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Abstract: Thermoelastic damping is a critical issue for designing very high quality factor
microresonators. This paper derives the entropy generation, associated with the irreversibility in heat
conduction, that is used for ring resonators in in-plane vibration and presents an analytical model of
thermoelastic damping according to heat increments calculated by entropy theory. We consider the
heat flow only in radial thickness of the ring and obtain a complex temperature field that is out of
phase with the mechanical stress. The thermoelastic dissipation is calculated in the perspective of heat
increments that appear due to entropy generation. The analytical model is validated by comparing
with an LR (Lifshitz and Roukes) model, finite-element method and measurement. The accuracy
of the present model is found to be very high for different ambient temperatures and structures.
The effects of structure dimensions and vibration frequencies on entropy generation and thermoelastic
damping is investigated for ring resonators under in-plane vibration.

Keywords: thermoelastic damping; entropy generation; quality factor; ring resonator; in-plane mode

1. Introduction

Microrings are a common resonator of MEMS (a microelectromechanical system), which are widely
applied to MEMS sensors and actuators [1–4]. The ring resonators are usually operating in two kinds
of vibrating mode, i.e. in-plane mode and out-of-plane mode. The performance of a microresonator is
closely related to the quality factor, which is the critical issue for the sensitivity and resolution of MEMS
systems. A high quality factor indicates low energy consumption. In order to design very high quality
factor microresonators, it is necessary to study the prevailing energy dissipation mechanisms in MEMS.
Among these mechanisms, air damping and clamping losses are the main extrinsic losses that can be
minimized by vacuum environment and optimal geometric design. Thermoelastic Damping (TED)
is a dominant source of intrinsic loss in MEMS that cannot be completely eliminated by improved
design or fabrication compared to extrinsic losses. Accordingly, thermoelastic damping usually plays
an important role for designing high quality factor microresonators.

In a vibrating structure, there is a mutual coupling between the strain field and temperature field
which generates irreversible heat conduction across the oscillating temperature gradient. It means
that mechanical energy is transformed into heat with the generation of entropy. This kind of energy
dissipation mechanism is referred to as TED. The theory of TED was first studied by Zener [5,6].
He proposed an accurate analytical expression of TED in beam vibrations by using the temperature
field in the form of thermal modes. In 2000, Lifshitz and Roukes (LR) [7] presented a refined theory
of thermoelastic damping using the same fundamental physics of Zener theory, in which a complex
temperature field is obtained instead of thermal modes temperature field. Nowadays, the two models
are widely used in MEMS resonators.
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Thermoelastic damping is also studied in various structures of microresonators, such as a beam [8],
ring [9], plate [10], shell [11], and so on. Zener and LR theories are applicable to beam resonators in
flexure vibration [7]. An analytical model of TED in microplates has also been investigated by using
the similar analysis of Zener and LR theories [10,12–15]. The ring resonator is a flexural beamlike
geometry under in-plane vibration. Thus, its analytical model of TED is similar to the Zener and LR
models [9,16–19]. Wong et al [9] studied TED for in-plane ring resonators based on the LR theory and
presented an analytical model, which is similar to the LR model of beams. However, the characteristic
length in the analytical model for a ring is the radial thickness, which is different from the beam
depth in LR model. Kim et al [20] studied the effect of geometrical imperfections on the TED of ring
resonators. The out-of-plane mode of a ring is a coupled motion that is affected by the coupling of
flexure and torsion. It is different from an in-plane mode and is more difficult to use to predict TED.
However, the analytical solution of TED in the out-of-plane mode of a ring has also been studied [21].

Thermoelastic damping can be obtained from two different ways, mechanical work loss and
entropy generation. Zener [6] verified the equivalence of the mechanical work loss method and
the entropy generation method. To date, the usual method to derive analytical models of TED in
microresonators is calculating the mechanical work loss [22]. However, the entropy generation method
is also used to evaluate TED in MEMS devices [13,22–25]. In previous work [22], we presented
analytical models of TED for flexural vibration resonators including microbeams and microplates by
using the entropy generation method. These models were proven to be valid and accurate, and so can
be used as an alternative to other theories.

Other than the aforementioned review, few works study the analytical approximation of TED in a
ring resonator from the perspective of entropy generation. In this paper, the entropy generation will be
investigated for ring resonators of in-plane vibration. Using a complex temperature field and entropy
generation method, we will present a simple analytical expression for TED in a ring resonator, which is
different from the expressions of Zener and LR models. Compared to Zener theory, the present model
uses a complex temperature field to calculate the entropy generation and heat increments instead of
using a modal superposition temperature field to calculate mechanical work loss in which the first
thermal mode is usually dominant and reserved. The validation of the analytical model in this paper
will be confirmed by comparing with LR theory, FEM (finite-element method) and measurement.
We will also study the characteristics of entropy generation and thermoelastic damping for a ring
resonator under in-plane vibration.

The analytical model in this paper is not only different from the model of Wong et al [9] calculated
by mechanical energy loss based on the LR theory but is also different from the Zener theory. It can be
an alternative method with high accuracy to predict TED in ring resonators and provide verification
from the perspective of entropy generation for other methods. This paper derives a specific expression
of entropy generation in ring resonators of in-plane mode, which depends on the radial displacement.
The simplification of this paper is different from Zener and LR theories. The Zener method usually
ignores high-order thermal modes. The LR frequency attenuation method simplifies the complex
resonant frequency; the LR energy method neglects thermal stress when calculating mechanical energy
loss. The entropy generation method simplifies the temperature using Taylor expansion. The method
used does not need to consider the frequency attenuation and thermal strain of mechanical vibration
when calculating the entropy production and energy loss. It only needs to know the temperature field
function. This solution technology can improve the computational efficiency by avoiding the complex
frequency [26].

2. Problem Formulation

From the second law of thermodynamics, entropy generation results from the irreversible heat
flow caused by the compression and tension of an oscillating structure. This irreversible process
of heat conduction results in a conversion of useful mechanical energy into heat and hence, causes
thermoelastic damping [24]. For vibrating resonators during per cycle, the energy lost is the mechanical
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work loss ∆W as well as the heat increase ∆Q related to entropy [6]. The relationship between the
mechanical work lost, heat increment and entropy generation can be expressed as

∆W = ∆Q = T0∆S (1)

where T0 is the ambient temperature, ∆S is the generation of entropy. Consequently, the TED can be
obtained by using the definition of quality factor, given by

Q−1 =
1

2π
∆W

Wstored
(2)

where Wstored is the maximum energy stored per cycle. This is the entropy generation method to
estimate TED.

2.1. Heat Conduction Governing Equation

We consider a free boundary ring resonator of rectangular cross-section, Figure 1, with the mean
radius ar, the radial thickness br and the axial width cr. A global cylindrical coordinate system (r, ϕ, Z)
and a local Cartesian coordinate system (x, y, z) are defined. u, v and w denote the radial displacement,
tangential displacement and translation displacement, respectively. Silicon rings as a common element
in MEMS device are capable of both in-plane and out-of-plane flexural vibration. We study only the
in-plane vibration in this paper.
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Figure 2. In-plane modes of a ring resonator with mode number n = 2, 3 and 4. The two lines of red
and blue in each mode represent an equivalent degenerate pair with a mutual angle of π/2n.

Figure 2 shows the in-plane modes of a ring with free boundary conditions. The displacements of
a ring under in-plane vibration can be expressed as [27]{

u(ϕ, t) = U(ϕ)eiωt = U0 cos(nϕ)eiωt

v(ϕ, t) = V(ϕ)eiωt = V0 sin(nϕ)eiωt (3)

where n = 2, 3, 4 . . . is the mode number, ω is the eigenfrequency corresponding to in-plane mode of a
ring, U and V are the amplitudes of the ring in radial and tangential displacements, respectively, and
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U0 and V0 are the maximums of U and V. For low-order modes of rings, the relationship between U0

and V0 can be expressed as [27]
U0

V0
= −n (4)

Considering thermoelastic effects, the strain fields of the ring can be expressed as [17]{
εϕ =

σϕ
E + αθ

εr = εZ = − υEσϕ + αθ
(5)

where εϕ, εr and εZ are the circumferential, radial and axial strains in the ring, respectively, σϕ is the
circumferential stress, E is the Young’s modulus, α is the coefficient of thermal expansion, and θ is the
temperature change with respect to the ambient temperature T0, given by

θ(r,ϕ, Z, t) = θ0(r,ϕ, Z)eiωt (6)

For small vibration, the strain and stress along circumferential direction can be obtained by using
the radial displacement u, given by [17]

εϕ = −
x
a2

r

(
∂2u
∂ϕ2 + u

)
(7)

σϕ = −
Ex
a2

r

(
∂2u
∂ϕ2 + u

)
− Eαθ. (8)

where x is the local coordinate of the ring. The in-plane mode of a ring resonator is accompanied by
internal heat conduction. According to the Fourier Law, the governing equation for heat conduction is
given by [28]

∂θ
∂t

= χ∇2θ−
EαT

(1− 2υ)Cv

∂ecubic

∂t
, (9)

where ∇2(r, ϕ, Z) is the Laplacian operator in Cylindrical coordinate system, χ is the thermal diffusivity,
υ is Poisson’s ratio, Cv is the heat capacity per unit volume, and ecubic = εϕ + εr + εZ is the cubic dilation.
The Laplacian operator can be expressed as

∇
2 =

∂2

∂r2 +
1
r
∂
∂r

+
1
r2

∂2

∂ϕ2 +
∂2

∂Z2 . (10)

Substituting Equation (5) into Equation (9), yields(
1 + 2∆E

1 + υ
1− 2υ

)
∂θ
∂t

= χ∇2θ+
∆E

α
∂
∂t

[
x
a2

r

(
∂2u
∂ϕ2 + u

)]
, (11)

where ∆E = Eα2T0/Cv is relaxation strength of the Young’s modulus.
To simplify, several assumptions are made for the governing equation. First, replace T by T0 due

to the fact that θ << T0, and neglect the heat conduction in circumferential and axial directions (along
y and z axes) [29]. Because the eigenfrequency of in-plane mode is high, the heat conduction in the
circumferential state can be neglected due to long heat transfer distance and large relaxation time.
Second, ignore small amounts, e.g., 2∆E(1 + υ)/(1 − 2υ), and remove the nonlinearity from the problem.
Thus, the reduced heat equation along the x-direction can be expressed as [9]

∂θ
∂t

= χ
∂2θ

∂x2 +
∆E

α
∂
∂t

[
x
a2

r

(
∂2u
∂ϕ2 + u

)]
(12)
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Typically, the above equation is one-way coupled so that the temperature field does not affect the stress
field, because the thermal stresses are negligibly small compared to the mechanical stresses.

Assuming that the surfaces of the ring is adiabatic, then the boundary conditions are ∂θ/∂x = 0 at
x = ± br/2. Using heat conduction governing Equation (12), the temperature profile for a ring is given
by [9]

θ0(x,ϕ) =
∆E

α
1
a2

r

(
∂2U(ϕ)

∂ϕ2 + U(ϕ)

)x− sin(px)

p cos
(

pbr
2

)
, (13)

where

p = (1− i)
√
ω
2χ

. (14)

2.2. Entropy Generation

In the discussion that follows, the entropy generation in system is derived based on the second
law of thermodynamics. For convenience, we rewrite the temperature field,

θ(r,ϕ, Z, t) = θ0(r,ϕ, Z) sin(ωt) (15)

The rate of entropy generation per unit volume can be expressed as [25]

.
sg = κ

∇θ · ∇θ

T2 (16)

Substituting Equation (15) into Equation (16) yields

.
sg =

κ

T2

(
∂θ0

∂x

)2

sin2(ωt) (17)

In Equation (17), we consider the temperature gradient only in the r-direction. To avoid the nonlinear
problem in Equation (17), we expand T−2 in Taylor series up to the first order,

1
T2 =

1
T2

0

−
2

T3
0

θ (18)

Using Equations (17) and (18), the entropy generation per unit volume over a cycle is

∆s =
∫

.
sgdt =

πκ

ωT2
0

{
∆E

α
1
a2

r

(
∂2U(ϕ)

∂ϕ2 + U(ϕ)

)}2
1−

cos(px)

cos
(

pbr
2

)


2

(19)

For a ring resonator, the total entropy generation per cycle is (see Appendix A for detail)

∆S =

∫
V

∆sdV =
Ar

ξ2 ·
∆EEcrπ2

(
n2 + 1

)2
U2

0b3
r

2T0a4
r

, (20)

where ξ = br
√
(ω/2χ) is a dimensionless variable and Ar is a coefficient, given by

Ar = 1 +
1

1 + cos(pbr)
−

3
pbr

tan
(

pbr

2

)
(21)
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Note that Ar is a complex number and pbr = (1 − i)ξ. The modulus of Ar can be expressed as

|Ar| =

√
Re2(Ar) + Im2(Ar) (22)

where the real and imaginary parts of Ar are given by

Re(A) = 1 +
1 + cosh ξ cos ξ

(cosh ξ+ cos ξ)2 −
3

2ξ
sinhξ+ sin ξ
cosh ξ+ cos ξ

(23)

Im(A) =
3

2ξ
sinhξ− sin ξ

cosh ξ+ cos ξ
−

sinhξ sin ξ

(cosh ξ+ cos ξ)2 (24)

Accordingly, the modulus of entropy generation can be expressed as

|∆S| =
|Ar|

ξ2 ·
∆EEcrπ2

(
n2 + 1

)2
U2

0b3
r

2T0a4
r

(25)

Note that for a ring resonator with specific structure dimensions, the entropy generation depends only
on the maximum of the radial displacement U0, ∆S ∝ U2

0, which is related to the magnitude of the
exciting force.

2.3. Thermoelastic Damping

According to Equation (1), the heat content increment is equal to mechanical energy loss. Thus,
the total work loss of the entire ring per cycle is given by

∆W = T0 · |∆S|

= |Ar |

ξ2 ·
∆EEcrπ2(n2+1)

2
U2

0b3
r

2a4
r

(26)

Using Equations (7) and (8), the maximum energy stored of a ring per cycle of in-plane vibration can
be obtained as (see Appendix A for detail)

Wstored =
1
2

∫
V
σ̂ϕε̂ϕdV =

Ecrπ
(
n2 + 1

)2
U2

0b3
r

24a4
r

(27)

Here, the thermoelastic component of σϕ is usually omitted due to negligible effect.
Substituting Equations (26) and (27) into Equation (2), we obtain the analytical expression for

thermoelastic damping of a ring, given by

Q−1
ring = 6∆E

ξ2

{[
1− 3

2ξ
sin ξ+sinhξ
cos ξ+cosh ξ +

1+cos ξ cosh ξ
(cos ξ+cosh ξ)2

]2

+
[

3
2ξ

sinhξ−sin ξ
cos ξ+cosh ξ −

sin ξsinhξ
(cos ξ+cosh ξ)2

]2
} 1

2
(28)

Note that this analytical model for a ring is exactly the same as that for a rectangular beam in Ref. [22],
except that the beam thickness is replaced by the radial thickness of the ring. Table 1 lists the comparison
of the Zener model, LR model and the present model. It should be noted that the three models have
the same scope of application.
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Table 1. Comparison of the Zener model, LR model and the present model.

Model Expression Features Simplification

Zener model
Q−1

Zener = ∆E
ωτ

1+(ωτ)2

τ = b2/(π2χ)

•Modal superposition
temperature field
• The first thermal mode
is dominant.
•Method of mechanical
work loss or heat
increment

High order
thermal modes

LR model
6∆E
ξ2

(
1− 1

ξ

(
sinhξ+sin ξ
cos ξ+cosh ξ

))
ξ = br

√
(ω/2χ)

• Complex temperature
field
•Method of mechanical
work loss

Complex
resonant

frequency or
thermal stress

The present
model

6∆E
ξ2

{[
1− 3

2ξ
sin ξ+sinhξ
cos ξ+cosh ξ +

1+cos ξ cosh ξ
(cos ξ+cosh ξ)2

]2

+
[

3
2ξ

sinhξ−sin ξ
cos ξ+cosh ξ −

sin ξsinhξ
(cos ξ+cosh ξ)2

]2
} 1

2

• Complex temperature
field
•Method of heat
increment related to
entropy generation

Temperature

3. Results and Discussions

In this section, first the thermoelastic damping model of this paper for ring resonators is validated
by comparing with the experimental data and other theories results. Second, the geometry effect
on TED is studied by using the present method and LR method. Third, the dependence of entropy
generation on mode numbers and structure dimensions is discussed. The material properties of the
ring resonator are from Table 2 unless otherwise specified.

Table 2. Material properties of polysilicon at 300 K [30].

Parameters Polysilicon

Young’s modulus, E (GPa) 157
Poisson’s ratio, υ 0.22

Density, ρ (kg m−3) 2330
Thermal conductivity, κ (W m−1 K−1) 90

Specific heat, Cp (J kg−1 K−1) 699
Thermal expansion coefficient, α (K−1) 2.6 × 10−6

3.1. Verification of the Present Model

First, we compare the present model with experimental data. Wong et al. [18] gave experimental
measurements of TED for a practically relevant range of ring sizes. The following material properties
are used in making the theoretical predictions: α = 2.6 × 10−6 K−1, E = 165 GPa, Cv = 1.64 × 10−6 J
m−3 K−1, ρ = 2330 kg m−3, κ = 147 W m−1 K−1, χ = 8.6 × 10−5 m2 s−1. Table 3 shows a comparison
of measured and predicted TED in rings with different dimensions. The resonators are operating at
the mode n = 2. Note that the values predicted by the present model are in good agreement with the
experimental data. The maximum difference is of the order of 10% for all cases.

Table 3. Comparison of measured and predicted thermoelastic damping in rings with
different dimensions.

ar (mm) br (µm) Mode (n = 2) (kHz)
Q−1

% Error
Measured [18] The Present Model

3 120 13.8 9.5238 × 10−5 9.2843 × 10−5 −2.51

3 117 13.49 1.0000 × 10−5 9.5178 × 10−5 −4.82
2 50 12.97 4.1667 × 10−5 4.5396 × 10−5 8.95
2 52 13.49 4.5455 × 10−5 5.0340 × 10−5 10.75
2 38 9.85 2.0833 × 10−5 2.0830 × 10−5 −0.01
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Wong et al [18] also studied the experimental measurements of TED for different temperatures.
Figure 3 shows the variation of TED with temperatures in a silicon ring resonator. The silicon ring
resonator is operating at the mode of n = 2 (13.8 kHz) with critical dimensions of ar = 3 mm and
br = 120 µm. The material properties of silicon at various temperatures are used from the literature [18]
(listed in Table 4). The material properties vary with temperatures and we use five sets of material
properties associated with five different temperatures to calculate TED. From Figure 3, the results of
the present model based on entropy are very close to the measurements, and the maximum difference
is within 5% for all cases.

Table 4. Material properties of silicon for different temperatures.

Item Value

Temperature (K) 240 258 298 320 348

α (×10−6 K−1) 1.99 2.24 2.60 2.85 3.06
Cv (×10−6 J m−3 K−1) 1.51 1.52 1.64 1.68 1.73
χ (×10−5 m2 s−1) 14.3 11.7 8.60 7.92 6.97
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Next, we compare the present model with LR theory and FEM. Wong et al [9] investigated
thermoelastic damping in in-plane vibration of ring resonators based on the LR theory and presented
an analytical model which is the same as LR model of beams, except that the characteristic length
is the radial thickness of the ring instead of the depth of the beam. The analytical expression is
used for comparison in this section. The FEM results are obtained by ANSYS with element type
SOLID226. In the simulation, the boundary conditions of the ring are free and the exciting force is
applied on a small surface of the ring (shown in Figure 4a). Using harmonic analysis, we solve the
three-dimensional thermo-mechanical equations, obtain the total strain energy of all elements under
harmonic excitation in the range of 4 kHz ~ 800 kHz and then predict TED by calculating the ratio
of the imaginary part to the real part of the total strain energy. Figure 4b shows the displacement of
the ring obtained by FEM at the in-plane mode n = 2. From the figure, it illustrates that the vibration
displacement of a ring simulated by FEM is consistent with the vibration theory. Figures 5 and 6
show the comparisons of TED calculated by the LR model, FEM and the present model, respectively.
As shown in Figure 5a, the results of the present model and the LR method are in good agreement with
each other. At high frequency, the prediction of the present model is slightly smaller than that of the
LR method. From Figure 5b, the maximum difference between the LR method and the present model
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is within 5%, which occurs at ξ ≈ 7.1. Note that the difference at Debye peak is about 0.2%. Figure 6
shows the relative error (in percent) of the results between the FEM and the present model for the case
of ar = 1 mm and br = cr = 20 µm. As shown in Figure 6, the predictions of the present model differ for
FEM simulation by less than 3% depending on vibration frequency. Note that the predictions of the
present model are basically smaller than the simulation results of FEM. Also shown in Figure 6, the LR
method is used for comparison, and its results are larger than the FEM simulation.
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3.2. Geometry effect on TED

For ring resonators, the structure dimensions can affect the eigenfrequency as well as TED, which
strongly depends on the vibrating frequency. We study the effect of geometry on TED in polysilicon ring
resonators by using the present model based on entropy theory. Theoretically, the in-plane mode and
TED are independent of the axial width cr, and hence, we do not consider the effect of cr in this section.

We study the relationship between TED and the ratio ar/br at mode n = 2 for the case of br = cr.
Figure 7 shows variation of TED of the first in-plane mode with ar/br for different radial thickness br.
As shown in Figure 7, a peak value of TED exists as the ratio ar/br changes. Note that for a larger radial
thickness br, a larger ar/br exists that corresponds to the peak value of TED. Figure 8 shows variation of
TED of the first in-plane mode with ar/br for different mean radius ar. As shown in Figure 8, increasing
mean radius ar results in increasing ar/br associated with the peak value. From Figures 7 and 8, the
peak value is constant and does not change with the structure dimensions ar or br. This characteristic
will greatly reduce the difficulty of structural optimization design of ring resonators. The results of LR
model are also plotted for comparison in the figures.
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Figure 9 shows a 3D plot of TED for different ar and br at n = 2. As shown in Figure 9, the peak
value has an upper limit of approximately 9.64 × 10−5 for different ar and br. As also shown in the
figure, corresponding to the peak value, the larger br is, the larger ar is.
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3.3. Characteristics of Entropy Generation

Entropy generation is an important physical quantity in the research of thermoelastic dissipation.
In this section, we will study the entropy generation behavior of ring resonators under different
vibrating modes and geometry structures. According to Equation (20), the entropy generation cannot
be obtained without the value of U0. For simplification, this section gives a normalized entropy
generation which is a function of vibrating modes and structure dimensions, expressed as

∆Snormalized =
∆S
U2

0

=
Ar

ξ2 ·
∆EEcrπ2

(
n2 + 1

)2
b3

r

2T0a4
r

(29)

Figures 10 and 11 discuss the relationship of entropy generation, mean radius ar and radial
thickness br at different eigenfrequencies. Figure 10 shows the variation of entropy generation ∆S
with the mean radius ar for different vibrating modes n. The cross-section of the ring is constant,
br = cr = 5 µm. As shown in Figure 10, the entropy generation decreases with increasing mean radius
ar for constant n. However, the entropy generation increases with increasing n for constant mean
radius ar. Figure 11 shows the variation of entropy generation with br and n for constant cr = 5 µm and
ar = 200 µm. As shown in Figure 11, the entropy generation increases with increasing radial thickness
br for constant n. Moreover, the entropy generation is monotonically increasing with the mode number
n for constant b.

Figure 12 shows variation of entropy generation with ar and br under the first in-plane mode n = 2
with square cross-section br = cr. Here we note that the entropy generation of a ring is proportional to
the size of br but is inversely proportional to the size of ar. Clearly, the entropy generation is more
sensitive to br than to ar.
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4. Conclusions

This paper studied the entropy generation of a ring resonator vibrating under in-plane modes
and presents an analytical model of thermoelastic damping based on entropy theory. The total entropy
generation of a ring resonator during a cycle was obtained by using the complex temperature field.
The present model of thermoelastic damping was verified by comparisons with experimental data,
FEM simulation and the LR model. It was found that the predictions of the present model are very
close to LR results with a difference less than 5%. The geometry and frequency effects on entropy
generation were investigated. The peak value of thermoelastic damping wa constant and did not
change with the structure dimensions of the ring. The entropy generation of a ring resonator mainly
depended on the vibrating modes, structure dimensions and exciting force.
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Appendix A

Using the expression ∆E = Eα2T0/Cv and integrating Equation (19) over the whole volume of the
ring, the entropy generation per cycle for the entire structure is obtained, given by

∆S =
∫
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For small vibration of in-plane mode of a ring, consider only the strain and stress along
circumferential direction to calculate the total energy stored per cycle of entire structure. Using
Equations (7) and (8), the maximum energy stored is given by
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2
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