts of errors that are more efficiently corrected
in the second stage if they are scrambled. The QTCs proposed in the literature [3–9] use the so-called
random interleaver. However, it is known from classical turbo codes that interleaving design plays
a central role in optimizing performance, specially when the error floor region is considered [11–18].
Motivated by such studies, in this paper we investigate the application of different types of interleavers
in QTCs, aiming at reducing the error floors. Simulation results show that the QTCs designed using
the proposed interleavers present the same behavior in the turbo-cliff region as the codes with random
interleavers in Reference [7], while the performance in the error floor region is improved by up to two
orders of magnitude. Simulations also show reduction in memory consumption, while the performance
is comparable to or better than that of QTCs with random interleavers.

The remainder of this paper is organized as follows: Section 2 presents the QTC system model
and presents the classical interleavers considered in the quantum codes; Section 3 presents Monte
Carlo simulations showing that interleaver construction is beneficial to lower the error floor of the
considered QTCs; finally, Section 4 provides the conclusions reached in this paper.

2. Classical Interleavers for Quantum Turbo Codes

2.1. System Model

The Quantum Turbo Codes considered in this paper consist of the interleaved serial concatenation
of unassisted QCCs acting as outer codes and entanglement-assisted QCCs inner codes. Figure 1
presents the full schematic representation of such quantum error correction system. The k input
logical qubits that compose the information word |ψ1〉 are first fed to the outer [n1, k1, m1] unassisted
convolutional encoder V1 and encoded into n′ = k n1

k1
physical qubits with the help of (n1 − k1) ancilla

qubits and m memory qubits. The n′ physical qubits that form the codeword |ψ̄1〉 generated by
the first encoder are then passed through a quantum interleaver Π before being input to the inner
convolutional encoder V2. Such an encoder is an [n2, k2, m2, c] entanglement-assisted encoder that
encodes the interleaved sequence of n′ qubits |ψ2〉 into the codeword |ψ̄2〉 of length n = n′ n2

k2
= k n2

k2

n1
k1

,
aided by (n2 − k2 − c) ancilla qubits, c pre-shared EPR pairs and m2 memory qubits. Codeword |ψ̄2〉
is then transmitted through a quantum depolarizing channel (The depolarizing channel is a widely
used channel model in order to represent the decoherence effects that produce errors in quantum
information [3–7].) with depolarizing probability p inflicting an n-qubit Pauli error P2 ∈ Gn to the
codeword. The operation of the depolarizing channel on an individual qubit with density matrix ρ is
defined as

ND(ρ) = (1− p)ρ +
p
3
(XρX + YρY + ZρZ), (1)

where p is the depolarizing probability and X, Y, Z are the Pauli matrices. The depolarizing channel is
independently applied to each of the qubits of the stream |ψ̄2〉, and, consequently, each of the qubits
experiences a bit-flip (X operator) with probability p/3, a phase-flip (Z operator) with probability p/3
or a combination of both (Y operator) with probability p/3.
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Figure 1. Schematic of the Quantum Turbo Code (QTC). Note that the c pre-shared EPR pairs |Φ〉+ are
needed for the inner encoder to be both recursive and non-catastrophic [6]. Pa

i (.) and Pe
i (.) denote the

a-priori and extrinsic probabilities related to each of the SISO decoders used for turbo decoding.

At the output of the depolarizing channel, the stateP2 |ψ̄2〉 is fed to the inverse of the inner encoder
V†

2 , which outputs the decoded state L2 |ψ2〉, where L2 ∈ Gn′ refers to the logical error suffered by
the decoded state due to the operation of the channel; and the classical syndrome bits R2 = (Sx

2 , Ex,z
2 )

obtained from Z basis measurements on the ancilla qubits and Bell measurements on the pre-shared
EPR pairs. The corrupted logical qubits are then passed through a de-interleaver Π−1 resulting in
the state P1 |ψ̄1〉, which is supplied to the inverse of the outer encoder V†

1 . The resulting output is
the state L1 |ψ1〉, which corresponds to the information quantum state corrupted by a logical error
L1 ∈ Gk; and the classical syndrome bits Sx

1 obtained after measuring the ancilla qubits on the Z basis.
The classical syndromes R2 and Sx

1 , obtained in the inverse decoders V†
2 and V†

1 , respectively, are then
provided to the iterative syndrome decoder consisting of two serially concatenated Soft-In Soft-out
(SISO) decoders, as shown in Figure 1. Based on R2 and Sx

1 , as well as the channel information Pch(P2),
both SISO decoders engage in degenerate iterative decoding [3,6] to estimate the most likely error
coset L̃1 that has corrupted the information quantum state. Based on such an estimation, a recovery
operationR is applied to the corrupted state L1 |ψ1〉, yielding the recovered output |ψ̃1〉.

As already mentioned, the aim of this paper is to show that interleaver design is beneficial
to reduce the error floors of QTCs. To that end, the inner and outer QCCs used to construct the
concatenated error correcting system presented in Figure 1 are the EXIT-optimized codes introduced in
Reference [7]. The parameters of the inner and outer codes are presented in Table 1. Such configuration,
utilizing a random interleaver for the serial concatenation of the constituent QCCs, was studied
extensively in Reference [7]. Therefore, it is an excellent benchmark for the interleaver constructions
proposed in this paper.



Entropy 2019, 21, 633 4 of 9

Table 1. Parameters of the Quantum Convolutional Codes (QCC) encoders. R and E refer to the coding
rate and the entanglement consumption rate, respectively. m refers to the memory qubits. The seed
transformations U are represented using the decimal representation presented in Reference [6].

Config. Encoder R E m Seed Transformation U

EXIT-optimized
Outer 1/3 0 3 {1048, 3872, 3485, 2054, 983, 3164, 3145, 1824, 987, 3282, 2505, 1984}10

Inner 1/3 2/3 3 {4091, 3736, 2097, 1336, 1601, 279, 3093, 502, 1792, 3020, 226, 1100}10

From the configuration parameters presented in Table 1, it can be seen that the QTCs used in
this paper will be rate 1/9 turbo codes with an entanglement consumption rate of 6/9. The noise
limit p∗ can be found from the entanglement-assisted hashing bound, which for such parameters is
p∗ = 0.3779 [6].

2.2. Classical Interleavers for QTCs

The concatenation between the outer and inner QCCs is done by the quantum interleaver Π
of size N, which is an N to N-qubit symplectic transformation (The notation we utilize to describe
the operation of a quantum interleaver is the so-called symplectic notation as used in Reference [3].)
composed by a permutation π of the N qubit registers and a tensor product of single-qubit symplectic
transformations. It acts by multiplication on the right on GN as

(P1, · · · , PN)→ (Pπ(1)K1, · · · , Pπ(N)KN), (2)

where K1, · · · , KN are some fixed symplectic matrices acting on G1, where GN refers to the symplectic
representation of the N-fold Pauli group [3].

In order to use classical interleavers in QTCs, they must properly match the definition of quantum
interleavers in (2). Classical interleavers consist only of permutations of the information arrays with
no such thing as individual symplectic transformations. Consequently, those operations will be
taken as identity operators acting on the registers Ki = I, ∀i; and so the only non-trivial operation of
such quantum interleavers will be the scrambling of the qubits in the quantum information stream
(The random interleavers used in References [3–9] also follow this approach.). Following this approach,
the quantum interleavers presented in this paper will be N to N qubit symplectic transformations
acting as

(P1, · · · , PN)→ (Pπ(1), · · · , Pπ(N)) (3)

to the qubit data stream, and where the permutation pattern π corresponds to the classical interleaver
under consideration.

2.3. Considered Classical Interleavers

All the QTC schemes in References [3–9] are based on random interleavers, that is, the interleaving
patterns π are selected at random. However, it is known from classical turbo codes that the usage of
interleavers with some added structure is beneficial to reduce either the error floors or the memory
requirements [11–18]. In order to show that interleaver design is also beneficial when implementing
quantum turbo codes, we consider the following three types of classical interleavers.

The first classical interleavers considered here are the S-random interleavers [11]. They are
randomly generated by imposing the following condition on the interleaving distance or spread (S):

|π(i)− π(j)| > S for i and j with |i− j| ≤ S. (4)

If the heuristic recommendation S <
√

N
2 is satisfied, where N is the blocklength, S-random

interleavers can usually be produced in reasonable time by repeatedly generating random integers
until condition (4) is satisfied [11,15]. However, as indicated in Reference [18], reasonable values of S
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are sometimes lower when N is large. We next consider the deterministic Welch-Costas [17] interleaver,
which is defined by two parameters: p = N + 1, a prime number, and α, a primitive element modulo
p. Once α is chosen for the selected blocklength, it is proven in Reference [17] that

π(i) = (αi mod (N + 1))− 1, ∀i ∈ {0, · · · , N − 1} (5)

forms a permutation which is selected as the interleaving rule. Although the spreads obtained with
Welch-Costas interleavers are low, their dispersion parameter, γ, is maximized. The dispersion of an
interleaver π is a parameter that represents the randomness of the permutation, and it is calculated
as [17]

γ =
|D(π)|
(N

2 )
, (6)

where | · | indicates cardinality and D(π) is the set of displacement vectors of π defined as

D(π) = {(j− i, π(j)− π(i))|0 ≤ i < j < N}. (7)

The final classical interleaver we will considered for quantum error correction is the JPL
interleaver [17], recommended in the “CCSDS Recommendation for Telemetry Channel Coding”
standard [19] because it has good spreading and dispersion parameters. The permutations that define
this family of interleavers are constructed by applying the following algorithm:

• Factorize the length of the interleaver N = k1k2, where k1 = 8 usually.
• For s = 1 to s = N do

1. m = (s− 1) mod 2
2. i = b s−1

2k2
c

3. j = b s−1
2 c − ik2

4. t = (19i + 1) mod k1
2

5. q = t mod 8 + 1
6. c = (pq j + 21m) mod k2

7. π(s) = 2(t + c k1
2 + 1)−m

where pq is defined as the primes p1 = 31, p2 = 37, p3 = 43, p4 = 47, p5 = 53, p6 = 59, p7 = 61, p8 = 67.

3. Results and Discussions

In this section we present Monte Carlo simulations to asses the performance of quantum turbo
codes when using the interleavers proposed in Section 2.3. To that end, the EXIT chart optimized
QCCs defined by the parameters in Table 1 have been used. The interleaver length is N = 3000, so that
the input quantum information consists of 1000 qubits. As in Reference [7], a maximum of 15 iterations
has been set for the turbo decoder.

In order to perform the numerical simulations, as done in References [6,7], an n-qubit error is
randomly generated in each transmission round as explained in (1). At the decoder, the syndromes
R2 and Sx

1 are computed first, and the turbo decoding algorithm runs until the hard decisions on the
estimated logical errors are the same as in the previous iteration or until the number of iterations
reaches the maximum value (which we fix to 15).

The operational figure of merit selected in order to evaluate the performance of these quantum
error correction schemes is the Word Error Rate (WER), which is the probability that at least one qubit
of the received block is incorrectly decoded.
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Regarding the numerical Monte Carlo methods used in order to estimate the WER of the different
QTCs, the following rule of thumb has been used [20] in order to select the number of blocks to be
transmitted, Nblocks:

Nblocks =
100

WER
. (8)

As explained in Reference [20], and under the assumption that the observed error events are
independent, this results in a 95% confidence interval of about (0.8 ˆWER, 1.25 ˆWER), where ˆWER refers
to the empirically estimated value for the WER.

The following interleavers have been implemented:

1. S-random interleaver with parameter S = 25,
2. Welch-Costas interleaver with parameter α = 2987 and
3. JPL interleaver.

The spread (S) and dispersion (γ) parameters of such designed interleavers are indicated in
Table 2.

Table 2. Spread and dispersion parameters.

Name Spread (S) Dispersion (γ)

Random [17] 1 ≈0.81

S-random 25 0.8136

Welch-Costas 1 1

JPL 16 0.35

Figure 2 shows the results of Monte Carlo simulations for the different QTC schemes in the
depolarizing channel. It can be seen that the performance of all QTCs is similar in the turbo-cliff
region, achieving a gap (Note that the gap is calculated in a similar fashion as in Reference [7], that is,
the distance between the QTC convergence threshold p = 0.35 and the EA Hashing limit is taken as
10 log10(0.3779/0.35) = 0.3 dB.) to the EA Hashing limit of 0.3 dB, which is also the gap obtained
by the random interleaver QTCs of Reference [7]. However, different behaviors can be observed in
the error floor region. As depicted in Figure 2, both the JPL and the S-random interleavers present
a much lower error floor than that of random interleaving. Specifically, the error floor of the original
ramdomly interleaved QTCs is of the order of 10−2, while the error floor of the S-random interleaver
is around 10−4 and that of the JPL is of order of 10−3–10−4. Notice that the error floor of the JPL
interleaver presents a larger slope than that of the other interleavers, achieving levels close to those
of the S-random interleaver when the channel quality improves. This means that quantum error
correction systems using S-random and JPL interleavers present error floors around two orders of
magnitude better than those obtained with random interleavers.

Figure 2 shows that the performance of the Welch-Costas interleaver is similar to that of the
baseline random interleaver. However, the benefit of using the Welch-Costas interleaver is that its
memory requirements are much smaller, as the permutation is defined just by parameters N and α.
On the other hand, the random (and S-random) permutations must be stored completely. This means
that using the Welch-Costas interleaver is a good option for systems with strict storage requirements.
The memory requirements for the JPL interleaver are also lower than for the random and S-random
ones, as the permutation can be defined by parameters N, k1 and the primes pq, while its performance
is better than that of random interleavers but worse than that of S-random ones. Welch-Costas
interleavers do have less memory requirements than JPL interleavers, but their performance is far worse
in the error floor region. Table 3 summarizes the memory requirements for each of the interleavers.
Note that both random and S-random interleavers require a memory consumption that increases
linearly with N, while the memory requirements for the JPL and Welch-Costas interleavers are constant.
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Regarding the overall complexity of the decoding algorithm we have corroborated that it is practically
the same for all interleavers.

0.28 0.3 0.32 0.34 0.36 0.38
10-4

10-3

10-2

10-1

100

W
E

R

Figure 2. Word error rate (WER) performance curves for the 1/9-QTCs in Table 1 when different
interleaving methods are used.

Table 3. Memory requirements.

Name Parameters Storage Requirements

Random [17] π N

S-random π N

Welch-Costas N, α 2

JPL N, k1, pq 10

As explained in Reference [17], the spread parameter is related to the number of distinct low
weight error patterns that are possible to appear in the decoding, while the dispersion is related to the
multiplicities of those existing low weight errors. Consequently, high spread is desired to avoid those
harmful error sequences, while a dispersion parameter that is close to that of a random interleaver
(γ ≈ 0.81) will mean that those harmful errors will happen less regularly. This is why in classical
turbo coding it is known that to achieve good error correction performance in the error floor region,
an interleaver must have a high spread parameter and a dispersion parameter similar to the dispersion
of random permutations [17]. The results presented in Figure 2 show that such rationale also applies
to the QTC scenario.

4. Conclusions

We have adapted three interleaving design methods used for classical turbo codes to the quantum
domain, demonstrating the importance of interleaver construction in quantum turbo codes. By using
Monte Carlo simulations, we have shown that these constructions do enhance the error correction
capability of quantum codes in the error floor region, leading to error rate improvements of up to two
orders of magnitude. We have also shown that memory requirements can be lowered by using specific
interleaver designs, while the performance in the error floor region is comparable or even better than
that of the original EXIT optimized QTCs .
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Abbreviations

The following abbreviations are used in this manuscript:

QECC Quantum Error Correction Code
QCC Quantum Convolutional Code
QTC Quantum Turbo Code
QIRCC Quntum IrRegular Convolutional Code
QURC Quantum Unity Rate Code
EXIT EXtrinsic Information Transfer
EPR Einstein-Podoslky-Rosen
SISO Soft-Input Soft-Output
JPL Jet Propulsion Laboratory
CCSDS Consultative Committee for Space Data Systems
WER Word Error Rate
EA Entanglement-Assisted
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