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Abstract: This paper studies index coding with two senders. In this setup, source messages are
distributed among the senders possibly with common messages. In addition, there are multiple
receivers, with each receiver having some messages a priori, known as side-information, and
requesting one unique message such that each message is requested by only one receiver. Index
coding in this setup is called two-sender unicast index coding (TSUIC). The main goal is to find
the shortest aggregate normalized codelength, which is expressed as the optimal broadcast rate.
In this work, firstly, for a given TSUIC problem, we form three independent sub-problems each
consisting of the only subset of the messages, based on whether the messages are available only in
one of the senders or in both senders. Then, we express the optimal broadcast rate of the TSUIC
problem as a function of the optimal broadcast rates of those independent sub-problems. In this
way, we discover the structural characteristics of TSUIC. For the proofs of our results, we utilize
confusion graphs and coding techniques used in single-sender index coding. To adapt the confusion
graph technique in TSUIC, we introduce a new graph-coloring approach that is different from the
normal graph coloring, which we call two-sender graph coloring, and propose a way of grouping the
vertices to analyze the number of colors used. We further determine a class of TSUIC instances where
a certain type of side-information can be removed without affecting their optimal broadcast rates.
Finally, we generalize the results of a class of TSUIC problems to multiple senders.

Keywords: index coding; multi-sender index coding; confusion graphs; graph coloring; optimal
broadcast rate; network coding

1. Introduction

Consider a communication scenario over a noiseless channel where a sender is required to
broadcast messages to multiple receivers, each caching some messages requested by other receivers
a priori. The messages cached at each receiver is known as its side-information. In this scenario, if
the sender is informed about the side-information available at all receivers, then it can leverage that
information whilst encoding to reduce the required number of broadcast transmissions, in comparison
with a naive approach of transmitting all requested messages uncoded and separately. Such an
encoding process is called index coding, and the resulting sequence of coded messages is known as an
index code. Moreover, each receiver upon receiving the index code will be able to decode its required
message by utilizing its side-information. The main aim of index coding is to find the optimal (shortest)
codelength and the corresponding coding scheme. Index coding was introduced by Birk and Kol [1,2],
and further studied in subsequent works [3–13].
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Most existing works on index coding deal only with a single sender, capturing scenarios with
centralized transmissions. However, many communication scenarios such as the following have
messages distributed among multiple senders:

• Macro-cell networks with caching helpers [14]—cellular networks deploying dedicated nodes,
called helpers, with large storage capacity instead of femto-cell access points to reduce
backhaul loads,

• cooperative data exchange [15]—peer-to-peer networks with data exchange within a group of
closely-located wireless nodes, and

• distributed storage—storage networks where data are distributed over multiple storage
devices/locations.

In addition, each sender can be constrained to know only a subset of the total messages due to
reasons such as limited storage, or error whilst receiving some messages over noisy channels, or server
failure to deliver all messages. In this case, distributed transmissions are required, where multiple
senders broadcast messages to the receivers. One metric to maximize the transmission efficiency in
this scenario is to minimize the aggregate number of transmissions from all senders in such a way that
all receivers’ demands can be fulfilled. As this problem is more general than an index-coding problem
with a single sender and is of practical interest (e.g., reducing delay in content delivery, and energy
efficient broadcasting), it is a useful research avenue to study index-coding problems with multiple
senders, known as multi-sender index-coding problems.

1.1. Prior Works

The multi-sender index-coding problem was first studied by Ong et al. [16]. They considered the
problems where multiple senders are connected to receivers via noiseless broadcast links (orthogonal
to each other) with flexible capacities. In their setup, each sender knows only a subset of the messages;
each receiver knows only one message requested by some receiver a priori, but may request multiple
messages; in addition, one message is known to only one receiver. For this setup, they aimed to
characterize the optimal aggregate codelengths, also known as the optimal broadcast rates, of the
problems. This problem formulation model is called broadcast-rate formulation of the problems. In
their work, they devised lower and upper bounds on the optimal broadcast rate by implementing a
graph-theoretic approach. The results were established using information-flow graphs, which represent
receivers’ request, and message graphs, which represent senders’ message setting. Furthermore, they
showed problem instances for which the upper and lower bounds coincide. A class of such instances
is where no two senders have messages in common.

In another work, Thapa et al. [17] considered a model similar to Ong et al. [16] but with the unicast
message setting, meaning each message is requested by only one receiver, each receiver requests only
one message, and each receiver knows a subset of messages requested by other receivers a priori.
Based on graph-theoretic approaches, they established upper bounds on the optimal broadcast rate.
In particular, they focused on the two-sender case, called two-sender unicast index coding (TSUIC).
They extended existing single-sender index-coding schemes, namely the cycle-cover scheme [18,19],
the clique-cover scheme [1,2] and the local-chromatic scheme [10] to the corresponding schemes in
TSUIC.

Sadeghi et al. [20] considered multi-sender index-coding problems where the senders are
connected to receivers via noiseless broadcast links of arbitrary but fixed capacities. They aimed
to characterize the closure of the set of all achievable rate tuples of messages, known as the capacity
region. The rate of a message is the number of message bits per encoded/broadcast bits. They devised
inner bounds on the capacity region using random-coding approaches (which requires infinitely long
messages), and outer bounds using Shannon-type inequalities. In particular, the first general inner
bound was attained by a partitioned distributed-composite-coding scheme, built on the single-sender
composite-coding scheme (an existing single-sender scheme that is based on a random-coding
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approach [7]). This scheme was further enhanced to a fractional distributed-composite-coding scheme
by Liu et al. [21]. Preliminary and improved polymatroidal outer bounds were also developed in
the work by Sadeghi et al. [20] and Liu et al. [21], respectively. As a result, the capacity region
was established for all problem instances up to three receivers, and the sum capacity is established
for all instances with four receivers and with unit link capacity from each sender. Independent of
and in parallel with the work by Liu et al. [21], Li et al. [22,23] introduced new techniques of joint
link-and-sender partitioning and cooperative compression of composite messages and developed a
multi-sender cooperative composite-coding scheme.

In a recent work by Li et al. [24], a new rank-minimization framework for multiple-sender index
coding with the unicast message setting, i.e., MSUIC, was developed on the classic single-sender
minrank concept. The framework enabled the authors to establish the optimal broadcast rate for all
critical MSUIC instances up to four receivers. In addition, they presented a heuristic algorithm to study
MSUIC instances with more receivers. Wan et al. [25] introduced decentralized data shuffling problems in
which the receivers/workers can communicate with one another via a shared link. The decentralized
data shuffling phase with uncoded storage (which stores a subset of bits of the data set) is equivalent
to a multi-sender index coding problem. For this problem, they proposed converse and achievable
bounds that are to within a factor of 3/2 of one another. Moreover, the proposed schemes were shown
to be optimal for some classes of the problem. Recently, Porter et al. [26] introduced a special case of
multi-sender index coding, called embedded index coding (EIC), in which each node acts as both sender
and receiver. With the help of several results, they showed the relationship between single-sender
index coding and EICs. Furthermore, they developed heuristics to solve EIC problems efficiently.

1.2. Our Work and Contributions

Different approaches have been attempted to solve the multi-sender index-coding problems.
However, the problems are more difficult and computationally complex than their single-sender
counterparts, and we know very little about the characteristics of the problems. This paper studies
the broadcast-rate formulation of TSUIC problems by implementing a graph-theoretic approach.
More precisely, in the same spirit of studying structural properties of index-coding capacity in the
single-sender case by Arbabjolfaei et al. [8], we examine the structural characteristics of TSUIC
problems. This kind of study embraces the “divide-and-conquer” approach and provides us an insight
into the problems where we can solve a larger problem by solving its smaller sub-problems. Note
that, in the work by Arbabjolfaei et al. [8,27], the capacity region of a given single-sender index-coding
problem is shown to be a simple function of the capacity regions of its independent sub-problems by
generalizing the notion of lexicographic graph product. In the TSUIC setup, due to the distributed
message setting among senders, we cannot directly implement the notion of graph products and the
existing approaches of single-sender index coding. In this work, we consider interactions between three
independent sub-problems at a time in the TSUIC setup. By applying the notion of confusion graphs
in index coding [28] along with the introduction of a two-sender graph coloring and a code-forming
technique, we bound the optimal broadcast rate in both asymptotic and non-asymptotic regimes,
and show it to be tight for some classes of TSUIC instances. Moreover, even for the single-sender
cases, the non-asymptotic cases (especially index coding in nonlinear, finite fields) are less explored.
For an index coding instance in the unicast message setting and the non-asymptotic regime in the
message size, our techniques in this paper can be used to upper bound the optimal broadcast rate of
this instance by a function of the optimal broadcast rates of its sub-instances in single-sender unicast
index coding.

The contributions of this paper are summarized as follows:

1. Proposing a new coloring concept for confusion graphs in TSUIC, called two-sender graph
coloring (Definition 8, Section 4.3): For SSUIC, the chromatic number of its confusion graph gives
the optimal broadcast rate and the corresponding index code (for a specific message size). However,
for TSUIC, as the two senders (encoders) contain some messages in common, the standard method
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of graph coloring of the confusion graph may not lead us to an index code. In this regard, we need
a different kind of coloring function in TSUIC, and thus, in this paper, we propose a novel coloring
technique to color the confusion graphs in TSUIC, and its optimization gives the optimal broadcast
rate and optimal index code.

2. Presenting a way of grouping the vertices of confusion graphs in TSUIC (Appendix B):
By exploiting the symmetry of the confusion graph, we propose a way of grouping its vertices for
analysis purposes mainly in its two-sender graph coloring. In particular, this grouping helps us to
analyze the number of colors used in two-sender graph coloring of a confusion graph.

3. Deriving the optimal broadcast rates of TSUIC problems as a function of the optimal broadcast
rates of its sub-problems (Theorems 4–8): We divide a TSUIC problem into three independent
sub-problems based on the requested messages by receivers, specifically whether the messages
are present in only one of the senders or in both senders. Now in TSUIC, considering
the interactions (defined by side-information available at the receivers) between these three
independent sub-problems, we derive the optimal broadcast rate (in both asymptotic and
non-asymptotic regimes in the message size) of the problem as a function of the optimal broadcast
rates of its sub-problems. Moreover, we bound the optimal broadcast rate, and show that the
bounds are tight for several classes of TSUIC instances (sometimes with conditions). Furthermore,
we find a class of TSUIC instances where a TSUIC scheme can achieve the same optimal broadcast
rate as the same instances when the two senders form a single sender having all messages.

4. Characterizing a class of TSUIC instances where a certain type of side-information is not
critical (Corollary 1): For a class of TSUIC instances, we prove that certain interactions between
the three independent sub-problems can be removed without affecting the optimal broadcast rate
(in the asymptotic regime). This means that those interactions are not critical.

5. Generalizing the results of some classes of TSUIC problems to multiple senders (Section 6):
For some classes of TSUIC problems, we generalize the two-sender graph coloring of confusion
graphs and the proposed grouping of their vertices. Then, we compute the optimal broadcast rates
of those problems as a function of the optimal broadcast rates of their sub-problems.

After posting the first draft of this paper [29] on Arxiv, this work had led to the following works
in TSUIC. Arunachala et al. [30,31] claimed that they derived the optimal linear broadcast rates of
classes of TSUIC problems as a function of their sub-problems by analyzing special matrices and linear
code constructions. In another work by Arunachala et al. [32], the optimal asymptotic broadcast rates
(asymptotic in the message size) of TSUIC problems were derived as a function of their sub-problems
with fully-participated interactions. They affirmed that, for some classes of TSUIC problems, the upper
bounds of the optimal broadcast rates presented in our paper are tight. For their results, they used a
similar graph-based technique as presented in our first draft ([29]). In this paper, we consider general
broadcast rates (which includes both linear and nonlinear, broadcast rates) for both asymptotic and
non-asymptotic regimes in the message size.

2. Problem Definitions and Graphical Representation

2.1. Problem Setup

In this paper, we consider unicast index coding. There are N independent messages
M = {x1, x2, . . . , xN}, where xi ∈ {0, 1}t for all i ∈ {1, 2 . . . , N} and some integer t ≥ 1, i.e.,
each message consists of t binary bits. There are N receivers {1, 2, . . . , N}, where each receiver
r ∈ {1, 2, . . . , N} requests a message xr, and has an ordered set Hr ⊆ M \ {xr} of messages as its
side-information a priori. In the ordered set, the elements are arranged in increasing indices. This paper
deals with the following two types of unicast index coding (UIC) based on the number of senders: (i)
Single-sender unicast index coding (SSUIC) — it has only one sender, denoted S, having all N messages
M, and (ii) two-sender unicast index coding (TSUIC) — it has two senders, denoted by S1 and S2,
having (ordered) message setsM1 ⊆M andM2 ⊆M, respectively, such thatM1 ∪M2 =M (i.e.,
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each message is available at some sender(s)). In other words, the total messages are distributed over
the two senders in TSUIC. Figure 1 illustrates an example of TSUIC problems with four receivers.
Given an index-coding problem, a two-sender index code is defined as follows:

Definition 1 (Two-sender index code). A two-sender index code ({Fs}, {Gr}), for s ∈ {1, 2},
r ∈ {1, 2, . . . , N}, is defined by

(i) an encoding function for each sender Ss, Fs : {0, 1}|Ms |×t → {0, 1}ps such that Cs = Fs(Ms), and
(ii) a decoding function for every receiver r, Gr : {0, 1}(Σ2

s=1 ps+|Hr |×t) → {0, 1}t such that
xr = Gr(C1, C2,Hr).

This means that each sender Ss encodes its known messages to a ps-bit sub-codeword, for some
non-negative integer ps. We assume that each receiver r receives sub-codewords from both senders
without any noise, and decodes xr from the received sub-codewords and Hr. The sub-codewords
(C1, C2) form an index code in TSUIC.

S1 S2

1

Senders

Receivers H1

= {x2, x4}

x1

2H2

= {x1, x4}

x2

3H3

= {x1, x2}

x3

4H4

= {x1, x2}

x4

M1 = {x1, x2, x3} M2 = {x3, x4}

C1 C2

Figure 1. An example of a TSUIC problem with four receivers: The total message setM =M1 ∪M2

is distributed among two senders S1 and S2. Each sender is connected to all receivers via a noiseless
broadcast channel. Each receiver, r ∈ {1, 2, 3, 4}, having some side-information represented by a
set Hr, requests a unique message xr. We assume that each sender Ss, s ∈ {1, 2}, is broadcasting
a sub-codeword Cs of length |Cs|, and they cooperate with each other to reduce their aggregate
transmissions. Precisely, we aim to find a two-sender index code with the minimum sum of lengths
|C1|+ |C2|.

Now, we define the aggregate normalized codelength, which measures the performance of a code
(C1, C2), in the following.

Definition 2 (Broadcast rate or aggregate normalized codelength). The broadcast rate of an index code
(with a single sender or two senders) is the total number of transmitted bits (if two senders, then it is a sum of
transmitted bits by both senders) per received message bit. In TSUIC, it is denoted by `TSUIC ,

(p1+p2)
t for an

index code ({Fs}, {Gr}). The broadcast rate is also referred to as the aggregate normalized codelength of the
index code. We say that ` is achievable for a UIC problem if there exists an index code of normalized length `.

For the rest of the paper, we refer to normalized codelength simply as codelength.

Definition 3 (Optimal broadcast rate). The optimal broadcast rate for a given index-coding problem with
t-bit messages is βt , min

E
`, where E = F for SSUIC and E = {Fs} for TSUIC. The optimal broadcast rate

over all t is defined as β , inf
t

βt = lim
t→∞

βt. The limit exists and is equal to the infimum due to the subadditivity

of tβt = p1 + p2 and Fekete’s lemma [33].
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Remark 1. With the (optimal) broadcast rate as a performance metric, we can treat SSUIC as a special case of
TSUIC whenM1 =M orM2 =M. Furthermore, for this case, the sender withM alone will be responsible
for fulfilling the demands made by all receivers.

2.2. Representation of the Receivers’ Side-Information and the Senders’ Message Setting in TSUIC Problems

An index-coding problem can be modeled by graphs, which are defined as follows:

Definition 4 (Directed graphs and undirected graphs). A directed graph is an ordered pair
D = (V(D), A(D)), where V(D) is a set of vertices, and A(D), usually called an arc set, is a set of
ordered pairs of vertices. An undirected graph is an ordered pair G = (V(G), E(G)), where V(G) is a set of
vertices, and E(G), usually called an edge set, is a set of unordered pairs of vertices.

From now on in this paper, we call directed graphs simply digraphs, and undirected graphs
simply graphs.

The receivers’ message setting of a UIC problem is represented by a side-information digraph
D = (V(D), A(D)), where V(D) = {1, 2, . . . , N} represents the N receivers, and the arc set A(D)

represents the side-information available at each receiver. More precisely, an arc (i, j) ∈ A(D) exists
from vertex i to vertex j if and only if receiver i has message xj (the message requested by receiver j)
in its side-information. Thus, in a side-information digraph, Hi , {xj : j ∈ N+

D (i)}, where N+
D (i) is

the out-neighborhood of a vertex i in D. In this paper, for convenience, a receiver i is also referred to
as a vertex i, and vice versa. We also use the compact form of representation of an instance of UIC
problems as used by Arbabjolfaei et al. [7], where a sequence (i|N+

D (i)), for all i ∈ V(D), represents a
UIC problem.

In TSUIC, S1 (sender one) encodes the messages inM1, and S2 (sender two) encodes the messages
in M2. In general, each sender has private messages and common messages defined as follows: Let
P1 ,M1 \M2 and P2 ,M2 \M1 be the set of private messages at senders S1 and S2, respectively,
and P3 ,M1 ∩M2 be the set of common messages at both senders. Now, for a given side-information
digraph D, without loss of generality, we define the following sub-digraphs induced by the following
vertex subsets that partition V(D): For i ∈ {1, 2, 3}, let Di be the sub-digraph of D induced by vertices
{j : xj ∈ Pi}. We refer to D1, D2 and D3 as per this definition throughout this paper unless stated
otherwise. From the definition, it is clear that D1, D2 and D3 are the three sub-digraphs of D such
that V(D) = V(D1) ∪V(D2) ∪V(D3) and V(Di) ∩V(Dk) = ∅ for any i 6= k, i, k ∈ {1, 2, 3}. In TSUIC,
the senders are limited to transmit only their messages, and this limitation is defined formally as a
constraint due to the two senders as follows:

Definition 5 (Constraint due to the two senders). The constraint due to the two senders is the following:
whilst encoding, any two private messages xi ∈ P1 and xj ∈ P2 should not be encoded together (with or without
other messages) to construct one coded symbol, or alternatively any two-sender index code can be written as
(C1, C2) such that C1 = F1(M\P2) and C2 = F2(M\P1).

In TSUIC, to reflect the senders’ message setting, we introduce an undirected graph, denoted
by Go = (V(Go), E(Go)) that is constructed in the following way: (i) V(Go) = V(D), and (ii) for all
i, j ∈ V(Go), an undirected arc, i.e., an edge (i, j) ∈ E(Go) exists if and only if xi ∈ P1 and xj ∈ P2,
or vice versa. This means, there is an edge connecting two vertices in Go if and only if no sender has
both the corresponding messages. We call the graph Go the sender-constraint graph.

As a TSUIC problem is described by D and Go, it is represented by (D, Go) in this paper. For a
given (D, Go), let `(D, Go) denote the index codelength, βt(D, Go) and β(D, Go) represent the optimal
broadcast rate for a fixed t, and over all t, respectively. `(D), βt(D) and β(D) are the respective terms
used for single-sender problems.
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3. A New Way of Classifying TSUIC Problems and Main Results

In a TSUIC problem, if there is no common message, i.e., P3 = ∅, then in our earlier work, we have
proved that the problem is equivalent to two separate SSUIC problems ([17], Theorem 1). However, if
P3 6= ∅, then the problem is less well understood. We propose to tackle this problem by dividing it into
three sub-problems based on the type of messages at the senders (whether they are common or private),
and then study the interactions among these sub-problems due to the side-information present at the
receivers. In this way, we can devise the structural characteristics of TSUIC problems. For a given
problem D, three sub-problems based on the type of messages are D1, D2 and D3. The side-information
present at receivers of one sub-problem about messages requested by receivers of other sub-problems
are formally referred to as an interaction between those sub-problems, defined in the following.
We will see that this allows us to derive βt(D, Go) in terms of the single-sender characterizations
{βt(Di) : i ∈ {1, 2, 3}} for a number of TSUIC instances.

3.1. Interactions between D1, D2 and D3

Arcs between V(D1), V(D2) and V(D3), each originating from some vertices of V(Di),
i ∈ {1, 2, 3}, and terminating at some vertices of V(D) \V(Di) in D are called an interaction between
D1, D2 and D3. It is called a fully-participated interaction between D1, D2 and D3 if and only if we have
the following: If there exists an arc from a vertex of Di to a vertex of Dj for any i, j ∈ {1, 2, 3}, i 6= j,
then V(Dj) ⊆ N+

D (r) for every r ∈ V(Di). In other words, all the vertices of the sub-digraph Di
interact in the same way to all the vertices of the sub-digraph Dj. For an example of a fully-participated
interaction, see Figure 2a. If an interaction between the sub-digraphs is not a fully-participated
interaction, then it is called a partially-participated interaction among the sub-digraphs of the digraph.
For example of a partially-participated interaction, see Figure 2b. For the sub-digraphs of D, if some
vertices in V(Di) have out-going arcs to some vertices in V(Dj), i 6= j, i, j ∈ {1, 2, 3}, then it is denoted
as Di → Dj. If we write Di � Dj, then it means Di → Dj and Dj → Di. These representations are
used for the indication of interaction, which does not explicitly specify the type of interactions.

1 2 3

4 5

D1

D3

D2

1

D
f (D)

2

3
H

(a)

1 2 3

4 5

D1

D3

D2

f (D)
D

1 2

3
H

(b)

Figure 2. (a) An example of the fully participated interaction between D1, D2 and D3 of a
side-information digraph D along with the digraph H (having three vertices) obtained by mapping D
by the function f , and (b) an example of the partially participated interaction between D1, D2 and D3

of another side-information digraph D along with the digraph H obtained by mapping D by the
function f .

3.2. A Compact Representation of Interactions

For simplicity, an interaction between the sub-digraphs D1, D2 and D3 of D can be viewed as
an interaction between three vertices, where each vertex represents one of the sub-digraphs. In this
regard, we define a function that maps a digraph D (with its sub-digraphs D1, D2 and D3) to a digraph
having three vertices, denoted H, in the following: f : D → H such that (i) all the vertices in V(Di) are
mapped to a single vertex i of H, so V(H) = {1, 2, 3}, and (ii) (i, j) ∈ A(H) if and only if there exist an
arc (u, v) ∈ A(D) for some u ∈ V(Di) and some v ∈ V(Dj). For example, see Figure 2. By referring to
the definition of the fully or partially participated interaction, one can find that, for a given D1, D2

and D3 of D, we can retrieve D by observing f (D) if D has a fully-participated interaction among the
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sub-digraphs, but this is not true if D has a partially-participated interaction among the sub-digraphs.
Observe that, for any D, Di → Dj, if and only if i→ j in f (D) (i.e., H).

3.3. A Classification of the Interactions

Considering the digraph H, we get a total of 64 possible cases of the orientation of arcs among
its vertices. As the vertices 1 and 2 of H can be swapped because we can interchange D1 and D2

(by swapping the labels of the senders), we get 36 unique cases (out of 64 cases) of interactions between
the vertices of H. Now, depending upon the type of orientation of arcs among the vertices of H,
we classify all unique cases into two categories: (i) CASE I — Acyclic orientation (14 cases in total),
and (ii) CASE II — with some cyclic orientation (22 cases). CASE II is further classified into smaller
sub-cases II-A, II-B, II-C, and II-D. Refer to Figure 3 for details, where each digraph of H is labeled Hi
for i ∈ {1, 2, . . . , 36}. Note that an interaction between D1, D2 and D3 of D defines arcs between them
(not within the sub-digraph), and the cases of interactions (acyclic or cyclic) are defined with respect
to the orientation of the arcs between the sub-digraphs. In this paper, a fully-participated interaction
and a partially-participated interaction between D1, D2 and D3 of D are called a cyclic-fully-participated
interaction and a cyclic-partially-participated interaction between the sub-digraphs, respectively, if and
only if f (D) has some cycles (for example, see CASE II in Figure 3).

1

(1)

(8)

(2) (4)

(9)

(5)

(13)(11)

(6)(3)

(10) (12)

(7)

(14)

(15) (16) (17) (19) (20)

(22) (23) (24)

(28) (29) (31) (32)

(A
cy
cl
ic

O
ri
en
ta
ti
on

s)

C
A
S
E
II
(W

it
h
S
om

e
C
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O
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ti
on
s)

C
A
S
E
II
-A

C
A
S
E
II
-C

C
A
S
E
II
-D

(25) (26)

(27)

(34) (35) (36)

C
A
S
E
II
-B

(18)

(21)

(30)

(33)

2

3

C
A
S
E
I

Figure 3. All unique interactions among the vertices of H. The digraph of a number i is labeled by Hi,
i ∈ {1, 2, . . . , 36}. For example, the digraph of the number 30 is labeled H30.

3.4. Main Results

For SSUIC, Arbabjolfaei and Kim [8] (Prop. 1) argued that using structural properties can reduce
the number of problems that need to be studied. This paper investigates the structural characteristics
of TSUIC problems for the same purpose by studying the interactions among D1, D2 and D3 of D.
Moreover, structural properties can be used to determine the criticality/non-criticality of arcs in TSUIC



Entropy 2019, 21, 615 9 of 40

as in its SSUIC counterpart [9,34]. An arc is said to be critical if removing the arc strictly increases the
optimal broadcast rate.

This paper analyzes all cases of fully-participated and some cases of partially-participated
interactions between D1, D2 and D3 of D, and establishes their optimal broadcast rates (β(D, Go)

and βt(D, Go)) as a function of the optimal broadcast rates of D1, D2 and D3 for TSUIC.
For fully-participated interactions, the results are summarized in Table 1. Furthermore, similar
results are presented for D whose f (D) is of CASE I and Case II-A, and it has partially-participated
interactions between the sub-digraphs (refer to Theorems 4 and 5). The results are established by
utilizing existing SSUIC’s results and our proposed coloring of confusion graphs for TSUIC, which we
discuss in the subsequent sections.

Table 1. Summary of our results for any D with fully-participated interactions between D1, D2 and D3

in TSUIC.

f(D) β(D,Go) βt(D,Go)

H1 −H7

H15 −H17

(Theorem 4)

H18 −H20

(Theorem 6)

max{βt(D3), βt(D1) + βt(D2)}

(Theorem 7)

≤ βt(D2) + max{βt(D1), βt(D3)}

= βt(D1)+βt(D2), if βt(D1) ≥ βt(D3)

H33 −H36

C
A
S
E

I
C
A
S
E

II
-A

C
A
S
E

II
-B

C
A
S
E

II
-C

C
A
S
E

II
-D

(Theorem 6)

max{β(D3), β(D1) + β(D2)}

β(D2) + max{β(D1), β(D3)}H21 −H32

(Proposition 2)

≤ max{βt(D1), βt(D3)}+max{βt(D2), βt(D3)}

(Theorem 8)

≤ max{β(D1), β(D3)}+max{β(D2), β(D3)}

= β(D1) + β(D2), if β(D3) ≤ min{β(D1), β(D2)}
(Theorem 8)

β(D1) + β(D2) + β(D3) = β(D)

= βt(D1) + βt(D2), if βt(D3) ≤ min{βt(D1), βt(D2)}

βt(D1) + βt(D2) + βt(D3) + ε/t, ε ∈ {−2,−1, 0}
(Theorem 5)

H8 −H14

(Theorem 5)

β(D1) + β(D2) + β(D3) βt(D1) + βt(D2) + βt(D3) + ε/t, ε ∈ {−2,−1, 0}
(Theorem 5)

4. Confusion Graphs and Their Coloring

4.1. Confusion Graphs

For an index-coding problem modeled by a side-information digraph D with N vertices, two
realizations of N messages, say, uN = (u1, u2, . . . , uN) and vN = (v1, v2, . . . , vN), are said to be
confusable at a vertex (receiver) r ∈ {1, 2, . . . , N}, if ur 6= vr and ui = vi for all i ∈ N+

D (r), where,
by definition, uj, vj ∈ {0, 1}t for all j ∈ {1, 2, . . . , N}. We say that two tuples are confusable if they
are confusable at some receiver r. Clearly, in an index coding, we cannot encode message tuples
that are confusable to the same codeword; otherwise, one of the receivers may not always decode
its requested message successfully. The confusability among all possible N-tuples of messages (each
message having t bits) for an index-coding problem is represented by a graph called a confusion graph,
defined as follows:

Definition 6 (Confusion graph). The confusion graph, denoted Γt(D) = (V(Γt(D)), E(Γt(D))), of a
side-information digraph D with N vertices and t-bit messages is an undirected graph with the following:
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(i) V(Γt(D)) = {uN : uN ∈ {0, 1}t×N}, and
(ii) E(Γt(D)) = {(uN , vN) : uN , vN ∈ V(Γt(D)), and uN and vN are confusable}.

4.2. A Review of Confusion Graph Coloring for SSUIC

Before proposing a notion of coloring for TSUIC, we first recall the standard definition of the
graph coloring in the following:

Definition 7 (Graph coloring and Chromatic number). A proper graph coloring of a graph G is an onto
function J : V(G)→ J , where J is a set of colors, in such a way that if i and j are adjacent vertices of G, then
J(i) 6= J(j). The minimum number of colors over all possible proper coloring of a graph G is called the chromatic
number of G, and it is denoted by χ(G).

Consider coloring a confusion graph Γt(D) with a set of colors J . Now, we get a family of sets of
independent vertices where all vertices belonging to one set are assigned with the same color in the
graph coloring. Here, a set of independent vertices refers to a vertex set where any pair of vertices
are not connected by an edge in Γt(D), and we call such a set an independent vertex set. The tuples
representing vertices within an independent vertex set are not confusable, and hence they can be coded
into the same codeword. Assigning each independent vertex set (whose vertices are all colored by a
unique color) a unique codeword provides us a valid index code having |J | codewords. Thus, there
exists a bijective mapping I : J → C, where C is an index code (or a set of codewords that satisfies the
demands made by all receivers). We know that χ(Γt(D)) = min

J
|J |. In SSUIC, it is shown that the

optimal broadcast rate of an index-coding problem D with t-bit messages can be obtained by using
confusion graphs. This is stated in the following theorem.

Theorem 1. (Alon et al. [28], Th. 1.1, Arbabjolfaei and Kim [8], Prop. 1) The optimal broadcast rate for a
SSUIC problem with t-bit messages is

βt(D) =
dlog2

χ(Γt(D))e
t

. (1)

The notion of confusion graphs has been considered in the index coding literature, and it has
been shown to be an effective tool for proving important results; for example, Bar-Yossef et al. [3],
Alon et al. [28], and Arbabjolfaei et al. [8] in their respective works, referred to the confusion graph for
the proof of results related to the odd hole and the odd anti-hole [3], the gap between β and βt=1 of
hypergraphs [28], and the structural properties of the index-coding problems [8], respectively.

4.3. Proposed Confusion Graph Coloring for TSUIC

The confusion graph, which is only a function of the side-information graph, does not depend on
the number of senders. Its coloring function described above for SSUIC may not lead to an index code
for TSUIC because of the constraint due to the two senders. In this work, we propose a way of coloring
the confusion graphs in TSUIC, which we call two-sender graph coloring. Before presenting a formal
definition, we first define some notations that will be used in the remainder of this paper, unless stated
otherwise.

1. Without loss of generality, we assume x1, x2, . . . , xn1 to be the messages requested by
vertices in V(D1), xn1+1, xn1+2, . . . , xn1+n2 the messages requested by vertices in V(D2),
and xn1+n2+1, xn1+n2+2, . . . , xn1+n2+n3 the messages requested by vertices in V(D3) with
N = n1 + n2 + n3.

2. Indices i, i1, i2 ∈ {1, 2, . . . , 2tn1}, j, j1, j2 ∈ {1, 2, . . . , 2tn2} and k, k1, k2 ∈ {1, 2, . . . , 2tn3} are used
in the representation of possible realizations of words of tn1, tn2 and tn3 bits, respectively. For
convenience, we use three indices (e.g., i, i1, i2) for the same set of numbers, where the first index
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(e.g., i) is used for a general case, and the remaining two indices (e.g., i1 and i2) are used to indicate
any two words within the group of words.

3. We group the bits associated with the messages requested by vertices of Di′ , i′ ∈ {1, 2, 3}. Within
each group, each realization of the bits, i.e., each member in {0, 1}tni′ is represented by a unique

label bj′
Di′

, j′ ∈ {1, 2, . . . , 2tni′ }. Figure A1a in Appendix A outlines each tuple bj′
Di′

for t = 1. Each

message tuple (x1, . . . , xN) realization can then be uniquely written as (bi
D1

, bj
D2

, bk
D3
) for some

i, j, k.

Definition 8 (Two-sender graph coloring of Γt(D)). Let two onto functions J1 : {0, 1}tn1 ×{0, 1}tn3 → J1,
and J2 : {0, 1}tn2 × {0, 1}tn3 → J2 be the coloring functions carried out by senders S1 and S2, respectively. A
proper two-sender graph coloring of Γt(D) is an onto function Jo : {0, 1}tn1 ×{0, 1}tn2 ×{0, 1}tn3 → J1×J2

where Jo((bi
D1

, bj
D2

, bk
D3
)) = (J1(bi

D1
, bk

D3
), J2(b

j
D2

, bk
D3
)) such that if (bi1

D1
, bj1

D2
, bk1

D3
) and (bi2

D1
, bj2

D2
, bk2

D3
) are

adjacent vertices of Γt(D), then Jo((b
i1
D1

, bj1
D2

, bk1
D3
)) 6= Jo((b

i2
D1

, bj2
D2

, bk2
D3
)).

Remark 2. The two-sender graph coloring is not a b-fold coloring that assigns a set of b colors to each vertex
such that the color sets corresponding to two adjacent vertices do not share any color (refer to the definition of the
fractional graph coloring [8]). In our definition, the color sets can share colors, as long as the color vectors (i.e.,
ordered pairs) are different.

4.4. A Few Lemmas for the TSUIC Confusion Graph Coloring

In the form of lemmas, we discuss two-sender graph coloring of Γt(D) in detail. Before this, we
first assume the following: For any indices i′, j′, assume that ci′ and cj′ are any two distinct colors
if i′ 6= j′, and let (ci′ , cj′) be an ordered pair of colors. Any two ordered pairs of colors, (ci′1

, cj′1
) and

(ci′2
, cj′2

), are said to be different (or not equal) if and only if i′1 6= i′2 or j′1 6= j′2 or both. If a color ci′ is
associated with a sender Ss, s ∈ {1, 2}, then we denote it by cs

i′ .
In TSUIC, the two senders encode separately, so, in the aforementioned definition, we need to

assign an ordered pair of colors for each vertex, where the first color is associated with S1 and the
second color with S2. Now, we have the following lemmas.

Lemma 1. For any two distinct vertices uN , vN ∈ V(Γt(D)) that are labeled by (bi1
D1

, bj
D2

, bk
D3
) and

(bi2
D1

, bj
D2

, bk
D3
), respectively, if (uN , vN) ∈ E(Γt(D)), then we must have Jo(uN) = (c1

i′1
, c2

j′1
) and

Jo(vN) = (c1
i′2

, c2
j′2
) such that c1

i′1
6= c1

i′2
and c2

j′1
= c2

j′2
for some indices i′1, i′2, j′1, j′2.

Proof. Since (uN , vN) ∈ E(Γt(D)), uN and vN are confusable. Moreover, these two tuples are
confusable only at some vertex in V(D1). This is because the labels (bi1

D1
, bj

D2
, bk

D3
) and (bi2

D1
, bj

D2
, bk

D3
)

of uN and vN , respectively, are different only in bi
D1

sub-label (which is representing tn1-bit tuples of
the messages requested by vertices in V(D1)). Now, for the sender S2, which does not contain any
message in P1 (messages requested by receivers in V(D1)), the coloring function J2(b

j
D2

, bk
D3
) provides

the same color to both vertices. Thus, c2
j′1
= c2

j′2
. On the other hand, for the sender S1, which contains all

messages in P1, it is necessary to have J1(b
i1
D1

, bk
D3
) 6= J1(b

i2
D1

, bk
D3
) because these two tuples (bi1

D1
, bk

D3
)

and (bi2
D1

, bk
D3
) are confusable given that (bi1

D1
, bj

D2
, bk

D3
) and (bi2

D1
, bj

D2
, bk

D3
) are confusable at some

receiver in V(D1). Thus, c1
i′1
6= c1

i′2
.

In a similar reasoning as in the above proof (of Lemma 1), one can prove the following lemma:
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Lemma 2. For any two distinct vertices, uN , vN ∈ V(Γt(D)) such that they are labeled by (bi
D1

, bj1
D2

, bk
D3
)

and (bi
D1

, bj2
D2

, bk
D3
), respectively, if (uN , vN) ∈ E(Γt(D)), then we must have Jo(uN) = (c1

i′1
, c2

j′1
) and

Jo(vN) = (c1
i′2

, c2
j′2
) such that c1

i′1
= c1

i′2
and c2

j′1
6= c2

j′2
for some indices i′1, i′2, j′1, j′2.

If uN and vN are confusable at some vertices in V(D1) and in V(D2), then referring to Lemmas 1
and 2, we get the following:

Lemma 3. For any two distinct vertices, uN , vN ∈ V(Γt(D)) such that they are labeled by (bi1
D1

, bj1
D2

, bk
D3
)

and (bi2
D1

, bj2
D2

, bk
D3
), respectively, if (uN , vN) ∈ E(Γt(D)) due to confusion at some vertices in V(D1) and in

V(D2), then we must have Jo(uN) = (c1
i′1

, c2
j′1
) and Jo(vN) = (c1

i′2
, c2

j′2
) such that c1

i′1
6= c1

i′2
and c2

j′1
6= c2

j′2
for

some indices i′1, i′2, j′1, j′2.

If uN and vN are confusable at some vertices in V(D3), then whilst coloring Γt(D) in two-sender
graph coloring, it suffices to have a different color associated with any one of the senders because all
the messages in P3 are contained by both senders S1 and S2. Thus, we have the following lemma:

Lemma 4. For any two vertices, uN , vN ∈ V(Γt(D)) such that they are labeled by (bi
D1

, bj
D2

, bk1
D3
)

and (bi
D1

, bj
D2

, bk2
D3
), respectively, if (uN , vN) ∈ E(Γt(D)), then we have Jo(uN) = (c1

i′1
, c2

j′1
) and

Jo(vN) = (c1
i′2

, c2
j′2
) such that either c1

i′1
6= c1

i′2
, or c2

j′1
6= c2

j′2
, or both.

5. The Optimal Broadcast Rate for TSUIC

For a TSUIC problem with t-bit messages, we have the following theorem:

Theorem 2. The optimal broadcast rate for a TSUIC problem with t-bit messages is

βt(D, Go) = min
J1,J2

dlog2 |J1|e+ dlog2 |J2|e
t

. (2)

Proof. For s ∈ {1, 2}, consider Js, a coloring function of the sender Ss, with a set of colors Js.
A two-sender index code is obtained by S1 mapping distinct colors in J1 to distinct sub-codewords, and
S2 mapping distinct colors in J2 to distinct sub-codewords. By definition, all confusable vertex pairs
are assigned different codewords. Now, for s ∈ {1, 2}, the sender Ss transmits |Js| sub-codewords.
Equivalently, dlog2 |Js|e bits are transmitted by Ss. This is because the number of bits required to index
|Js| colors are dlog2 |Js|e. Minimizing the sum (dlog2 |J1|e+ dlog2 |J2|e) over all coloring functions
J1 (of S1) and J2 (of S2) per received message bits (i.e., t), we get

βt(D, Go) ≤ min
J1,J2

dlog2 |J1|e+ dlog2 |J2|e
t

. (3)

From the definition of βt(D, Go), we have βt(D, Go) = min
E

p1+p2
t , so there exists a two-sender index

code such that S1 and S2 transmit p′1-bit and p′2-bit sub-codewords, respectively, resulting in

βt(D, Go) =
p′1 + p′2

t
. (4)

Now, for each sender Ss, we know that there are at most 2p′s possible sub-codewords. Consider a
bijective function that maps each sub-codeword to a color. A valid code must translate to a valid
two-sender graph coloring. Thus, there exists a valid two-sender graph coloring such that |J ′1 | ≤ 2p′1

and |J ′2 | ≤ 2p′2 , or, equivalently, p′1 ≥ dlog2 |J ′1 |e and p′2 ≥ dlog2 |J ′2 |e as both are non-negative
integers. Substituting the inequalities of p′1 and p′2 in (4), we get
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βt(D, Go) ≥
dlog2 |J ′1 |e+ dlog2 |J ′2 |e

t
. (5)

Now, we prove equality in (3). This is done by contradiction. Suppose that

βt(D, Go) < min
J1,J2

dlog2 |J1|e+ dlog2 |J2|e
t

. (6)

From (5) and (6), we get

dlog2 |J ′1 |e+ dlog2 |J ′2 |e
t

< min
J1,J2

dlog2 |J1|e+ dlog2 |J2|e
t

, (7)

and this leads to a contradiction. Thus, βt(D, Go) = min
J1,J2

dlog2 |J1|e+dlog2 |J2|e
t .

We illustrate two-sender graph coloring of a confusion graph in TSUIC, and a mapping function
that maps colors to codewords at each sender from the following example.

Example 1. Consider a TSUIC problem (D, Go) of the following: (1|2), (2|1), (3|1), and M1 = {1, 3},
M2 = {2, 3} with t = 1. The problem is depicted in Figure 4a. We have V(D1) = {1}, V(D2) = {2},
V(D3) = {3}, and N = 3. The confusion graph Γ1(D) has 2N = 8 vertices labeled by all possible realizations
of a word with three bits. In Γ1(D), any two vertices are connected by an edge if the message tuples labeling the
vertices are confused at some receiver. For example, (0, 0, 0) and (1, 0, 0) are connected by an edge because these
two message tuples are confused at receiver 1. The confusion graph Γ1(D) is depicted in Figure 4b. Now, we
perform two-sender graph coloring of the vertices of Γ1(D). In two-sender graph coloring, each vertex of Γ1(D)

is assigned with an ordered pair of colors; the first color is always associated with S1 and the second color is
always associated with S2, and we color the vertices as dictated by Lemmas 1–4. For example, consider (0, 0, 0)
and (1, 0, 0). These two tuples are confused at receiver 1 (requesting x1). As S2, which does not know x1, the
tuples (0, 0, 0) and (1, 0, 0), which have the same second and third message bits, are treated as the same. Thus,
S2 must assign the same color, say RED, to both the tuples. As S1 knows x1 and the tuples are confusable at
receiver 1, it must assign two different colors, say RED and BLUE, to (0, 0, 0) and (1, 0, 0), respectively. In a
similar way, we assign ordered pairs of colors to all vertices of Γ1(D) as shown in Figure 4b. Altogether, one
can get J1 = {RED, BLUE} and J2 = {RED, BLUE}. Now, we assume a mapping function that maps RED
to 0 and BLUE to 1. Thus, we get (0, 0, 0) → 00, (1, 0, 0) → 10, (0, 1, 0) → 01 and so on for the remaining
tuples (vertices of Γt(D)). Thus, {00, 10, 01, 11} are codewords of a valid two-sender index code for (D, Go),
where each sender transmits a 1-bit sub-codeword for a message tuple, and the sum of bits to be transmitted
by the two senders is two for each message tuple. Consequently, βt(D, Go) ≤ 2. Each sender has one private
message, and that must be transmitted by that sender, so there must be at least one transmission by that sender.
Thus, βt(D, Go) ≥ 2. Altogether, we get βt(D, Go) = 2.

1 2

3

1 2

3

D Go

D1
D2

D3

(a)

(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)

(1,0,1)

(0,1,1)
(1,1,1)

(1,1,0)

Γ1(D)

S1

0

1

S2

0

1

(b)

Figure 4. (a) A TSUIC problem (D, Go), and (b) the confusion graph Γ1(D), and its two-sender
graph coloring.
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5.1. Lower Bounds

For any D, we have β(D) ≤ βt(D) for all t (by definition). Since any index code for (D, Go) is
also an index code for D, but the converse is not always true, so we have the following:

Lemma 5 (A simple lower bound). For any D and Go, β(D, Go) ≥ β(D).

In TSUIC, each sender Ss transmits at least β(Ds), for s ∈ {1, 2}. We now provide a lower bound
of the optimal broadcast rate for a TSUIC problem with t-bit messages in the following lemma.

Lemma 6 (A lower bound). For any two-sender index-coding problem (D, Go), βt(D, Go) ≥
βt(D1) + βt(D2), and β(D, Go) ≥ β(D1) + β(D2).

Proof. For any two-sender index-coding problem (D, Go), let (D′, G′o) be its sub-problem induced
by vertices V(D1) ∪ V(D2). Observe that V(D′) ∩ V(D3) = ∅. Now, we have βt(D′, G′o) =

βt(D1) + βt(D2) ([17], Th. 1). For any index-coding problem, its broadcast rate is always lower
bounded by the broadcast rate of any sub-problem, so we get

βt(D, Go) ≥ βt(D′, G′o) = βt(D1) + βt(D2). (8)

We know that lim
t→∞

βt(D1) = β(D1), lim
t→∞

βt(D2) = β(D2) and β(D, Go) = lim
t→∞

βt(D, Go)

(by Definition 3). Now, taking a limit t→ ∞ on both sides in (8), we get

β(D, Go) ≥ β(D1) + β(D2). (9)

To compute the simple lower bound to the optimal broadcast rate of a given problem in TSUIC,
we utilize the following SSUIC results by Arbabjolfaei and Kim ([8], Prop. 3, Th. 2, Th. 3).

Theorem 3. In SSUIC, for a side-information digraph D having two sub-digraphs Da and Db induced by
vertices V(Da) and V(Db), respectively, such that V(Da) ∪ V(Db) = V(D) and V(Da) ∩ V(Db) = ∅,
we have

(i) β(D) = β(Da) + β(Db) if there is (i) no interaction between Da and Db (i.e., no Da → Db and
Db → Da), or (ii) a one-way interaction (either partially or fully participated) between Da and Db, i.e.,
either Da → Db or Db → Da, but not both and

(ii) β(D) = max{β(Da), β(Db)} if there is a fully participated both way interaction between Da and Db
(i.e., fully participated Da � Db).

5.2. Optimal Broadcast Rates for CASE I and CASE II-A: The Arcs between D1, D2 and D3 Are Not Critical in
Asymptotic Regime in the Message Size

For a digraph D whose f (D) belongs to a digraph of CASE I and CASE II-A (see Figure 3),
we have the following results.

Theorem 4 (CASE I). For any D having any interaction (i.e., either fully participated or partially participated)
between its sub-digraphs D1, D2 and D3, if f (D) ∈ {H1, H2, . . . , H14} (i.e., a digraph H of CASE I in
Figure 3), then β(D, Go) = β(D1) + β(D2) + β(D3) = β(D).

Proof. Referring to the definition of the mapping function f (in Section 3), we know that for any D if
f (D) ∈ {H1, H2, . . . , H14}, then the interaction between D1, D2 and D3 of D are acyclic. Thus, one can
arrange D1, D2 and D3 in a sequence such that there is no arc between D1, D2 and D3 in a backward
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direction. Without loss of generality, let the sequence be D1, D2 and D3. Now for D, referring to
Theorem 3, we get

β(D) = β(D1 ∪ D2) + β(D3) = β(D1) + β(D2) + β(D3). (10)

From Lemma 5, we have
β(D, Go) ≥ β(D). (11)

Now from (10) and (11), we get

β(D, Go) ≥ β(D1) + β(D2) + β(D3). (12)

In TSUIC, if we consider the sub-digraphs D1, D2 and D3 separately, then their respective
source constraint graphs are the sub-graphs of G0 induced by vertices V(D1), V(D2) and V(D3),
denoted G1

0 , G2
0 and G3

0 , respectively. These sub-graphs are edgeless graphs, and thus one can get
β(D1, G1

0) = β(D1), β(D2, G2
0) = β(D2) and β(D3, G3

0) = β(D3). We know that the optimal broadcast
rate of a side-information digraph is always less than or equal to the sum of the optimal broadcast
rates of its sub-digraphs, so

β(D, Go) ≤ β(D1, G1
0) + β(D2, G2

0) + β(D3, G3
0)

≤ β(D1) + β(D2) + β(D3). (13)

From (10), (12) and (13), we get β(D, Go) = β(D1) + β(D2) + β(D3) = β(D).

Example 2. Consider a TSUIC problem of the following: (1), (2|1, 4, 5), (3|1, 2, 4, 5), (4|1, 5), (5|1, 4),
and M1 = {1, 4, 5}, M2 = {1, 2, 3}. We compute its β(D, Go) using Theorem 4. Refer to Figure 5
for details.

1D

2

34

5

1Go

2

34

5
D1D2

D3

Figure 5. A given side-information digraph D such that f (D) = H7, and a source-constraint graph
Go (forM1 = {1, 2, 3} andM2 = {1, 4, 5}). Moreover, we have V(D1) = {2, 3}, V(D2) = {4, 5} and
V(D3) = {1}. From Theorem 4, we get β(D, Go) = β(D) = β(D1) + β(D2) + β(D3) = 2 + 1 + 1 = 4.
It is not difficult to observe that a two-sender index code {x1, x2, x3, x4 ⊕ x5} that is obtained by
transmitting x1, x2, x3 from S1, and x4 ⊕ x5 from S2, achieves the optimal broadcast rate both in TSUIC
and SSUIC.

Proposition 1. For any D having a fully-participated interaction between its sub-digraphs D1, D2 and D3, if
f (D) ∈ {H1, H16}, then βt(D, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t for some ε ∈ {−2,−1, 0}.

Proof. Refer to Appendix C.

Definition 9 (Vertex-transitive graphs). An undirected graph G is vertex-transitive if for every pair u, v ∈
V(G) there exists an automorphism mapping from u to v. In the automorphism mapping of all vertices in V(G),
the graph is mapped onto itself whilst preserving the connectivity of the vertices and edges.

Remark 3. The proof of the Proposition 1 is based on the analysis of the confusion graph Γt(D) and its coloring.
This is described in Section 4. As a confusion graph possesses some symmetry within — in fact, all confusion
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graphs are vertex-transitive— whilst analyzing them (especially coloring), we systematically group its vertices
and then analyze the graph based on these groups (rather than individual vertices). This way, for a TSUIC
problem whose sub-problems interact with each other in some way, we can reduce the complexity arising
during its analysis (especially finding the number of colors in a proper coloring of Γt(D)) due to the number of
vertices, which is exponential in t and N. The proposed grouping of the vertices of the confusion graph and its
characteristics are stated in Appendix B.

Theorem 5 (CASE I and CASE II-A). For any D having any interaction (i.e., either fully participated
or partially participated) between its sub-digraphs D1, D2 and D3, if f (D) ∈ {H1, H2, . . . , H17} \
{H8, H9, . . . , H14}, then βt(D, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t, where ε ∈ {−2,−1, 0}, and
β(D, Go) = β(D1) + β(D2) + β(D3).

Proof. For convenience, let D = Di if f (D) = Hi. Now, for Di, i ∈ {1, 16}, with a fully-participated
interaction between the sub-digraphs, we have the following from Proposition 1:

βt(Di, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t, (14)

for some ε ∈ {−2,−1, 0}. For any Di, i ∈ {1, 2, 3, . . . , 17}, having either a partially-participated or
a fully-participated interaction between the sub-digraphs, we have the following observations: The
interactions between the sub-digraphs (i.e., D1, D2 and D3) are equal to or more than that in D1, so

βt(Di, Go) ≤ βt(D1, Go) (15)

and equal to or fewer than that in D14 (with a fully-participated interaction between the sub-digraphs),
so

βt(Di, Go) ≥ βt(D14, Go). (16)

Now, from (14)–(16), we get

βt(Di, Go) = βt(D, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t, (17)

where ε ∈ {−2,−1, 0} and i ∈ {1, 2, . . . , 17} \ {H8, H9, . . . , H14}.
Now, taking a limit t→ ∞ on both sides in (17), we get

β(D, Go) = lim
t→∞

βt(D, Go) = lim
t→∞

(βt(D1) + βt(D2) + βt(D3) + ε/t)

= β(D1) + β(D2) + β(D3), (18)

where lim
t→∞

ε
t = 0.

Remark 4. For any D having non-empty D1, D2 and D3 with fully-participated interactions between them
such that f (D) ∈ {H15, H16, H17}, in SSUIC, we have β(D) = β(D3) + max{β(D1), β(D2)} by Theorem 3;
however, in TSUIC, β(D), a lower bound to β(D, Go), is not achievable due to Theorem 5.

Corollary 1. For any D having any interaction (i.e., either fully participated or partially participated) between
its sub-digraphs D1, D2 and D3, if f (D) ∈ {H1, H2, . . . , H17}, then the arcs (contributing to that interaction)
between D1, D2 and D3 of D are not critical in TSUIC in the asymptotic regime in message size (considering
infinitely long messages).

Proof. The proof follows from Theorems 4 and 5.
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5.3. Optimal Broadcast Rates for CASE II-B

Theorem 6 (CASE II-B). For any D having a fully participated interaction between its sub-digraphs
D1, D2 and D3, and t-bit messages for any t ≥ 1, if f (D) ∈ {H18, H19, H20}, then βt(D, Go) =

max{βt(D3), βt(D1) + βt(D2)} and β(D, Go) = max{β(D3), β(D1) + β(D2)}.

Proof. Refer to Appendix D.

Corollary 2. For any D having a fully participated interaction between its sub-digraphs D1, D2 and D3 such
that f (D) ∈ {H18, H20}, β(D, Go) = β(D).

Proof. The result follows from Theorems 3 and 6.

Remark 5. In TSUIC, for any D having a fully participated interaction between its non-empty sub-digraphs
D1, D2 and D3 such that f (D) = H19, no TSUIC scheme achieves β(D) if β(D3) < β(D1) + β(D2) because
β(D) = max{β(D1), β(D2), β(D3)}} (by Theorem 3) and β(D, Go) is at least β(D1) + β(D2) (by Lemma 6).

Example 3. Consider a TSUIC problem of the following: (1|3, 4), (2|3, 4), (3|1, 2, 4), (4|1, 2), andM1 =

{1, 3, 4}, M2 = {2, 3, 4}. We compute its β(D, Go) and βt(D, Go) using Theorem 6. Refer to Figure 6
for details.

1 2

3

1 2

3

D Go
4 4

D1 D2

D3

Figure 6. A given side-information digraph D such that f (D) = H18, and a source-constraint graph
Go. We have V(D1) = {1}, V(D2) = {2} and V(D3) = {3, 4}. From Theorem 6, we get β(D, Go) = 2,
and, from Corollary 2, β(D) = β(D, Go) = 2. It is not difficult to observe that a two-sender-index code
{x1 ⊕ x3, x2 ⊕ x4} that is obtained by transmitting x1 ⊕ x3 and x2 ⊕ x4 from sender 1 and sender 2,
respectively, achieves its optimal broadcast rate both in TSUIC and SSUIC.

5.4. Optimal Broadcast Rates for CASE II-C: An Upper Bound, and Special Cases Where the Upper
Bound Is Tight

Theorem 7 (CASE II-C). For any D having a fully participated interaction between its sub-digraphs D1, D2

and D3, and t-bit messages for any t ≥ 1, if f (D) ∈ {H21, H22, . . . , H32}, then

(i) βt(D, Go) ≤ βt(D2) + max{βt(D1), βt(D3)},
(ii) βt(D, Go) = βt(D1) + βt(D2) if βt(D1) ≥ βt(D3),

(iii) β(D, Go) ≤ β(D2) + max{β(D1), β(D3)}, and
(iv) β(D, Go) = β(D1) + β(D2) if β(D1) ≥ β(D3).

Proof. Refer to Appendix E.

Case (iii) in Theorem 7 can be strengthened as follows:

Proposition 2 (CASE II-C). For any D having a fully participated interaction between its sub-digraphs D1,
D2 and D3 such that f (D) ∈ {H21, H22, . . . , H32}, β(D, Go) = β(D2) + max{β(D1), β(D3)}.

Proof. It follows from Theorem 7 that β(D, Go) = β(D1) + β(D2) if β(D1) ≥ β(D3), and for the case
when β(D1) ≤ β(D3),

β(D, Go) ≤ β(D2) + β(D3). (19)
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For D whose f (D) ∈ {H21, H22, . . . , H32} \ {H28, H29} (all digraphs of CASE II-C except H28 and
H29), considering Theorem 3, we get β(D) = β(D2) + β(D3) if β(D1) ≤ β(D3). As β(D) ≤ β(D, Go)

(Lemma 5), so
β(D, Go) ≥ β(D2) + β(D3). (20)

The interaction among D1, D2 and D3 in D28 (that is, D where f (D) = H28) is less than that in
D32. Thus,

β(D28, Go) ≥ β(D32, Go). (21)

From (20) and (21), we get

β(D28, Go) ≥ β(D32, Go) ≥ β(D2) + β(D3), (22)

if β(D1) ≤ β(D3). Due to the similar aforementioned reasoning, we get

β(D29, Go) ≥ β(D31, Go) ≥ β(D2) + β(D3). (23)

From (19), (20), (22) and (23), we get β(D, Go) = β(D2) + β(D3) if β(D1) ≤ β(D3) for any D with
f (D) ∈ {H21, H22, . . . , H32}. Altogether, β(D, Go) = β(D2) + max{β(D1), β(D3)}.

Corollary 3. For any D having a fully participated interaction between its sub-digraphs D1, D2 and D3 such
that f (D) ∈ {H21, H22, . . . , H27}, β(D, Go) = β(D).

Proof. For the given digraph D, by applying Theorem 3, one can get β(D) = β(D2) +

max{β(D1), β(D3)}, and this equals β(D, Go) by Proposition 2.

Corollary 4. For any D such that f (D) ∈ {H30, H31, H32},

(i) if β(D1) ≤ β(D3), then β(D, Go) = β(D2) + β(D3) = β(D),
(ii) if β(D1) > β(D3), then

(a) if β(D1) ≥ β(D2) + β(D3), then β(D, Go) = β(D1) + β(D2) ≥ β(D1) = β(D), with a strict
inequality if D2 is non-empty, and

(b) if β(D1) ≤ β(D2) + β(D3), then β(D, Go) = β(D1) + β(D2) > β(D2) + β(D3) = β(D) for
a non-empty D2.

Proof. If β(D1) ≤ β(D3), then β(D1) ≤ β(D3) + β(D2). Now, from Proposition 2 and Theorem 3,
β(D, Go) = β(D2) + β(D3) = β(D). For the case β(D1) > β(D3), the results directly follow from
Proposition 2 and Theorem 3.

Remark 6. Let D = Di if f (D) = Hi. Now, for any D such that f (D) ∈ {H28, H29}, we have the following
if β(D1) ≤ β(D3):

(i) {β(D32, Go) = β(D32) = β(D2) + β(D3)} ≤ β(D28) ≤ β(D28, Go) ≤ {β(D26) = β(D26, Go) =

β(D2) + β(D3)} from Proposition 2, Theorem 3, Corollarys 3 and 4, and Lemma 5. This implies
β(D28) = β(D28, Go) = β(D2) + β(D3).

(ii) {β(D31, Go) = β(D31) = β(D2) + β(D3)} ≤ β(D29) ≤ β(D29, Go) ≤ {β(D27) = β(D27, Go) =

β(D2) + β(D3)} from Proposition 2, Theorem 3, Corollarys 3 and 4, and Lemma 5. This implies
β(D29) = β(D29, Go) = β(D2) + β(D3).

Example 4. Consider a TSUIC problem D of the following: (1|2, 4, 5), (2|4, 5), (3|1, 2), (4|1, 2, 5), (5|1, 2, 4),
andM1 = {1, 2, 4, 5},M2 = {3, 4, 5}. We compute its β(D, Go) and βt(D, Go) using Theorem 7. Refer to
Figure 7 for details.
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Figure 7. A given side-information digraph D such that f (D) = H23, and a source-constraint graph Go.
We have V(D1) = {1, 2}, V(D2) = {3}, and V(D3) = {4, 5}. From Theorem 7, we get β(D, Go) = 3
and from Corollary 3, β(D) = β(D, Go) = 3. It is not difficult to observe that a two-sender index
code {x1 ⊕ x4 ⊕ x5, x2, x3}, where (x1 ⊕ x4 ⊕ x5, x2) and x3 are transmitted by sender 1 and sender 2,
respectively, achieves its optimal broadcast rate both in TSUIC and SSUIC.

5.5. Optimal Broadcast Rates for CASE II-D

Theorem 8 (CASE II-D). For any D having a fully participated interaction between its sub-digraphs D1, D2

and D3, and t-bit messages for any t ≥ 1, if f (D) ∈ {H33, H34, H35, H36}, then

(i) βt(D, Go) ≤ max{βt(D1), βt(D3)}+ max{βt(D2), βt(D3)},
(ii) βt(D, Go) = βt(D1) + βt(D2) if βt(D3) ≤ min{βt(D1), βt(D2)},

(iii) β(D, Go) ≤ max{β(D1), β(D3)}+ max{β(D2), β(D3)} , and
(iv) β(D, Go) = β(D1) + β(D2) if β(D3) ≤ min{β(D1), β(D2)}.

Proof. Refer to Appendix F.

Proposition 3. For any D having a fully participated interaction between its sub-digraphs D1, D2 and D3 such
that f (D) ∈ {H33, H34}, β(D, Go) = β(D) = β(D3) + max{β(D1), β(D2)} if min{β(D1), β(D2)} ≤
β(D3) ≤ max{β(D1), β(D2)}.

Proof. It follows from Theorem 8 that β(D, Go) ≤ max{β(D1), β(D3)}+ max{β(D2), β(D3)}. Thus,
considering min{β(D1), β(D2)} ≤ β(D3) ≤ max{β(D1), β(D2)}, if β(D1) ≥ β(D2), then

β(D, Go) ≤ β(D1) + β(D3), (24)

and if β(D2) ≥ β(D1), then
β(D, Go) ≤ β(D2) + β(D3). (25)

From (24) and (25), we get

β(D, Go) ≤ β(D3) + max{β(D1), β(D2)}. (26)

Now, from Theorem 3, one can get β(D) = β(D3) + max{β(D1), β(D2)}. As β(D) ≤ β(D, Go)

(Lemma 5), we get
β(D, Go) ≥ β(D3) + max{β(D1), β(D2)}. (27)

From (26) and (27), we get β(D, Go) = β(D3) + max{β(D1), β(D2)}.

Now, for UIC problems with more than two senders, we study some classes of interactions
between the sub-digraphs of a digraph (representing the UIC problem) in the following sub-section.

6. Generalizing the Results of Some Classes of TSUIC Problems to Multiple Senders

In this section, we illustrate how the method proposed in this paper can be generalized to scenarios
with more than two senders.
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Let N′ be the number of senders, each with at least one private message. Clearly, 1 ≤ N′ ≤ N.
In this section, we consider a special case of multi-sender unicast-index coding (MSUIC), where the
only common messages are present in all N′ senders and the rest are all private messages. We call this
MSUIC special MSUIC (SMSUIC). Following the earlier convention of notations used in TSUIC, the set
of common messages and its corresponding sub-problem are denoted byPN′+1 and DN′+1, respectively.
Precisely, for D, we have N′ + 1 sub-digraphs, where D1, D2, . . . , DN′ are the vertex-induced
sub-digraphs of D associated with vertices of those requesting the private messages, and DN′+1
is associated with vertices of those requesting only common messages. In MSUIC, each vertex of
Γt(D) is labeled as (bi1

D1
, bi2

D2
, bi3

D3
, . . . , biN′

DN′
, bk

DN′+1
), where ij ∈ {1, 2, . . . , 2tnj} for j ∈ {1, 2, . . . , N′}

and k ∈ {1, 2, . . . , 2tnN′+1}.
Observe that the extensions of Definition 5 (including the sender-constraint graph, Go),

Definition 8, and Lemmas 1–4 to SMSUIC are straightforward. Similar to the proof of Theorem 2, one
can prove the following in SMSUIC:

βt(D, Go) = min
J1,J2,...,JN′

dlog2 |J1|e+ dlog2 |J2|e+ . . . + dlog2 |JN′ |e
t

. (28)

Now, we extend the proposed grouping of the vertices of Γt(D) to MSUIC (including SMSUIC).
Firstly, refer to Section 4 and Appendix B for the notations, groupings and observations related to
the vertices in any k-th block of Γt(D) in TSUIC. We follow a similar way of grouping of vertices in
MSUIC, where any k-th block of Γt(D) has the following:

1. Vertices labeled by all (bi1
D1

, bi2
D2

, bi3
D3

, . . . , biN′
DN′

, bk
DN′+1

), ij ∈ {1, 2, . . . , 2tnj}, j ∈ {1, 2, . . . , N′} and

k ∈ {1, 2, . . . , 2tnN′+1}, with the same bk
DN′+1

sub-label,

2. any row sub-block consists of vertices labeled by all (bi1
D1

, bi2
D2

, bi3
D3

, . . . , biN′
DN′

, bk
DN′+1

), ij ∈
{1, 2, . . . , 2tnj}, j ∈ {1, 2, . . . , N′}, with the same bi2

D2
, bi3

D3
, . . . , biN′

DN′
, bk

DN′+1
sub-labels, and

3. any i1-th column sub-block consists of vertices labeled by all (bi1
D1

, bi2
D2

, bi3
D3

, . . . , biN′
DN′

, bk
DN′+1

),

ij ∈ {1, 2, . . . , 2tnj}, j ∈ {1, 2, . . . , N′}, with the same bi1
D1

and bk
DN′+1

sub-labels. Moreover,

in contrast to SSUIC, there are multiple sub-labels other than bi1
D1

and bk
DN′+1

in MSUIC, so we
arrange the vertices of any i1-th column sub-block as dictated by Figure A2 in Appendix A.

Clearly, a block has 2tn1 column sub-blocks and 2t(∑N′
i=2 ni) row sub-blocks.

Now, we illustrate the grouping of the vertices with an example. Assume that we have three
senders S1, S2 and S3 with M1 = {x1, x4, x5}, M2 = {x2, x4, x5} and M3 = {x3, x4, x5}. We get
N′ = 3, and V(D4) = {4, 5}. For xi ∈ {0, 1}, i ∈ {1, 2, 3, 4, 5}, we arrange the vertices of the first block
as shown in Figure 8.

Based on our classification of interactions (referring to Figure 3), H1 has no arc, and H16 has the
following: Vertices 1 and 2, each has an out-degree of two, whereas the vertex 3 has zero out-degree.
Now, considering the interactions between the sub-digraphs D1, D2, . . . , DN′ , DN′+1, the extensions
of H1 and H16 to SMSUIC are straightforward (refer to Figure 9). We labeled them by H′1 and H′16,
respectively, in SMSUIC. Now, we have the following proposition.
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0,0,0,00 1,0,0,00
0,0,1,00 1,0,1,00
0,1,0,00 1,1,0,00
0,1,1,00 1,1,1,00

(b1
D1

,b1
D2

,b1
D3

,b1
D4

)

Figure 8. Grouping of vertices in Block 1 of Γ1(D) for a SMSUIC with three senders having
M1 = {x1, x4, x5},M2 = {x2, x4, x5},M3 = {x3, x4, x5}, and t = 1.

1 2

N ′ + 1H′
1

N ′

(a)

1 2

N ′ + 1H′
16

N ′

(b)

Figure 9. Extension of (a) H1, and (b) H16 to SMSUIC.

Proposition 4. For any D having a fully-participated interaction between its sub-digraphs
D1, D2, . . . , DN′ , DN′+1, if f (D) ∈ {H′1, H′16}, then βt(D, Go) = ∑N′+1

i=1 βt(Di) + ε/t for some
ε ∈ {−N′,−N′ + 1, . . . , 0}.

Proof. Refer to Appendix G.

Similar to the proof of Theorem 5, one can prove the following theorem using Proposition 4.

Theorem 9. For any D having any interaction (i.e., either fully participated or partially participated) between
its sub-digraphs D1, D2, . . . , DN′ , DN′+1, if f (D) (i.e., H′) has some arcs among its vertices 1, 2, . . . , N′, N′+ 1
such that there is no out-going arc from N′ + 1 to any other vertex, then βt(D, Go) = ∑N′+1

i=1 βt(Di) + ε/t for
some ε ∈ {−N′,−N′ + 1, . . . , 0}, and β(D, Go) = ∑N′+1

i=1 β(Di).

Remark 7. Extending the other cases of TSUIC to MSUIC is a laborious task as it involves a construction of
multi-dimensional blocks and sub-blocks in a confusion graph.

7. Discussion

Consider any digraph D and its sub-digraphs D1, D2 and D3. Let d+D(u) be the out-degree of a
vertex u of D. Now, we make the following two observations in TSUIC:

• The role of side-information of the vertices in V(D3) (vertices requesting the common messages) about the
messages requested by vertices in V(D1) ∪ V(D2) (vertices requesting the private messages) in TSUIC:
It is proved in SSUIC that, if the interaction between D1, D2 and D3 is acyclic, i.e., f (D) belongs
to one of the digraphs in CASE I, then β(D) = β(D1) + β(D2) + β(D3) (by using Theorem 3).
This means that the arcs contributing acyclic interactions between the sub-digraphs of D can be
removed without affecting the optimal broadcast rate of D; in other words, those are non-critical
arcs. In this paper, we have proved that this result is also true in TSUIC (by Theorem 5). Moreover,
in TSUIC, we have proved that, for D, if the vertices in V(D3) have no side-information about
the messages requested by vertices in V(D1) ∪V(D2), i.e., d+f (D)

(3) = ∅, then by Theorem 5, we
have β(D, Go) = β(D1) + β(D2) + β(D3) (behaves like having acyclic interactions between D1, D2
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and D3). Under this condition, any arc that is contributing any interaction between D1, D2 and D3

is non-critical.
• Non-critical arcs in SSUIC are not necessarily non-critical in TSUIC: We illustrate this with an example.

Consider the TSUIC problem stated in Example 1 (whose f (D) = H33). In SSUIC, we know that
the optimal broadcast rate β(D) = 2. This problem has an arc (3, 1) that is non-critical in SSUIC
(its removal does not change the optimal broadcast rate), but it is critical in TSUIC. This can be
understood from the following: In SSUIC, we can remove the arc (3, 1) ∈ A(D), and still form a
valid index code {x1 ⊕ x2, x3} that achieves β(D). This infers that removing the arc (3, 1) does not
affect the optimal broadcast rate in SSUIC. However, in TSUIC, if we remove the arc (3, 1) ∈ A(D),
then the new problem, say D′, has β(D′, Go) = 3 (applying Theorem 5), whereas we get a valid
two-sender index code {x1 ⊕ x3, x2 ⊕ x3} of codelength two if we consider (3, 1) ∈ A(D). Now, it
is evident that there exist cases in TSUIC where some side-information (e.g., (1, 2) and (2, 1)) cannot
be exploited directly during encoding by senders because of the constraint due to the two senders.
However, that side-information can be utilized during decoding process at receivers’ end due to
the presence of other helping side-information (e.g., (3, 1)). Thus, this helping side-information
can be critical in TSUIC. This observation was also made by Sadeghi et al. [20] for MSUIC under a
different performance metric (rate region with fixed capacity links).

8. Concluding Remarks and Open Problems

In this paper, we studied two-sender unicast-index-coding problems and established their
structural characteristics. Noting that SSUIC is a well-studied problem (though for any arbitrary
instance, it is still an open problem), there have been many important contributions made in the
literature. In this paper, we solved TSUIC instances by expressing the optimal broadcast rates in terms
of that of SSUIC. To this end, we introduced a two-sender graph coloring of confusion graphs in TSUIC,
and propose a way of grouping the vertices of a confusion graph for analysis. Using these techniques,
we derived optimal broadcast rates of TSUIC problems, both in the asymptotic and non-asymptotic
regime, as a function of the optimal broadcast rates of their sub-problems. We have also presented
a class of TSUIC instances where the interactions between the sub-problems of the problem are not
critical. We illustrated that our proposed approach to TSUIC can be extended to some cases with
multiple senders.

Some open problems for future works are the following:

• Study of the critical edges in the TSUIC problems: It is observed that the non-critical arcs in
SSUIC can be critical arcs in TSUIC. This requires further study.

• Study of a general distributed index coding: As our study is a step towards understanding
multi-sender index coding, it is left as a future work to extend the approaches implemented and the
results obtained in this paper to more general setups.

• Finding the optimal broadcast rates of TSUIC problems with cyclic-partially-participated
interactions: The analysis of D with partially-participated interactions between its sub-digraphs
D1, D2 and D3 is left as a future work.
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Abbreviations

The following abbreviations are used in this manuscript:

MSUIC Multi-sender unicast index coding
SMSUIC Special multi-sender unicast index coding
SSUIC Single-sender unicast index coding
TSUIC Two-sender unicast index coding
UIC Unicast index coding

Appendix A

The two figures in Figure A1 outline the labels used to represent vertices of a confusion graph.
Figure A2 outlines the arrangement of vertices in any column sub-block of a block of a confusion graph
for MSUIC.
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Figure A1. (a) Each ni′ -bit tuple bj′
Di′

with its respective bits for t = 1, where i′ ∈ {1, 2, 3} and

j′ ∈ {1, 2, . . . , 2ni′ }, and (b) representation of the vertices (e.g., (bi1
D1

, bj1
D2

, bk1
D3
)) and sets of vertices

(e.g., B
bj1

D2
,bk1

D3

), each represented by a dotted line, in a confusion graph.
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Figure A2. Arrangement of vertices in i1-th column sub-block of a k-th block of a Γt(D), where, for
example, the first, second and the last vertices are labeled (bi1

D1
, b1

D2
, b1

D3
, . . . , b1

DN′−1
, b1

DN′
, bk

DN′+1
),

(bi1
D1

, b1
D2

, b1
D3

, . . . , b1
DN′−1

, b2
DN′

, bk
DN′+1

), and (bi1
D1

, b2tn2
D2

, b2tn3
D3

, . . . , b2tnN′−1
DN′−1

, b2tN′

DN′
, bk

DN′+1
), respectively.

Observe that this sub-block has 2t(∑N′
i=2 ni) vertices in total.

Appendix B. Proposed Grouping of the Vertices of Γt(D) and Its Characteristics

A vertex of the confusion graph Γt(D) is represented by a tuple xN , where xN = (x1, x2, . . . , xN),
and it is labeled by a unique (bi

D1
, bj

D2
, bk

D3
) (see Figure A3). For the ease of analysis, by considering

special groups of vertices, we divide a confusion graph into the following fundamental sub-graphs.
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Definition A1 (Block). The subgraph of Γt(D) induced by a vertex set that is formed by collecting all the
vertices with the same bk

D3
sub-label is called a k-th block.

Refer to Figure A3 for a functional block diagram of a k-th block. Moreover, this grouping
provides 2tn3 blocks in Γt(D). Clearly, all blocks in Γt(D) are isomorphic graphs. This is because each
block consists of all (bi

D1
, bj

D2
, bk

D3
) for the same bk

D3
sub-label (the bk

D3
sub-labels are different only for

different blocks), and the edges in any block is due to the confusion at some receivers in V(D1)∪V(D2).
Moreover, the (tn1 + tn2)-bit tuples of messages requested by the vertices in V(D1)∪V(D2) are labeled
by (bi

D1
, bj

D2
). For convenience, we further group the vertices of a block with the same bk

D3
sub-label

in two ways, but before this we introduce the following sets of vertices.
For the indices i, j, k, let B

bi
D1

,bj
D2

, {(bi
D1

, bj
D2

, bk
D3
) : for some fixed (bi

D1
, bj

D2
)} with cardinality

2tn3 , Bbi
D1

,bk
D3
, {(bi

D1
, bj

D2
, bk

D3
) : for some fixed (bi

D1
, bk

D3
)} with cardinality 2tn2 , and B

bj
D2

,bk
D3

is

similarly defined.
Each block is further divided into two smaller sub-graphs, which are defined as follows:

Definition A2 (Column sub-block). The sub-graph of Γt(D) induced by a vertex set that is formed by
collecting all the vertices with the same bi

D1
and bk

D3
sub-labels is called an i-th column sub-block.

Definition A3 (Row sub-block). The sub-graph of Γt(D) induced by a vertex set that is formed by collecting
all the vertices with the same bj

D2
and bk

D3
sub-labels is called a j-th row sub-block.

The sub-grouping of vertices provides 2tn1 and 2tn2 column and row sub-blocks, respectively,
within each block. In addition, the vertex sets of a column and a row sub-blocks are represented
by Bbi

D1
,bk

D3
and B

bj
D2

,bk
D3

, respectively. Clearly, all i-th column sub-blocks of a Γt(D) are isomorphic

graphs. This is because each column sub-block consists of all (bi
D1

, bj
D2

, bk
D3
) for the same (bi

D1
, bk

D3
)

sub-labels (the (bi
D1

, bk
D3
) sub-labels are different only for different column sub-blocks), and the edges

within any column sub-block is due to the confusion only at some receivers in V(D2). Moreover,
the tn2-bit tuples of messages requested by the vertices in V(D2) are labeled by bj

D2
. From a similar

reasoning as presented above for the case of column sub-blocks, it is not difficult to see that all the row
sub-blocks are also isomorphic graphs, and the edges within any row sub-block is due to the confusion
only at some receivers in V(D1).
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Figure A3. Functional block digraph of grouping the vertices of a confusion graph. The vertices of a
confusion graph are all the possible realizations of words of tN bits.

Now, we illustrate the grouping of the vertices by an example.

Example A1. Consider the TSUIC problem stated in Example 1. The confusion graph of the problem, Γ1(D),
has the following: b1

D1
= 0, b2

D1
= 1, b1

D2
= 0, b2

D2
= 1, b1

D3
= 0, b2

D3
= 1, Bb1

D2
,b1

D3
= {(0, 0, 0), (1, 0, 0)},

Bb2
D2

,b1
D3

= {(0, 1, 0), (1, 1, 0)}, Bb1
D2

,b2
D3

= {(0, 0, 1), (1, 0, 1)}, Bb2
D2

,b2
D3

= {(0, 1, 1), (1, 1, 1)},
Bb1

D1
,b1

D3
= {(0, 0, 0), (0, 1, 0)}, Bb2

D1
,b1

D3
= {(1, 0, 0), (1, 1, 0)}, Bb1

D1
,b2

D3
= {(0, 0, 1), (0, 1, 1)},

Bb2
D1

,b2
D3

= {(1, 0, 1), (1, 1, 1)}, Bb1
D1

,b1
D2

= {(0, 0, 0), (0, 0, 1)}, Bb2
D1

,b1
D2

= {(1, 0, 0), (1, 0, 1)}, Bb1
D1

,b2
D2

=

{(0, 1, 0), (0, 1, 1)}, and Bb2
D1

,b2
D2
={(1, 1, 0), (1, 1, 1)}. Furthermore, the sub-graph of Γ1(D) induced by the

vertices in the sets {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)} and {(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)} form k = 1
and k = 2 blocks, respectively (see Figure 4b). In addition, we have four different row sub-blocks, each formed by
the vertices in one of the following sets: Bb1

D2
,b1

D3
, Bb2

D2
,b1

D3
, Bb1

D2
,b2

D3
, and Bb2

D2
,b2

D3
(for a general outline, refer

to Figure A1b in Appendix A).

Some Lemmas

The following Lemmas A1–A5 state the characteristics of our proposed grouping of vertices of
a confusion graph Γt(D) in TSUIC. These are helpful to understand the construction of a confusion
graph and are used in the proofs of our results.

Lemma A1. Γt(D1) and any j-th row sub-block are isomorphic graphs.
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Proof. Let G be any j-th row sub-block. We know that any vertex in G has the same (bj
D2

, bk
D3
)

sub-labels, and all vertices of Γt(D) with the same (bj
D2

, bk
D3
) sub-label are included in the sub-block.

Thus, in G, any edge between its vertices is only due to the confusion at some receiver belonging
to V(D1) (corresponding to the change in bits of bi

D1
sub-label of the vertices). We know that

Γt(D1) has vertices V(Γt(D1)) = {(bi
D1
)}, and any edge between its vertices is due to the confusion

at some receiver belonging to V(D1). Observe that |V(Γt(D1))| = 2tn1 = |B
bj

D2
,bk

D3

| = |V(G)|.

Now (bi1
D1

, bi2
D1
) ∈ E(Γt(D1)) if ((bi1

D1
, bj

D2
, bk

D3
), (bi2

D1
, bj

D2
, bk

D3
)) ∈ E(G) and vice-versa. This is

because the edges are due to the confusion of the tuples, representing those vertices, at some receiver
belonging to V(D1). Consequently, Γt(D1) and G are isomorphic graphs.

We illustrate Lemma A1 by an example. Consider the TSUIC problem stated in Example 1. The
confusion graph of D1, Γ1(D1), has two vertices 0 and 1 connected by an edge as they are confused
at receiver 1. Observe that j ∈ {1, 2}. Now, any j-th row sub-block of Γ1(D) has two vertices
(0, bj

D2
, bk

D3
) and (1, bj

D2
, bk

D3
) connected by an edge as they are confused at receiver 1, and clearly, this

vertex-induced sub-graph is isomorphic to Γ1(D1).
In a similar way to the proof of Lemma A1, one can prove the following Lemma.

Lemma A2. Each pair of the following graphs are isomorphic: (i) Γt(D2) and any i-th column sub-block, (ii)
Γt(D3) and the sub-graph of Γt(D) induced by the vertices in B

bi
D1

,bj
D2

for any (bi
D1

, bj
D2
), and (iii) any k-th

block of a Γt(D) and D′, where D′ is an induced graph of D by the vertex set V(D) \V(D3).

Lemma A3. In two-sender graph coloring of any row sub-block, χ(Γt(D1)) is the minimum number of total
ordered pairs of colors required to color the sub-block, and the minimum number of colors associated with S1 and
S2 are χ(Γt(D1)) and one, respectively.

Proof. Let G be any j-th row sub-block. Observe that G includes all vertices of Γt(D) with the same
(bj

D2
, bk

D3
) sub-labels (due to our proposed method of grouping the vertices of Γt(D)). Thus, the edges

between the vertices of G are only due to the confusion at some receivers belonging to V(D1). From
Lemma 1, any pair of vertices of G connected by an edge must have different colors associated with
S1 and the same color associated with S2. Thus, the minimum number of colors associated with S2 is
one. From Lemma A1, G is isomorphic to Γt(D1), so the minimum number of colors associated with
S1 must be χ(Γt(D1)).

In a similar way to the proof of Lemma A3, one can prove the following Lemma.

Lemma A4. In two-sender graph coloring of any column sub-block, χ(Γt(D2)) is the minimum number of
total ordered pairs of colors required to color the sub-block, and the minimum number of colors associated with
S1 and S2 are one and χ(Γt(D2)), respectively.

Lemma A5. In two-sender graph coloring of the sub-graph of Γt(D) induced by the vertices in B
bi

D1
,bj

D2

for any

(bi
D1

, bj
D2
), the minimum number of total ordered pairs of colors required to color the vertex-induced sub-graph

is χ(Γt(D3)).

Proof. We know that Γt(D3) requires the minimum of χ(Γt(D3)) different colors in its coloring
in SSUIC. Thus, it has the minimum of χ(Γt(D3)) independent vertex sets. From Lemma A2,
the sub-graph of Γt(D) induced by the vertices in B

bi
D1

,bj
D2

is isomorphic to Γt(D3), so it has the

minimum of χ(Γt(D3)) independent vertex sets. In two-sender graph coloring, we assign each
independent vertex set a unique ordered pair of colors. Thus, the vertex-induced sub-graph requires
the minimum of χ(Γt(D3)) ordered pairs of colors.
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Appendix C. Proof of Proposition 1

Appendix C.1. An Example

Before proving Proposition 1, with the help of the following example, we provide an overview of
the construction of the confusion graph and its two-sender graph coloring, which after generalization
leads to the proof of Proposition 1.

Example A2. Consider a TSUIC problem (D, Go) of the following: (1|2), (2|1), (3|4), (4|3), and M1 =

{1, 3, 4},M2 = {2, 3, 4} with t = 1.

For D, we have f (D) = H15. Refer to Figure A4 for its confusion graph Γ1(D) whose vertices are
grouped according to our proposed method. Now, in detail, we illustrate the construction of Γ1(D)

and its two-sender graph coloring. These are used to derive βt=1(D, Go). For the problem, we have
V(D1) = {1}, V(D2) = {2}, and V(D3) = {3, 4}. Γ1(D) has 24 = 16 vertices labeled by all possible
realizations of a word with four bits; each one is represented by a unique (bi

D1
, bj

D2
, bk

D3
) label, where

i, j ∈ {1, 2}, k ∈ {1, 2, 3, 4}, sub-labels bi
D1

, bj
D2
∈ {0, 1} and bk

D3
∈ {00, 01, 10, 11}.

Before analyzing Γ1(D), for convenience, we define the following types of edges of Γt(D), for
any t ≥ 1:

Definition A4 (Inter-block edge and Intra-block edge). An edge between two vertices each belonging to a
different block (refer to Definition A1 in Appendix B) of Γt(D) (e.g., an edge between a vertex of the k1-th block
and a vertex of the k2-th block of Γt(D)) is called an inter-block edge, and an edge within the vertices of a block
of Γt(D) (e.g., an edge between any two vertices of the k-th block of Γt(D)) is called an intra-block edge.

1 2

3

1 2

3

D

Go

4

4

D1 D2

D3

(a)

(0,0,00) (1,0,00) (0,1,00) (1,1,00)

(0,0,10) (1,0,10) (0,1,10) (1,1,10)

(0,0,01) (1,0,01) (0,1,01) (1,1,01)

(0,0,11) (1,0,11) (0,1,11) (1,1,11)

Here,

(b1
D1

,b1
D2

,bk
D3

)

k = 1 block

(b2
D1

,b1
D2

,bk
D3

) (b1
D1

,b2
D2

,bk
D3

) (b2
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,b2
D2

,bk
D3

)

k = 2 block

k = 4 block
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(b)

Figure A4. (a) A given side-information digraph D such that f (D) = H15, and a source-constraint
graph Go; (b) the confusion graph Γ1(D), and its two-sender graph coloring (where each vertex is
assigned with an ordered pair of colors such that the first color is always associated with S1 and the
second color is always associated with S2). The edges are shown in color only for an illustration
purpose; it is not an edge coloring.
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Appendix C.1.1. Intra-Block Coloring

Now, consider the block with k = 1 (that is, the block with all vertices with the same b1
D3

label).
It has four vertices labeled by (0, 0, 00), (1, 0, 00), (0, 1, 00) and (1, 1, 00). One can find the intra-block
edges (due to confusion at some receivers in V(D1 ∪ D2)), and inter-block edges (due to confusion
at some receivers in V(D)) as shown in Figure A4. We observe that all the blocks are isomorphic to
each other. Now, we color Γ1(D) starting from the block with k = 1. We color similarly for any other
individual block. Consider its (j = 1)-th row sub-block (refer to Definition A3 in Appendix B for its
definition). It has two vertices (0, 0, 00) and (1, 0, 00). As these two tuples ((0, 0, 00) and (1, 0, 00))
are confused at receiver 1, so S1 must assign different colors, and S2 must assign the same color (by
Lemma 1). Say we assign (0, 0, 00)→ (RED, RED) and (1, 0, 00)→ (BLUE, RED). We color similarly
for each individual row sub-block (that is, the sub-block with all vertices with the same bj

D2
, bk

D3
labels).

Now, consider its (i = 1)-th column sub-block (refer to Definition A2 in Appendix B). It has two
vertices (0, 0, 00) and (0, 1, 00). As these two tuples ((0, 0, 00) and (0, 1, 00)) are confused at receiver 2,
so S2 must assign different colors, and S1 must assign the same color (by Lemma 2). Say we assign
(0, 0, 00)→ (RED, RED) and (0, 1, 00)→ (RED, BLUE). We color similarly for each individual column
sub-block. By carrying this way of coloring (as of the sub-blocks) to all the vertices of the block
with k = 1, altogether, we have the following: (0, 0, 00) → (RED, RED), (1, 0, 00) → (BLUE, RED),
(0, 1, 00)→ (RED, BLUE), and (1, 1, 00)→ (BLUE, BLUE). We say a two-sender graph coloring is the
best possible coloring if it corresponds to the minimum sum of the bits, which is required to uniquely
index the colors associated with each sender, in TSUIC. As |V(D1)| = 1, Γ1(D1) is a graph with
two vertices (labeled by 0 and 1) connected by an edge. Thus, χ(Γ1(D1)) = 2. Similarly, we get
χ(Γ1(D2)) = 2. Now, considering Lemmas A1–A4, and our proposed grouping of the vertices of
a confusion graph, one can get χ(Γ1(D1))× χ(Γ1(D2)) ordered pairs of colors in the best possible
coloring of a block of Γ1(D) in two-sender graph coloring. Thus, in any block, the four ordered pairs
of colors (two colors associated per sender) that we have assigned to the vertices of Γ1(D) is the best
possible coloring.

Appendix C.1.2. Inter-Block Coloring

We address the inter-block edges whilst coloring. We consider any two blocks, and perform
two-sender graph coloring. Firstly, consider the two blocks with k = 1 (all tuples having b1

D3
= 00) and

k = 2 (all tuples having b2
D3

= 10). Observe that these two tuples are confused at receiver 3. As receiver
3 does not have {x1, x2} in its side-information, any tuple of the block with k = 1 and any tuple of the
block with k = 2 is confused at receiver 3. Thus, every vertex of the block with k = 1 is connected to
each vertex of the block with k = 2 by an inter-block edge. Consequently, we do not need to consider
other inter-block edges due to confusions at some other receivers for this case. Now, during two-sender
graph coloring of these two blocks, we need to have two different ordered pairs of colors (one for each
block). Furthermore, as x3 is a common message to both senders, it suffices to have two completely
different color sets (each for one block) associated with one of the senders. In other words, one of the
senders can contribute additional colors to resolve these confusions (indicated by the inter-block edges
between the blocks with k equal to 1 and 2). For example, assume that S1 contributes the additional
colors to resolve the confusions (inter-block edges) between the vertices of these blocks. Now, we
have the following coloring for the vertices of the block with k = 2: (0, 0, 10) → (YELLOW, RED),
(1, 0, 10)→ (GREEN, RED), (0, 1, 10)→ (YELLOW, BLUE), and (1, 1, 10)→ (GREEN, BLUE).

Next, we consider the two blocks with k = 1 (all tuples having b1
D3

= 00) and k = 4 (all tuples
having b4

D3
= 11). Clearly, these blocks have no inter-block edges due to the confusion at receivers 3

and 4. The inter-block edges are due to the confusion at receivers 1 and 2, and one can see them as
shown in Figure A4. It is not difficult to verify that if we color the vertices of the block with k = 4
by the same coloring function done for the vertices of the block with k = 1, which is a function of
(bi

D1
, bj

D2
) sub-labels of the vertices, then the coloring is still valid. Thus, in order to color the vertices
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of the block with k = 4, we do not need any additional colors for senders than that assigned to the
vertices of the block with k = 1. Finally, we color similarly as above for the blocks with k equal to
2 and 3.

Now, observe Γ1(D), by assuming each block as one super-vertex, the edges that connect all
the vertices of one block to every vertex of another block, and vice versa (edges due to confusion at
some receivers in V(D3)) as a single super-edge connecting those two super-vertices, and neglect all
the inter-block edges due to the confusion at some receivers except receivers in V(D3), we see that
the resulting graph is Γ1(D3). Clearly, in two-sender graph coloring, we require χ(Γ1(D3)) times of
χ(Γ1(D1))× χ(Γ1(D2)) (which is required for each block) ordered pairs of colors in total, i.e., 2× 4 = 8
ordered pairs of colors, which means β1(D, Go) ≥ 3. The lower bound 3 is achievable by the coloring
scheme in Figure A4b.

Appendix C.2. Ingredients for the Proof

We prove the following five lemmas that are used to prove Proposition 1.

Lemma A6. For any k-th block of the confusion graph Γt(D) of a digraph D, χ(Γt(D1))× χ(Γt(D2)) is the
minimum ordered pairs of colors in two-sender graph coloring, where the number of colors associated with S1

and S2 are χ(Γt(D1)) and χ(Γt(D2)), respectively.

Proof. For any D, based on our proposed way of grouping the vertices of Γt(D) (see Appendix B),
we write all the vertices of any k-th block of Γt(D) in the following matrix form:

Bk =


(b1

D1
, b1

D2
, bk

D3
) (b2

D1
, b1

D2
, bk

D3
) . . . (b2tn1

D1
, b1

D2
, bk

D3
)

(b1
D1

, b2
D2

, bk
D3
) (b2

D1
, b2

D2
, bk

D3
) . . . (b2tn1

D1
, b2

D2
, bk

D3
)

...
...

. . .
...

(b1
D1

, b2tn2
D2

, bk
D3
) (b2

D1
, b2tn2

D2
, bk

D3
) . . . (b2tn1

D1
, b2tn2

D2
, bk

D3
)

 .

Bk provides a visualization of the arrangement of vertices in the k-th block. The coloring of any row
sub-block (one row of Bk provides the arrangement of its vertices) requires the minimum of χ(Γt(D1))

different colors associated with S1 and exactly one color associated with S2 (due to Lemma A3). Now,
considering the coloring function of S1, i.e., J1(bi

D1
, bk

D3
), the same coloring function must be applied to

all row sub-blocks of the block. Now, the coloring of any column sub-block (one column of Bk provides
the arrangement of its vertices) requires the minimum of χ(Γt(D2)) different colors associated with
S2 and exactly one color associated with S1 (due to Lemma A4). Similarly, considering the coloring
function of S2, i.e., J2(b

j
D2

, bk
D3
), the same coloring function must be applied to all column sub-blocks

of the block. Altogether, we get the minimum of χ(Γt(D1))× χ(Γt(D2)) ordered pairs of colors to
color a block of the confusion graph Γt(D) in two-sender graph coloring.

Lemma A7. Consider a two-sender graph coloring function Jo that properly colors the confusion graph Γt(D).
If there is no inter-block edge due to the confusion at some receiver in V(D3) between any blocks of Γt(D),
then Jo(bi

D1
, bj

D2
, b1

D3
) = Jo(bi

D1
, bj

D2
, b2

D3
) = · · · = Jo(bi

D1
, bj

D2
, b2tn3

D3
), for all i and j, is a valid two-sender

graph coloring.

Proof. We first prove the lemma considering any two blocks, say k1-th block and k2-th block. If there
is no inter-block edge due to the confusion at any receiver in V(D3) between the k1-th and k2-th blocks
of Γt(D), then we have two cases: (i) no inter-block edge and (ii) some inter-block edges due to the
confusion at some receivers in V(D1) ∪V(D2). In case (i), since k1-block and k2-block are isomorphic,
we can color a block by two-sender graph coloring, and keep the same copy of coloring in another block
(i.e., Jo(b

i1
D1

, bj1
D2

, bk1
D3
) = Jo(b

i1
D1

, bj1
D2

, bk2
D3
), ∀i1, j1). Now, for case (ii), suppose that there exists an edge
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((bi1
D1

, bj1
D2

, bk1
D3
), (bi2

D1
, bj2

D2
, bk2

D3
)) ∈ E(Γt(D)). Observe that k1 6= k2 because k1 and k2 are two different

blocks. Moreover, since the edge is due to the confusion at some receivers in V(D1) ∪ V(D2), we
must have (i1, j1) 6= (i2, j2). Now, if there exists the edge ((bi1

D1
, bj1

D2
, bk1

D3
), (bi2

D1
, bj2

D2
, bk2

D3
)), then there

must exist an edge ((bi1
D1

, bj1
D2

, bk1
D3
), (bi2

D1
, bj2

D2
, bk1

D3
)). This edge is between the vertices of the same

block, and the confusion must have already resolved by the coloring Jo. Thereby, Jo(bi
D1

, bj
D2

, bk1
D3
) =

Jo(bi
D1

, bj
D2

, bk2
D3
), ∀i, j, is a valid coloring.

Since the choice of k1 and k2 is arbitrary, a two-sender graph coloring of Γt(D) with
Jo(bi

D1
, bj

D2
, b1

D3
) = Jo(bi

D1
, bj

D2
, b2

D3
) = · · · = Jo(bi

D1
, bj

D2
, b2tn3

D3
), for all i and j, is a valid two-sender

graph coloring.

Lemma A8. For a digraph D having fully-participated interactions between its sub-digraphs D1, D2 and D3,
the confusion at some receivers in V(D1) does not contribute any inter-block edges in Γt(D) if D1 → D3 in
D (equivalently, (1, 3) ∈ A( f (D))), and the confusion at some receivers in V(D2) does not contribute any
inter-block edges in Γt(D) if D2 → D3 in D (equivalently, (2, 3) ∈ A( f (D))).

Proof. There is no edge due to the confusion at some receivers in V(D1) between any pair of vertices
((bi1

D1
, bj1

D2
, bk1

D3
), (bi2

D1
, bj2

D2
, bk2

D3
)), k1 6= k2 (for inter-block edges) because any vertex in V(D1) has

{xu : u ∈ V(D3)} in its side-information and the corresponding bk1
D3

and bk2
D3

labels of the two vertices
are different. This proves the first assertion. Repeating the same argument for D2, we get the second
assertion (for the case D2 → D3 in D).

Lemma A9. For any real numbers A and B, dA + Be = dAe+ dBe+ ε′, where ε′ ∈ {−1, 0}.

Proof. As we know that for any real number A, we have A ≤ dAe, and dAe − A < 1 (this implies
dAe < A + 1 or dAe − 1 < A). Thus, we get A ≤ dAe < A + 1. This is true for any other real number
A + B, so A + B ≤ dA + Be < A + B + 1. Altogether, we get

dAe+ dBe − 2 < A + B ≤ dA + Be < A + B + 1 ≤ dAe+ dBe+ 1

dAe+ dBe − 2 < dA + Be < dAe+ dBe+ 1. (A1)

There are only two integers in (dAe + dBe − 2, dAe + dBe + 1), and they are dAe + dBe − 1 and
dAe+ dBe, so dA + Be = dAe+ dBe+ ε′, where ε′ ∈ {−1, 0}.

Lemma A10. For any Γt(D), if a minimum of χ(Γt(D1))× χ(Γt(D2))× χ(Γt(D3)) ordered pairs of colors
are required in its two-sender graph coloring, then βt(D, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t, ε ∈
{−2,−1, 0}.

Proof. Let χ′(Γt(D3)) and χ′′(Γt(D3)) be the non-negative non-zero integer factors of χ(Γt(D3)),
and χ1(Γt(D3)) and χ2(Γt(D3)) be the best choice over all χ′(Γt(D3)) and χ′′(Γt(D3)), respectively,
such that the term dlog2(χ(Γt(D1))× χ′(Γt(D3)))e+ dlog2(χ(Γt(D2))× χ′′(Γt(D3)))e is minimized.
The colors associated with Si, i ∈ {1, 2}, is always an integer multiple of χ(Γt(Di)) whilst coloring
Γt(D) due to its symmetry. Thus, along with Lemmas 4 and A6, one can find that χ(Γt(D1)) ×
χ1(Γt(D3)) and χ(Γt(D2)) × χ2(Γt(D3)) are the colors associated with S1 and S2, respectively, in
order to produce a minimum of χ(Γt(D1))× χ(Γt(D2))× χ(Γt(D3)) ordered pairs of colors in the
two-sender graph coloring of Γt(D). Now, from Theorem 2, we get
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t× βt(D, Go)

= dlog2(χ(Γt(D1))× χ1(Γt(D3)))e+ dlog2(χ(Γt(D2))× χ2(Γt(D3)))e
= dlog2(χ(Γt(D1))) + log2(χ

1(Γt(D3)))e+ dlog2(χ(Γt(D2))) + log2(χ
2(Γt(D3)))e

= dlog2(χ(Γt(D1)))e+ dlog2(χ
1(Γt(D3)))e+ dlog2(χ(Γt(D2)))e+ dlog2(χ

2(Γt(D3)))e+ ε1

= dlog2(χ(Γt(D1)))e+ dlog2(χ(Γt(D2)))e+ dlog2(χ
1(Γt(D3))× χ2(Γt(D3)))e+ ε1 + ε2

βt(D, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t, (A2)

where ε1 ∈ {−2,−1, 0} and ε2 ∈ {0, 1} are obtained by using Lemma A9, and ε = (ε2 + ε1) ∈
{−2,−1, 0, 1}, βt(Dm) =

dlog2(
χ(Γt(Dm)))e

t , for m ∈ {1, 2, 3}. As we know that βt(D, Go) ≤ βt(D1) +

βt(D2) + βt(D3) (a simpler upper bound in TSUIC), the value of ε in (A2) cannot be greater than zero.
Thus, ε ∈ {−2,−1, 0}.

Appendix C.3. Proof of Proposition 1

Whilst constructing a confusion graph, we follow our proposed grouping of vertices of the
confusion graph described in Appendix B. For convenience, let D be denoted by Di if f (D) = Hi,
i ∈ {1, 16} (see Figure 3).

Appendix C.3.1. Construction and Coloring of Γt(D16)

We present the construction and two-sender graph coloring of Γt(D16), where D16 has the
fully-participated interactions between the sub-digraphs D1, D2 and D3.

(A) Construction of Γt(D16): All edges of Γt(D16) are listed in the following:

(i) Edges in E(Γt(D16)) due to the confusion at some vertices in V(D1): The confusion at any vertex
in V(D1) contributes to only intra-edges due to Lemma A8.

(ii) Edges in E(Γt(D16)) due to the confusion at some vertices in V(D2): The confusion at any vertex
in V(D2) contributes to only intra-edges due to Lemma A8.

(iii) Edges in E(Γt(D16)) due to the confusion at some vertices in V(D3): If there exists an edge due
to the confusion at some vertices in V(D3) between any vertex pair ((bi1

D1
, bj1

D2
, bk1

D3
),

(bi2
D1

, bj2
D2

, bk2
D3
)), then each of the vertices in the k1-th block has edges with all the vertices in

the k2-th block. This is because any vertex in V(D3) has no message requested by any vertex
in V(D1) ∪ V(D2) as its side-information. This results in no effect due to a change in bits of
bi

D1
or bj

D2
sub-label once we have an edge due to confusion at some receivers in V(D3), which

corresponds to the change in bits of the bk
D3

sub-label.

(B) Coloring of Γt(D16): In SSUIC, we know that the minimum numbers of colors required to color
D1, D2 and D3 separately are χ(Γt(D1)), χ(Γt(D2)) and χ(Γt(D3)), respectively. From Lemma A6,
in two-sender graph coloring, vertices in any k-th block of Γt(D16) are colored properly with the
minimum of χ(Γt(D1))× χ(Γt(D2)) ordered pairs of colors, where the minimum number of colors
associated with S1 and S2 are χ(Γt(D1)) and χ(Γt(D2)), respectively. Referring to the construction of
Γt(D16), the inter-block edges are solely due to the confusion at some vertices in V(D3) (from (i), (ii)
and (iii) of the construction), and if there exists an inter-block edge between any two vertices, the first
one belonging to k1-th block and the second one belonging to k2-th block, then we have edges from
every vertex of the k1-th block to all vertices of the k2-th block. This states that it is necessary to have
two different sets of ordered pairs of χ(Γt(D1))× χ(Γt(D2)) colors, one for each block if there is an
edge between these blocks. Furthermore, it is sufficient to consider the different color sets associated
with one of the senders for those blocks in order to obtain the different sets of χ(Γt(D1))× χ(Γt(D2))

ordered pairs of colors. As we require the minimum of χ(Γt(D3)) ordered pairs of colors to color
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vertices in any B
bi

D1
,bj

D2

(refer to Lemma A5), so the total number of minimum ordered pairs of colors

required to color Γt(D16) in two-sender graph coloring is χ(Γt(D1))× χ(Γt(D2))× χ(Γt(D3)). Now,
from Lemma A10, we get βt(D16, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t, where ε ∈ {−2,−1, 0}.

Appendix C.3.2. Construction and Coloring of Γt(D1)

We present the construction and two-sender graph coloring of Γt(D1). In contrast to D16 above,
D1 has no interaction between D1, D2 and D3. This results in extra edges, both intra-block and
inter-block edges, in Γt(D1) with respect to Γt(D16). We observe that one can build Γt(D1) on the top
of Γt(D16) by adding these extra edges.

(A) Construction of Γt(D1): The extra edges of Γt(D1) with respect to Γt(D16) are both intra-block
and inter-block edges.

(B) Coloring of Γt(D1): The extra intra-block edges do not change the requirements of ordered
pairs of colors in two-sender graph coloring of a block of Γt(D1) due to Lemma A6. Now, we address
the extra inter-block edges. For the extra inter-block edges in E(Γt(D1)) due to the confusion at some
vertices in V(D1) and V(D2) in two-sender graph coloring, we have the following: If there is no
inter-block edge due to the confusion at some vertices in V(D3), then we can do two-sender graph
coloring of these blocks as stated by Lemma A7. This implies that we can do two-sender graph coloring
of all these blocks by χ(Γt(D1)) × χ(Γt(D2)) ordered pairs of colors, where the minimum colors
associated with S1 and S2 are χ(Γt(D1)) and χ(Γt(D2)), respectively. As the vertex 3 has no out-going
arcs in both H1 and H16, the edges in E(Γt(D1)) due to the confusion at some vertices in V(D3) are
the same as of (iii) of the construction of Γt(D16). Thus, similar to the case of Γt(D16), referring to the
edges in E(Γt(D1)) due to the confusion at some vertices in V(D3), if any k1-th and k2-th blocks have
the inter-block edges (including all inter-block edges due to the confusion at some vertices in V(D1) ∪
V(D)), then it is necessary to have two different sets of ordered pairs of χ(Γt(D1))× χ(Γt(D2)) colors,
one for each block. Furthermore, it is sufficient to consider different color sets associated with one of the
senders for these blocks in order to achieve the necessary ordered pairs of colors. Altogether, a TSUIC
coloring of Γt(D1) can be done similar to D16 with the minimum of χ(Γt(D1))×χ(Γt(D2))×χ(Γt(D3))

ordered pairs of colors. Now, from Lemma A10, we get βt(D1, Go) = βt(D1) + βt(D2) + βt(D3) + ε/t,
ε ∈ {−2,−1, 0}. �

Appendix D. Proof of Theorem 6

For the problems in TSUIC, we prove this theorem by constructing a valid index code based on
single-sender index codes. Before starting proof, unless stated otherwise, we assume the following for
any vertex-induced sub-digraph Di′ , for some index i′ ∈ {1, 2, 3}, in SSUIC:

1. Let C(Di′) be an index code (linear or nonlinear,) having a codeword length of |C(Di′)| bits, for a
given t (message bits) that achieves βt(Di′). For convenience, we represent |C(Di′)| by `∗(C(Di′))

such that `∗(C(Di′)) = βt(Di′).
2. Let the sequence of bits in C(Di′) be (wi′

1 , wi′
2 , . . . , wi′

`∗(C(Di′ ))
), where wi′

m ∈ {0, 1}, m ∈
{1, 2, . . . , `∗(C(Di′))}.

3. Let C1(Di′) = (wi′
1 , wi′

2 , . . . , wi′
`∗1(C(Di′ ))

) and C2(Di′) = (wi′
`∗1(C(Di′ ))+1, wi′

`∗1(C(Di′ ))+2, . . . , wi′
`∗(C(Di′ ))

)

with |C2(Di′)| = `∗2(C(Di′)) be two parts of the sequence of bits of a codeword of C(Di′) such that
C(Di′) = (C1(Di′), C2(Di′)) with `∗(C(Di′)) = `∗1(C(Di′)) + `∗2(C(Di′)).

4. For any two codes C(Di′) and C(Dj′) with codeword lengths of `∗(C(Di′)) and `∗(C(Dj′))

bits, respectively, C(Di′) ⊕ C(Dj′) refers to the bit-wise XOR of bits of C(Di′) and C(Dj′)

with zero padding if `∗(C(Di′)) 6= `∗(C(Dj′)). This means C(Di′) ⊕ C(Dj′) contains
max{`∗(C(Di′)), `∗(C(Dj′))} bits. For example, if C(Di′) = (101) and C(Dj′) = (001101), then
C(Di′)⊕ C(Dj′) = (101000)⊕ (001101) = (100101).
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(First, case: βt(D, Go) = βt(D3) if βt(D3) ≥ βt(D1) + βt(D2)) The given condition βt(D3) ≥
βt(D1) + βt(D2) implies that |C(D3)| ≥ |C(D1)|+ |C(D2)| (i.e., `∗(C(D3)) ≥ `∗(C(D1)) + `∗(C(D2)))
for a finite t. Now, in TSUIC, we propose that S1 transmits C1 = C1(D3)⊕ C(D1) of `∗1(C(D3)) =

`∗(C(D1)) bits, and S2 transmits C2 = C2(D3) ⊕ C(D2) of `∗2(C(D3)) bits because `∗2(C(D3)) ≥
`∗(C(D2)) as we have `∗(C(D3)) ≥ `∗(C(D1))+ `∗(C(D2)) and `∗1(C(D3)) = `∗(C(D1)). Each receiver
receives (`∗1(C(D3)) + `∗2(C(D3)))-bit (C1, C2). Now, the decoding is done in the following way: (i)
All the vertices in V(D1) will decode their requested messages from C1 and its side-information
that also includes {xi : i ∈ V(D3)} (as there is a fully-participated D1 → D3 in D), (ii) all
the vertices in V(D2) will decode their requested messages from C2 and its side-information that
also includes {xi : i ∈ V(D3)} (as there is a fully-participated D2 → D3 in D), and (iii) all the
vertices in V(D3) will decode their requested messages from (C1, C2) and its side-information that
also includes {xi : i ∈ V(D1) ∪ V(D2)} (as there is fully-participated D3 → (D1 ∪ D2) in D).
Thus, (`∗1(C(D3)) + `∗2(C(D3)))-bit (C1, C2) is a valid index code in TSUIC for this case, and

βt(D, Go) ≤ (`∗1(C(D3)) + `∗2(C(D3)))/t = `∗(C(D3))/t = βt(D3). (A3)

In SSUIC, βt(D) ≥ βt(D3) because D3 is a sub-graph of D. Now, in TSUIC,

βt(D, Go) ≥ βt(D) ≥ βt(D3). (A4)

From (A3) and (A4), we have βt(D, Go) = βt(D3).
(Second case: βt(D, Go) = βt(D1) + βt(D2) if βt(D3) ≤ βt(D1) + βt(D2)) The given condition

βt(D3) ≤ βt(D1) + βt(D2) implies that |C(D3)| ≤ |C(D1)| + |C(D2)|. Now, we have the
following three sub-cases: (i) |C(D3)| ≥ max{|C(D1)|, |C(D2)|}, (ii) |C(D3)| ≤ |C(D1)|, and (iii)
|C(D3)| ≤ |C(D2)|. For these sub-cases, we propose the following:

(Sub-case (i): |C(D3)| ≥ max{|C(D1)|, |C(D2)|}) S1 transmits C1 = C1(D3) ⊕ C(D1) of
`∗1(C(D3)) = `∗(C(D1)) bits, and S2 transmits C2 = C2(D3) ⊕ C(D2) of `∗(C(D2)) bits because
`∗(C(D2)) ≥ `∗2(C(D3)) as we have `∗(C(D3)) ≤ `∗(C(D1)) + `∗(C(D2)) and `∗1(C(D3)) = `∗(C(D1)).
Each receiver receives (`∗(C(D1)) + `∗(C(D2)))-bit (C1, C2). Now, one can verify that the decoding is
done in the same way as stated in the first case. Thus, (`∗(C(D1)) + `∗(C(D2)))-bit (C1, C2) is a valid
index code in TSUIC for this sub-case.

(Sub-case (ii): |C(D3)| ≤ |C(D1)|) S1 transmits C1 = C(D3)⊕ C(D1) of `∗(C(D1)) bits (because
`∗(C(D3)) ≤ `∗(C(D1))), and S2 transmits C2 = C(D2) of `∗(C(D2)) bits. Now, the decoding is
done in the following way: (i) All the vertices in V(D1) will decode their requested messages from
C1 and its side-information that also includes {xi : i ∈ V(D3)} (as there is a fully-participated
D1 → D3 in D), (ii) all the vertices in V(D2) will decode their requested messages from C2 and its
side-information, and (iii) all the vertices in V(D3) will decode their requested messages from C1 and
its side-information that also includes {xi : i ∈ V(D1)} (as there is a fully-participated D3 → D1 in D).
Thus, (`∗(C(D1)) + `∗(C(D2)))-bit (C1, C2) is a valid encoding in TSUIC for this sub-case.

(Sub-case (iii): |C(D3)| ≤ |C(D2)|) As we have a fully-participated D3 → (D1 ∪ D2) in D, so by
swapping D1 and D2 (meaning we swap the two senders) in the sub-case (ii), one can prove that
(`∗(C(D1)) + `∗(C(D2)))-bit (C1, C2) is a valid index code in TSUIC for this sub-case.

Altogether for the second case,

βt(D, Go) ≤ (`∗(C(D1)) + `∗(C(D2)))/t = βt(D1) + βt(D2). (A5)

By considering βt(D, Go) ≥ βt(D1) + βt(D2) (by Lemma 6) and (A5), we get βt(D, Go) = βt(D1) +

βt(D2).
Now, combining these two cases (First, and Second cases), we get

βt(D, Go) = max{βt(D3), βt(D1) + βt(D2)}. (A6)
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Now, taking a limit t→ ∞ on both sides of (A6), we get

lim
t→∞

βt(D, Go) = lim
t→∞

max{βt(D3), βt(D1) + βt(D2)}

lim
t→∞

βt(D, Go) = max{ lim
t→∞

βt(D3), lim
t→∞

(βt(D1) + βt(D2))}. (A7)

We know that β = inf
t

βt = lim
t→∞

βt (by Definition 3), and “a limit of a finite sum of functions equals the sum

of the limit of each functions, if the limit of each function exists,” so we get β(D, Go) = max{β(D3), β(D1) +

β(D2)} from (A7). �

Appendix E. Proof of Theorem 7

For the problems in TSUIC, we prove this theorem by constructing a valid index code based on
single-sender index codes. Refer to the first paragraph of Appendix D for notations.

In TSUIC, we propose that S1 transmits C1 = C(D1)⊕ C(D3) consisting of max{`∗(C(D1)),
`∗(C(D3))} bits, and S2 transmits C2 = C(D2) of `∗(C(D2)) bits. Each receiver receives (`∗(C(D2)) +

max{`∗(C(D1)), `∗(C(D3))})-bit (C1, C2). Now, the decoding is done in the following way: (i) All
the vertices in V(D1) will decode their requested messages from C1 and its side-information that
also includes {xi : i ∈ V(D3)} (as there is a fully-participated D1 → D3 in D), (ii) all the vertices
in V(D2) will decode their requested messages from C2 and its side-information, and (iii) all the
vertices in V(D3) will decode their requested messages from C1 and its side-information that also
includes {xi : i ∈ V(D1)} (as there is a fully-participated D3 → D1 in D). Thus, (`∗(C(D2)) +

max{`∗(C(D1)), `∗(C(D3))})-bit (C1, C2) is a valid index code in TSUIC for this case, and

βt(D, Go) ≤
1
t
(`∗(C(D2)) + max{`∗(C(D1)), `∗(C(D3))}) = βt(D2) + max{βt(D1), βt(D3)}. (A8)

Now, by Lemma 6, we have βt(D, Go) ≥ βt(D1) + βt(D2), and from (A8), if βt(D1) ≥ βt(D3), then
βt(D, Go) ≤ βt(D1) + βt(D2). Altogether, we get βt(D, Go) = βt(D1) + βt(D2).

For the sub-digraph Dj′ , j′ ∈ {1, 2, 3}, we know that there exists an index code C(Dj′) of `∗(C(Dj′))

bits such that `∗(C(Dj′))/t tends to β(Dj′) if t→ ∞, and for any t ≥ 1, β(Dj′) ≤ `∗(C(Dj′))/t. Thus,
we write `∗(C(Dj′))/t = β(Dj′) + εt(Dj′), for some εt(Dj′) ≥ 0 such that εt(Dj′) tends to zero if
message length t tends to infinity. For D, considering the same code formation, which is a valid
two-sender index code, as stated for the cases considering the finite message length, we get S1 and S2

transmitting sub-codewords of max{`∗(C(D1)), `∗(C(D3))} and `∗(C(D2)) bits, respectively. For any
t ≥ 1, there exists a two-sender index code of the following bit length:

p1 + p2 = max{`∗(C(D1)), `∗(C(D3))}+ `∗(C(D2)).

Now, dividing both sides by t in the above equation, we get

p1 + p2

t
= max{`∗(C(D1))/t, `∗(C(D3))/t}+ `∗(C(D2))/t

= max{β(D1) + εt(D1), β(D3) + εt(D3)}+ β(D2) + εt(D2), (A9)

where εt(Dj′) ≥ 0 for j′ ∈ {1, 2, 3}. For any j′ ∈ {1, 2, 3}, as εt(Dj′)→ 0 for t→ ∞, we get

β(D, Go) ≤ lim
t→∞

(p1 + p2)/t = max{β(D1), β(D3)}+ β(D2). (A10)

Alternatively, we can get (A10) by taking a limit t→ ∞ on both sides of (A8) because β = lim
t→∞

βt (by

Definition 3).
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Clearly, if β(D1) ≥ β(D3), then from (A10), we get

β(D, Go) ≤ β(D1) + β(D2). (A11)

Now, from Lemma 6 and (A11), we get β(D, Go) = β(D1) + β(D2) if β(D1) ≥ β(D3). �

Appendix F. Proof of Theorem 8

Proof. For the problems in TSUIC, we prove this theorem by constructing a valid index code based on
single-sender index codes. Refer to the first paragraph of Appendix D for notations.

In TSUIC, we propose that S1 transmits C1 = C(D1)⊕ C(D3) of max{`∗(C(D1)), `∗(C(D3))} bits,
and S2 transmits C2 = C(D2) ⊕ C(D3) of max{`∗(C(D2)), `∗(C(D3))} bits. Each receiver receives
(max{`∗(C(D1)), `∗(C(D3))}+ max{`∗(C(D2)), `∗(C(D3))})-bit (C1, C2). Now, the decoding is done
in the following way: (i) All the vertices in V(D1) will decode their requested messages from C1 ⊕ C2

and its side-information that also includes {xi : i ∈ V(D2)} (as there is a fully-participated D1 → D2

in D), (ii) if f (D) ∈ {Hi′ : i′ ∈ {33, 34, 35}}, all the vertices in V(D2) will decode their requested
messages from C1 ⊕ C2 and its side-information that also includes {xi : i ∈ V(D1)} (as there is a
fully-participated D2 → D1 in D), and if f (D) = H36, all the vertices in V(D2) will decode their
requested messages from C2 and its side-information that also includes {xi : i ∈ V(D3)} (as there is a
fully-participated D2 → D3 in D), (iii) all the vertices in V(D3) will decode their requested messages
from C1 and its side-information that also includes {xi : i ∈ V(D1)} (as there is a fully-participated
D3 → D1 in D). Thus, (max{`∗(C(D1)), `∗(C(D3))}+ max{`∗(C(D2)), `∗(C(D3))})-bit (C1, C2) is a
valid index code in TSUIC for this case, and

βt(D, Go) ≤ (max{`∗(C(D1)), `∗(C(D3))}+ max{`∗(C(D2)), `∗(C(D3))})/t

≤ max{βt(D1), βt(D3)}+ max{βt(D2), βt(D3)}. (A12)

Now, if βt(D3) ≤ min{βt(D1), βt(D2)}, from (A12), we get βt(D, Go) ≤ βt(D1) + βt(D2).
From Lemma 6, we have βt(D, Go) ≥ βt(D1) + βt(D2). Thus, βt(D, Go) = βt(D1) + βt(D2) if
βt(D3) ≤ min{βt(D1), βt(D2)}.

Now, by taking a limit t→ ∞ on both sides of (A12), we get

lim
t→∞

βt(D, Go) ≤ lim
t→∞

max{βt(D1), βt(D3)}+ lim
t→∞

max{βt(D2), βt(D3)}

β(D, Go) ≤ max{β(D1), β(D3)}+ max{β(D2), β(D3)}. (A13)

This is because β = lim
t→∞

βt (by Definition 3). Now, from (A13), we get β(D, Go) ≤ β(D1) + β(D2)

if β(D3) ≤ min{β(D1), β(D2)}, and β(D, Go) ≥ β(D1) + β(D2) from Lemma 6. Thus, β(D, Go) =

β(D1) + β(D2) if β(D3) ≤ min{β(D1), β(D2)}.

Appendix G. Proof of Proposition 4

Before proving Proposition 4, we have the following lemmas related to row and column sub-blocks
of any k-th block, k ∈ {1, 2, . . . , 2tnN′+1}.

Lemma A11. For any row sub-block of a k-th block, the minimum number of N′-tuples of colors required to
color it in SMSUIC is χ(Γt(D1))× 1× . . .× 1, where the minimum colors associated with S1 and remainder
senders are χ(Γt(D1)) and one each, respectively.

Proof. Based on our proposed grouping of vertices (also see Figure A2), any row sub-block of a
k-th block consists of vertices labeled by all (bi1

D1
, bi2

D2
, bi3

D3
, . . . , biN′

DN′
, bk

DN′+1
), ij ∈ {1, 2, . . . , 2tnj} for

j ∈ {1, 2, . . . , N′}, with the same (bi2
D2

, bi3
D3

, . . . , biN′
DN′

, bk
DN′+1

) sub-labels. Clearly, the edges in the row
sub-block are only due to the confusion at vertices in V(D1), so S1 colors differently if there is any
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confusion, and any sender Sj, j 6= 1, provides the same color to all vertices of the row sub-block.
Moreover, observe that any row sub-block and Γt(D1) are isomorphic graphs (one can extend the proof
of Lemma A1 to get this result). The proof completes by noting that any Sj, j ∈ {1, 2, . . . , N′}, requires

a minimum of χ(Γt(Dj)) colors to color a confusion graph Γt(Dj) whose vertices are labeled by b
ij
Dj

,

ij ∈ {1, 2, . . . , 2tnj}.

Lemma A12. For any column sub-block of a k-th block, the minimum number of N′-tuples of colors required to
color it in SMSUIC is 1× χ(Γt(D2))× χ(Γt(D3))× . . .× χ(Γt(DN′)), where the minimum colors associated
with S1 and Sj are one and χ(Γt(Dj)), respectively, for all j ∈ {2, 3, . . . , N′}.

Proof. Based on our proposed grouping of vertices, any column sub-block of a k-th block consists
of vertices labeled by all (bi1

D1
, bi2

D2
, bi3

D3
, . . . , biN′

DN′
, bk

DN′+1
), ij ∈ {1, 2, . . . , 2tnj} for j ∈ {1, 2, . . . , N′},

with the same bi1
D1

and bk
DN′+1

sub-labels. As a result, the edges in the column sub-block are only

due to the confusion at some vertex in
⋃N′

i=2 V(Di), and S1 assigns the same color to all vertices in the
sub-block. Now, for any sender Sj, j ∈ {2, 3, . . . , N′}, the message tuples associated with all sub-labels

(bi1
D1

, bi2
D2

, bi3
D3

, . . . , biN′
DN′

, bk
DN′+1

) except b
ij
Dj

are “DON’T CARE” since all bi1
D1

, bi2
D2

, bi3
D3

, . . . , biN′
DN′

sub-labels are associated only with private messages, and bk
DN′+1

, which is associated with common
messages, is same for all vertices of the k-th block. Thus, Sj colors any two or more vertices

with the same b
ij
Dj

but with different other sub-labels in the sub-block with the same color. For

example, S2 assigns the same color to the vertices labeled by (b1
D1

, bi2
D2

, b1
D3

, . . . , b1
DN′

, bk
DN′+1

),

(b2
D1

, bi2
D2

, b2
D3

, . . . , b2
DN′

, bk
DN′+1

) and (b3
D1

, bi2
D2

, b3
D3

, . . . , b3
DN′

, bk
DN′+1

) for some i2. Furthermore, it
is the only sender that can resolve the confusion by assigning different colors if there is confusion

of the tuples associated with b
ij
Dj

, j ∈ {1, 2, . . . , N′}. Clearly, for any column sub-block, the coloring

function of Sj depends on the message tuples associated only to the sub-label b
ij
Dj

, ij ∈ {1, 2, . . . , 2tnj}.
Note that any Sj, j ∈ {1, 2, . . . , N′} requires a minimum of χ(Γt(Dj)) colors to color a confusion graph

Γt(Dj) whose vertices are labeled by b
ij
Dj

, ij ∈ {1, 2, . . . , 2tnj}. Along with the proposed grouping
of vertices (see Figure A2), altogether, for any column sub-block, each Sj requires a minimum of
χ(Γt(Dj)) colors. In SMSUIC, for any column sub-block, if any two vertices are connected by an edge
due to the confusion of the message tuples associated with the following: (i) Only with sub-label

b
ij
Dj

, then the sender Sj assigns different colors in the color tuples of those vertices, and (ii) more

than two sub-labels (for example bi2
D2

and bi3
D3

), then all the associated senders (for example both S2

and S3) assign different colors in the color tuples of those vertices. This is because the confusion of
the message tuples associated with the sub-labels of those vertices occurred at different sub-labels
related only to private messages. Overall, considering the symmetry of the column sub-block, the
minimum of 1× χ(Γt(D2))× χ(Γt(D3))× . . .× χ(Γt(DN′)) N′-tuples of colors is required to color it
in MSUIC, where the minimum colors associated with S1 and Sj are one and χ(Γt(Dj)), respectively,
for all j ∈ {2, 3, . . . , N′}.

Lemma A13. For any k-th block, the minimum number of N′-tuples of colors required to color it in MSUIC is
χ(Γt(D1))× χ(Γt(D2))× χ(Γt(D3))× . . .× χ(Γt(DN′)).

Proof. Consider any two different i1-th and i′1-th column sub-blocks of a k-th block, where i1, i′1 ∈
{1, 2, . . . , 2tn1}. Observe that these two column sub-blocks are isomorphic, and the vertices of
these two sub-blocks have different bi1

D1
sub-labels such that any i1-th sub-block has vertices

labeled by all (bi1
D1

, bi2
D2

, bi3
D3

, . . . , biN′
DN′

, bk
DN′+1

), ij ∈ {1, 2, . . . , 2tnj} for j ∈ {2, . . . , N′}, with the

same bi1
D1

sub-label. Assume that we properly color i1-th column sub-block with a minimum of
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1× χ(Γt(D2))× χ(Γt(D3))× . . .× χ(Γt(DN′)) N′-tuples of colors in multi-sender graph coloring (by
Lemma A12). Now, we keep the same coloring functions of all Sj, j ∈ {2, . . . , N′} that operate in i1-th
column sub-block to i′1-th column sub-block. Considering our proposed grouping of the vertices, its
symmetry, and the above observation, this is a valid multi-sender graph coloring of all Sj for those
two column sub-blocks. Moreover, S1 is the only one sender that provides different colors if there is
confusion at some vertices in V(D1) (where the confusion is associated with the sub-labels bi1

D1
and

bi′1
D1

), and once any coloring function of Sj, j ∈ {2, 3, . . . , N′} resolves the confusion at vertices in V(Dj)

within one column sub-block, then it also resolves the confusion at vertices in V(Dj) belonging to
the different column sub-blocks. For example, if a vertex u in i1-th column sub-block is connected by
an edge to a vertex v′ in i′1-th column sub-block due to the confusion at a vertex in V(Dj), then u is

also connected to another vertex v present in i1-th column with the same sub-label b
ij
Dj

as of v′. The
confusion is resolved by our assumption in any i1-th column, so it must be true for the two column
sub-blocks as we repeat the same coloring function of all Sj, j ∈ {2, 3, . . . , N′} to both the column
sub-blocks.

Now, for sender S1, whilst coloring in MSUIC, it assigns the same color to all vertices of a column
sub-block as it has the same bi1

D1
sub-label. If we consider all column sub-blocks of the block, then

S1 properly colors with a minimum of χ(Γt(D1)) colors (from Lemma A11). Altogether, χ(Γt(D1))

times the N′-tuples of colors required to color one column sub-block, i.e., χ(Γt(D1))× χ(Γt(D2))×
χ(Γt(D3))× . . .× χ(Γt(DN′)) is the minimum number of N′-tuples of colors required to color a block
in SMSUIC.

Let D with f (D) = H′1 and f (D) = H′16 be denoted by D1
M and D16

M , respectively. Based on our
proposed grouping of vertices of Γt(D16

M ), observe that any block has all vertices with the same label
bk

DN′+1
, and this label only changes when block changes. This is exactly the same case as in TSUIC

(where bk
D3

changes when block changes). Now, along with the consideration of the grouping of
vertices, their symmetry, and Lemma A13, one can construct and color Γt(D16

M ) similar to Γt(D16),
and Γt(D1

M) similar to Γt(D1) stated in the proof of Proposition 1 in Appendix C. This results in the
following lemma.

Lemma A14. For any Γt(D16
M ) or Γt(D1

M), the minimum number of N′-tuples of colors required to color it in
SMSUIC is χ(Γt(D1))× χ(Γt(D2))× χ(Γt(D3))× . . .× χ(Γt(DN′))× χ(Γt(DN′+1)).

Similar to the proof of Lemma A10, by utilizing Lemma A14, it is not difficult to prove the
following lemma:

Lemma A15. For any Γt(D), if χ(Γt(D1))×χ(Γt(D2))×χ(Γt(D3))× . . .×χ(Γt(DN′))×χ(Γt(DN′+1))

N′-tuples of colors required in SMSUIC, then βt(D, Go) = ∑N′+1
i=1 βt(Di) + ε/t for some ε ∈

{−N′,−N′ + 1, . . . , 0}.

Now, the proof of Proposition 4 follows from Lemmas A14 and A15.

References

1. Birk, Y.; Kol, T. Informed-source coding-on-demand (ISCOD) over broadcast channels. Proc. IEEE INFOCOM
1998, 3, 1257–1264.

2. Birk, Y.; Kol, T. Coding on demand by an informed source (ISCOD) for efficient broadcast of different
supplemental data to caching clients. IEEE Trans. Inf. Theory 2006, 52, 2825–2830.

3. Bar-Yossef, Z.; Birk, Y.; Jayram, T.S.; Kol, T. Index Coding With Side Information. IEEE Trans. Inf. Theory
2011, 57, 1479–1494.

4. Blasiak, A.; Kleinberg, R.; Lubetzky, E. Broadcasting With Side Information: Bounding and Approximating
the Broadcast Rate. IEEE Trans. Inf. Theory 2013, 59, 5811–5823.



Entropy 2019, 21, 615 39 of 40

5. Rouayheb, S.E.; Sprintson, A.; Georghiades, C. On the index coding problem and its relation to network
coding and matroid theory. IEEE Trans. Inf. Theory 2010, 56, 3187–3195.

6. Maleki, H.; Cadambe, V.R.; Jafar, S.A. Index Coding—An Interference Alignment Perspective. IEEE Trans.
Inf. Theory 2014, 60, 5402–5432.

7. Arbabjolfaei, F.; Bandemer, B.; Kim, Y.H.; Sasoglu, E.; Wang, L. On the capacity region for index coding.
In Proceedings of the 2013 IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey,
7–12 July 2013; pp. 962–966.

8. Arbabjolfaei, F.; Kim, Y.H. Structural properties of index coding capacity using fractional graph theory.
In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China,
14–19 June 2015; pp. 1034–1038.

9. Tahmasbi, M.; Shahrasbi, A.; Gohari, A. Critical Graphs in Index Coding. IEEE J. Sel. Areas Commun. 2015,
33, 225–235.

10. Shanmugam, K.; Dimakis, A.G.; Langberg, M. Local graph coloring and index coding. Proc. IEEE Int. Symp.
Inf. Theory (ISIT) 2013, 1152–1156, doi:10.1109/ISIT.2013.6620407.

11. Ong, L. Optimal Finite-Length and Asymptotic Index Codes for Five or Fewer Receivers. IEEE Trans. Inf.
Theory 2017, 63, 7116–7130.

12. Thapa, C.; Ong, L.; Johnson, S.J. Interlinked Cycles for Index Coding: Generalizing Cycles and Cliques.
IEEE Trans. Inf. Theory 2017, 63, 3692–3711.

13. Thapa, C.; Ong, L.; Johnson, S.J. Corrections to Interlinked Cycles for Index Coding: Generalizing Cycles
and Cliques. IEEE Trans. Inf. Theory 2018, 64, 6460.

14. Shanmugam, K.; Golrezaei, N.; Dimakis, A.G.; Molisch, A.F.; Caire, G. FemtoCaching: Wireless Content
Delivery Through Distributed Caching Helpers. IEEE Trans. Inf. Theory 2013, 59, 8402–8413.

15. Rouayheb, S.E.; Sprintson, A.; Sadeghi, P. On coding for cooperative data exchange. Proc. IEEE Inf. Theory
Workshop (ITW) 2010, 1–5, doi:10.1109/ITWKSPS.2010.5503135.

16. Ong, L.; Ho, C.K.; Lim, F. The Single-Uniprior Index-Coding Problem: The Single-Sender Case and the
Multi-Sender Extension. IEEE Trans. Inf. Theory 2016, 62, 3165–3182.

17. Thapa, C.; Ong, L.; Johnson, S.J. Graph-Theoretic Approaches to Two-Sender Index Coding. Proc. IEEE
Globecom Workshops 2016, 1–6, doi:10.1109/GLOCOMW.2016.7848917.

18. Chaudhry, M.A.R.; Asad, Z.; Sprintson, A.; Langberg, M. On the complementary Index Coding problem.
Proc. IEEE Int. Symp. Inf. Theory (ISIT) 2011, 224–248, doi:10.1109/ISIT.2011.6034005.

19. Neely, M.J.; Tehrani, A.S.; Zhang, Z. Dynamic Index Coding for Wireless Broadcast Networks. IEEE Trans.
Inf. Theory 2013, 59, 7525–7540.

20. Sadeghi, P.; Arbabjolfaei, F.; Kim, Y.H. Distributed Index Coding. Proc. IEEE Inf. Theory Workshop (ITW)
2016, 330–334, doi:10.1109/ITW.2016.7606850.

21. Liu, Y.; Sadeghi, P.; Arbabjolfaei, F.; Kim, Y.H. On the Capacity for Distributed Index Coding. Proc. IEEE Int.
Symp. Inf. Theory (ISIT) 2017, 3055–3059, doi:10.1109/ISIT.2017.8007091.

22. Li, M.; Ong, L.; Johnson, S.J. Improved Bounds for Multi-Sender Index Coding. Proc. IEEE Int. Symp. Inf.
Theory (ISIT) 2017, 3060–3064, doi:10.1109/ISIT.2017.8007092.

23. Li, M.; Ong, L.; Johnson, S.J. Cooperative Multi-Sender Index Coding. IEEE Trans. Inf. Theory 2019,
65, 1725–1739.

24. Li, M.; Ong, L.; Johnson, S.J. Multi-Sender Index Coding for Collaborative Broadcasting: A
Rank-Minimization Approach. IEEE Trans. on Comm. 2019, 67, 1452–1466.

25. Wan, K.; Tuninetti, D.; Ji, M.; Caire, G.; Piantanida, P. Fundamental Limits of Decentralized Data Shuffling.
2019. Available online: https://arxiv.org/pdf/1807.00056.pdf (accessed on 7 June 2019).

26. Porter, A.; Wootters, M. Embedded Index Coding. 2019. Available online: https://arxiv.org/pdf/1904.
02179.pdf (accessed on 7 June 2019).

27. Arbabjolfaei, F. Index Coding: Fundamental Limits, Coding Schemes, and Structural Properties.
Ph.D. Dissertation, University of California, San Diego, CA, USA, 2017.

28. Alon, N.; Hassidim, A.; Lubetzky, E.; Stav, U.; Weinstein, A. Broadcasting with side information.
In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, Philadelphia,
PA, USA, 25–28 October 2008; pp. 823–832.

29. Thapa, C.; Ong, L.; Johnson, S.J. Structural Characteristics of Two-Sender Index Coding. 2017. Available
online: https://arxiv.org/pdf/1711.08150v1.pdf (accessed on 8 February 2019).

https://arxiv.org/pdf/1807.00056.pdf
https://arxiv.org/pdf/1904.02179.pdf
https://arxiv.org/pdf/1904.02179.pdf
https://arxiv.org/pdf/1711.08150v1.pdf


Entropy 2019, 21, 615 40 of 40

30. Arunachala, C.; Rajan, B.S. Optimal Scalar Linear Index Codes for Three Classes of Two-Sender Unicast
Index Coding Problem. 2018. Available online: https://arxiv.org/pdf/1804.03823.pdf (accessed on 18
January 2019).

31. Arunachala, C.; Aggarwal, V.; Rajan, B.S. Optimal Linear Broadcast Rates of the Two-Sender Unicast Index
Coding Problem with Fully-Participated Interactions. 2018. Available online: https://arxiv.org/pdf/1808.
09775.pdf (accessed on 18 January 2019).

32. Arunachala, C.; Aggarwal, V.; Rajan, B.S. On the Optimal Broadcast Rate of the Two-Sender Unicast Index
Coding Problem with Fully-Participated Interactions. 2018. Available online: https://arxiv.org/pdf/1809.
08116.pdf (accessed on 18 January 2019).

33. Fekete, M. Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen
Koeffizienten. Math. Z. 1923, 17, 228–249.

34. Arbabjolfaei, F.; Kim, Y.H. On Critical Index Coding Problems. In Proceedings of the 2015 IEEE Information
Theory Workshop - Fall (ITW), Jeju Island, Korea, 11–15 October 2015; pp. 9–13.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/pdf/1804.03823.pdf
https://arxiv.org/pdf/1808.09775.pdf
https://arxiv.org/pdf/1808.09775.pdf
https://arxiv.org/pdf/1809.08116.pdf
https://arxiv.org/pdf/1809.08116.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Prior Works
	Our Work and Contributions

	Problem Definitions and Graphical Representation
	Problem Setup
	Representation of the Receivers' Side-Information and the Senders' Message Setting in TSUIC Problems

	A New Way of Classifying TSUIC Problems and Main Results
	Interactions between  D1 ,  D2  and  D3 
	A Compact Representation of Interactions
	A Classification of the Interactions
	Main Results

	Confusion Graphs and Their Coloring
	Confusion Graphs
	A Review of Confusion Graph Coloring for SSUIC
	Proposed Confusion Graph Coloring for TSUIC
	A Few Lemmas for the TSUIC Confusion Graph Coloring

	The Optimal Broadcast Rate for TSUIC
	Lower Bounds
	Optimal Broadcast Rates for CASE I and CASE II-A: The Arcs between  D1 ,  D2  and  D3  Are Not Critical in Asymptotic Regime in the Message Size
	Optimal Broadcast Rates for CASE II-B
	Optimal Broadcast Rates for CASE II-C: An Upper Bound, and Special Cases Where the Upper Bound Is Tight
	Optimal Broadcast Rates for CASE II-D

	Generalizing the Results of Some Classes of TSUIC Problems to Multiple Senders
	Discussion
	Concluding Remarks and Open Problems
	
	Proposed Grouping of the Vertices of t(D) and Its Characteristics
	Proof of Proposition 1
	An Example
	Intra-Block Coloring
	Inter-Block Coloring

	Ingredients for the Proof
	Proof of Proposition 1
	Construction and Coloring of  t(D16) 
	Construction and Coloring of  t(D1) 


	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Proposition 4
	References

