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Abstract: Multi-label feature selection is an important task for text categorization. This is because it
enables learning algorithms to focus on essential features that foreshadow relevant categories, thereby
improving the accuracy of text categorization. Recent studies have considered the hybridization
of evolutionary feature wrappers and filters to enhance the evolutionary search process. However,
the relative effectiveness of feature subset searches of evolutionary and feature filter operators has not
been considered. This results in degenerated final feature subsets. In this paper, we propose a novel
hybridization approach based on competition between the operators. This enables the proposed
algorithm to apply each operator selectively and modify the feature subset according to its relative
effectiveness, unlike conventional methods. The experimental results on 16 text datasets verify that
the proposed method is superior to conventional methods.

Keywords: multi-label text categorization; feature selection; hybrid search; evolutionary algorithm;
particle swarm optimization

1. Introduction

Text categorization involves the identification of the categories associated with specified
documents [1–4]. According to the presence or frequency of words within a document, the so-called
bag-of-words model represents each document as a word vector [5]. Each word vector is then assigned
to multiple categories because, in general, a document is relevant to multiple sub-concepts [6–8].
Text datasets are composed of a large number of words. However, not all the words are useful for
solving the associated problem. Irrelevant and redundant words can confound a learning algorithm,
deteriorating the performance of text categorization [9]. To resolve these issues, conventional methods
have attempted to identify a subset of important words by discarding unnecessary ones prior to text
categorization [10–13]. Thus, multi-label feature selection can be an effective preprocessing step for
improving the accuracy of text categorization.

Given a set of word features F = { f1, ..., fd}, multi-label feature selection involves the
identification of a subset S ⊂ F or a solution composed of n� d features that are significantly relevant
to the label set L = {l1..., l|L|}. To solve this task, conventional approaches use feature wrappers and
filters. At the risk of selecting ineffective features for the learning algorithm to be used subsequently,
filters can rapidly identify a feature subset that is mostly composed of important features based on
the intrinsic properties of the data [14]. In contrast, wrappers directly determine the superiority of
candidate feature subsets by using a specific learning algorithm. Moreover, they generally outperform
the filters in terms of the learning performance [10]. Notwithstanding their essential differences,
devising an effective search method is important in both approaches. This is because the algorithm
must locate the final feature subset from a vast search space specified by thousands of word features.
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As an effective search method for feature wrappers, population-based evolutionary algorithms
are frequently used in conventional studies because of their stochastic global search capability [15].
These evolutionary algorithms evaluate the fitness of a feature subset based on the categorization
performance of the learning algorithm. Furthermore, an evolutionary operator such as a mutation
operator modifies the feature subset. Moreover, recent studies have reported that the search capability
of an evolutionary algorithm can be further improved through hybridization with a filter [16,17].
Specifically, the feature filter operator can rapidly improve the feature subset by considering only
the intrinsic properties of the data, particularly when the solution is overwhelmed by unnecessary
features [18].

To achieve an effective hybrid search, the fitness of the feature subset modified by an evolutionary
or filter operator must be improved. However, the fitness of a feature subset is not always improved
after modification. This is because the evolutionary operator exhibits random properties, and the filter
operator is independent of the fitness evaluation function [17,19–21]. If the fitness is not improved
after modification by each operator, the modified feature subset is discarded. Thereby, computations
performed to evaluate the fitness are wasted. A preferred hybrid search is one in which the modification
of a feature subset by each operator always improves the fitness, thus avoiding wastage of computation.
If an algorithm can ascertain the fitness after modification by each operator without evaluating the
feature subset, it can decide in advance which operator in the feature subset is to be modified. However,
this is unfeasible in practice [20]. The second-best option may be a method that estimates the relative
effectiveness of each operator based on the fitness of the feature subset already computed in the
previous iteration and decides which operator to apply. According to our experiment, although
selective engagement of operators can significantly increase the effectiveness of a hybrid search,
less attention has been paid to this aspect in recent studies.

To overcome the problems described above, we devise a competitive particle swarm optimization
(PSO) algorithm. Unlike conventional PSOs, the proposed method applies each operator selectively
based on a novel process for estimating the effectiveness of each operator for each particle. As a
result, the particles can be separated into two groups depending on which operator is to be applied in
the next iteration. Then, based on the fitness of the particles in each group, a tournament is run. Its
results decide which operators will be applied in the next iteration by changing their memberships.
Consequently, the proposed method competitively engages each operator in a feature subset search
through a fitness-based tournament of the feature subset in each iteration. Our contributions are
as follows:

• We proposed a novel competitive particle swarm optimization for multi-label feature selection
problem by employing an information-theoretic multi-label feature filter as a filter operator.

• To selectively apply the evolutionary and filter operators, we proposed a new process for
estimating their relative effectiveness based on the fitness-based tournament of the feature subset
in each iteration.

• To demonstrate the superiority of the information-theoretic measure for improving the search
capability, we employed an information-theory-based feature filter and a frequency-based feature
filter simultaneously and conducted an in-depth analysis.

Our experiments revealed that the proposed method outperformed conventional methods.
It indicates the effectiveness of the proposed estimation process and information-theoretic feature
filter operator.

2. Related Work

In the field of text categorization, feature selection is a crucial task because the feature space is
generally high-dimensional. Conventional feature selection methods can be largely categorized into
feature filters and feature wrappers. Feature filter methods assess the importance of features using a
score function such as the χ2 statistic, information gain, or mutual information [14]. The top-n features
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containing the highest scores are then selected. Uysal and Gunal [22] proposed a distinguishing
feature selector that investigates the relationship between the absence or presence of a word within a
document and the correct label for that document. Rehman et al. [23] proposed a normalized difference
measure to remedy the problem of a balanced accuracy measure. It omits the relative document
frequency in the classes. Tang et al. [24] proposed a maximum discrimination method based on a
new measure for multiple distributions, namely the Jeffreys-multi-hypothesis divergence. However,
these methods exhibit limited categorization accuracy because they do not interact with the subsequent
learning algorithm.

In contrast, feature wrapper methods evaluate the discriminative power of feature subsets based
on a specific learning algorithm and select the best feature subset. Among feature wrapper methods,
population-based evolutionary algorithms are widely used for text feature selection owing to their
stochastic global search capability. Aghdam et al. [25] applied ant colony optimization to text feature
selection. Meanwhile, Lin et al. [26] proposed an improved cat swarm optimization algorithm to reduce
the computation time of their originally proposed method. Lu et al. [27] demonstrated the enhanced
performance of PSO based on a functional constriction factor and an inertia weight. However, unlike
feature filters, these methods generally require significant computational resources for identifying a
high-quality feature subset because of their randomized mechanism [28].

To resolve this issue, recent studies have considered hybrid approaches that combine an
evolutionary feature wrapper with a filter. These hybrid methods can be categorized into two types
according to how the filter operator is applied. One type applies the filter operator to initialize
the population of the evolutionary algorithm during the initialization step. For example, Lu and
Chen [21] initialized the candidate feature subsets of a small world algorithm using the χ2 statistic and
information gain. Meanwhile, Mafarja and Mirjalili [18] initialized ants in a binary ant lion optimizer
using a quick reduct and an approximate entropy reduct based on rough set theory. Although this
approach involves the algorithm starting its search from a region exhibiting potential, the algorithm
can be deficient in diversity, resulting in premature convergence. In addition, these algorithms can
fail to refine the final feature subset because the filter operator is not engaged in the final stage of
the search.

The second type of hybrid approach applies the filter operator to modify the feature subset in
each iteration during the search process. Ghareb et al. [16] proposed an enhanced genetic algorithm by
modifying the crossover and mutation operations by using the ranks of features obtained from six filter
methods. Lee et al. [29] proposed an exploration operation that uses a filter to select important features
from among those not selected by a genetic operator. Then, a new feature subset is generated. Moradi
and Gholampour [30] constructed an enhanced binary PSO using correlation information. Meanwhile,
Mafarja and Mirjalili [31] improved the whale optimization algorithm using simulated annealing
for the local search. Dong et al. [19] enhanced the genetic algorithm using granular information to
address feature selection in high-dimensional data with a low sample size. Zhou et al. [32] proposed a
hybrid search that adjusts the influence of the feature filter according to the degree of convergence.
However, these methods exhibit limited performance because the evolutionary and filter operators are
not engaged selectively. Table 1 presents a brief summary of conventional feature-selection approaches.

Table 1. Brief summary of conventional feature selection approaches.

Advantages Disadvantages

Filter methods Rapid identification of a feature subset Lower performance than that of wrapper
Wrapper methods High performance than that of filter High complexity
Hybrid methods (first type) To start in a region exhibiting potential Premature convergence
Hybrid methods (second type) Improved search capability Randomized engagement of operator
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3. Proposed Method

3.1. Preliminary

To design a competitive hybrid search, we selected PSO as an evolutionary algorithm
because it has been demonstrated to be effective in many applications including feature
selection [33–36]. PSO techniques can be classified into continuous PSO and binary PSO. In the
former, the population is composed of real numbers. Meanwhile, in binary PSO, the population is
composed of zeros and ones. In this study, we considered continuous PSO because binary PSO exhibits
potential limitations such as the update of particles based solely on the velocity [36].

In continuous PSO for feature selection, the population of particles is known as a swarm.
The location of a particle with d elements can be regarded as a probability vector each of whose
elements is the probability that the corresponding feature is selected. The location of a particle is
described as follows:

Ci = [Ci(1), Ci(2), ..., Ci(j), ..., Ci(d)], (1)

where Ci is the ith particle in particle group C and Ci(j) is the probability that the jth feature is selected
when the feature subset is generated from Ci in our study. In the initialization step, the elements of
each location are initialized as real numbers obtained at random from the uniform distribution [0, 1].

To find feature subsets exhibiting potential, the particle locations are iteratively updated as follows:

Ci ← Ci + Vi, (2)

where Vi is the velocity vector of the ith particle; it refers to the magnitude and direction with which
the particle moves across the search space. In the initialization step, the velocity of each particle is
initialized randomly as a real number obtained from the uniform distribution [−1, 1]. The velocity is
calculated as follows:

Vi ← wVi + c1r1(Pi − Ci) + c2r2(G− Ci), (3)

where Pi is the so-called “personal best” and denotes the best location identified so far by the ith
particle. G is the “global best” and denotes the best location identified so far by the swarm. Specifically,
the best locations are selected according to a fitness value obtained by the specific learning algorithm.
The inertia weight w controls the influence of the previous velocities on the present velocity. Here,
c1 and c2 are acceleration constants, and r1 and r2 are random values uniformly distributed in [0, 1].
Additionally, the velocity is limited to a maximum velocity vmax such that ∀i, j : |Vi(j)| < vmax.
In this study, these user-defined parameters are set based on conventional studies, to w = 0.7298,
c1 = c2 = 1.49618, and vmax = 0.6 [36].

3.2. Motivation and Approach

We enhance the performance of a hybrid search for multi-label text feature selection by
implementing competitive engagement of the evolutionary and filter operators according to their
relative effectiveness. To estimate their relative effectiveness and implement competitive engagement,
each operator needs to modify the particles independently in each iteration. Therefore, we separate
the particles into small groups depending on which operator is applied in the next iteration, i.e.,
evolution-based and filter-based particle groups. Figure 1 shows a schematic overview of the
proposed algorithm.

First, we design the evolution-based particle group based on conventional PSO. In the initialization
step, the evolution-based particles are assigned real numbers obtained at random from the uniform
distribution [0, 1]. During the search process, feature subsets are generated using the particle locations
(similarly as in conventional PSO), as described in Section 3.1. In addition, they are updated according
to Equations (2) and (3) by the evolutionary operator. Secondly, the filter-based particle group is
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initialized and updated by the filter operator using a score vector obtained from a score function
corresponding to the filter. The elements of the score vector are the importances of the features.

Figure 1. Schematic overview of the competitive particle swarm optimization.

During the search process, the algorithm updates the membership of the losing particles with that
of the winning particle, according to the tournament results based on the fitness value. This is shown
in Figure 1. For example, if a filter-based particle wins, the filter operator’s search is regarded to be
more effective than that of the evolutionary operator in the previous iteration. Thus, the algorithm
applies the filter operator to the losing evolution-based particle in the next iteration. This procedure is
repeated until the parameterized resources are exhausted.

3.3. Competitive Particle Swarm Optimization

Although multiple filter-based operators can be employed in our proposed method, for simplicity,
we outline the pseudocode of the proposed method in a case in which only one filter is used. This is
illustrated in Algorithm 1. The terms used to describe the algorithm are summarized in Table 2. In the
initialization step (Line 3), the algorithm generates evolution-based and filter-based particles with
Algorithm 2. On Lines 4 and 5, each particle generates a feature subset using its location. This feature
subset is evaluated by a fitness function, in which the obtained fitness value Ec, E f denotes the learning
performance of the text categorization. In this pseudocode, a high fitness value indicates that the
corresponding particle displays good fitness. Additionally, because mc + m f particles are being
evaluated, there are mc + m f fitness function calls (FFCs) on Line 6. The number of FFCs is generally
used as a stopping criterion [20].
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Algorithm 1 Competitive particle swarm optimization.

1: input: mc, m f , v; . The number of particles for each group mc, m f , the maximum number of FFCs v
2: output: S; . the final feature subset S
3: [C, F]← initialization(mc, m f ); . initialize particles using Algorithm 2
4: [Sc, S f ]← generate subsets based on C, F; . use locations of particles
5: [Ec, E f ]← evaluate subsets Sc, S f ; . evaluate subsets using fitness function
6: u← mc + m f ; . set u to the number of whole particles
7: while u < v do
8: update C using Equations (2) and (3); . update locations of particles
9: [Sc, S f ]← generate subsets based on C, F;

10: [Ec, E f ]← evaluate subsets Sc, S f ;
11: u← u + mc + m f ;
12: [C, F, mc, m f ]← competition(C, F, Ec, E f , mc, m f ); . use Algorithm 3
13: S← the best feature subset so far;
14: end while

Table 2. Notations used in the design of the proposed method.

Terms Meanings

C The evolution-based particle group
F The filter-based particle group

mc The number of the evolution-based particles
m f The number of the filter-based particles
Ec The fitness values for feature subsets generated from C
E f The fitness values for feature subsets generated from F
u The number of spent fitness function calls (FFCs)
v Maximum number of permitted FFCs
S The best feature subset

Algorithm 2 Initialization function.

1: input: mc, m f ; . The number of particles for each group mc, m f

2: output: C, F; . initialized particles
3: for k = 1 to mc do
4: for j = 1 to d do
5: Ck(j)← sample from U(0, 1); . use uniform distribution
6: end for
7: end for
8: X ← calculate a score vector; . use score function of feature filter
9: σ← calculate a standard deviation; . use Equation (4)

10: σ← σm f

11: for k = 1 to m f do
12: for j = 1 to d do
13: Fk(j)← sample from N(X, σ2); . use Gaussian distribution
14: end for
15: end for

After the initialization process, the evolution-based particles are updated by the evolutionary
operator on Line 8. Moreover, all particles are evaluated by the fitness function on Lines 9 and 10.
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On Lines 12 and 13, the evolution- and filter-based particles compete. The losing particles are updated
in the next iteration by the winning operator, according to the competition results from Algorithm 3.
This procedure is repeated until the algorithm attains the maximum FFCs, denoted by v. The output of
Algorithm 1 is the best feature subset obtained during the search process.

Algorithm 3 Competition function.

1: input: C, F, Ec, E f , mc, m f ; . fitness values for each group Ec, E f

2: output: C, F, mc, m f ; . changed particles via competitions C, F
3: wc ← 0;
4: lc ← 0;
5: for k = 1 to min([mc, m f ]) do . set the number of competitions
6: if max(Ec) > max(E f ) then
7: wc ← wc + 1; . add one whenever evolution-based particle wins
8: else if max(Ec) < max(E f ) and mc 6= lc + 1 then
9: lc ← lc + 1; . add one whenever evolution-based particle loses

10: j← {j|∀x ∈ {[1, m f ] ∩Z \ j}, E f (j) > E f (x)};
11: E f (j)← −∞; . exclude winning particle at next competition
12: end if
13: end for
14: for k = 1 to wc do
15: j← {y|∀x ∈ {[1, m f ] ∩Z \ y}, E f (y) < E f (x)};
16: delete Fj; . delete the particle with low fitness value
17: Cend+1 ← a new particle; . use uniform distribution
18: end for
19: for k = 1 to lc do
20: j← {y|∀x ∈ {[1, mc] ∩Z \ y}, Ec(y) < Ec(x)};
21: delete Cj;
22: Fend+1 ← a new particle; . use score vector for feature filter
23: end for
24: mc ← mc + wc − lc;
25: m f ← m f + lc − wc;

Algorithm 2 presents the detailed procedure for initializing the particles. On Lines 3–7,
the evolution- based particles are initialized. The score function associated with the filter then calculates
a score vector to initialize the filter-based particles. If only one filter-based particle group is used,
it is generated by the random diffusion of a score vector to maintain diversity within the group on
Lines 9–15. Herein, random diffusion can be implemented by diffusing the score vector according to
a Gaussian distribution. Therefore, the mean is set to the score vector, and the standard deviation is
calculated as follows:

σ =
1

d− 1

d−1

∑
k=1

(Xs(k + 1)− Xs(k)), (4)

where Xs is the score vector sorted in ascending order. This is calculated as the average score difference
to prevent the diffusion from altering the ranking orders excessively. On Line 10, our algorithm
multiplies the standard deviation by the number of filter-based particles to maintain diversity.

Algorithm 3 presents the detailed procedure of the competition between the evolution- and
filter-based particles. On Line 5, the number of competitions is set to the minimum of the particle
group sizes. On Lines 6–12, after each group has selected the particle with the maximum fitness
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value, the particles compete based on the fitness value. The competition results are stored as the
number of winners and losers for the evolution-based particle group. Our algorithm prevents the
number of evolution-based particles from becoming zero on Line 8. If a particle continues to win in the
competition, all particles can converge to a particle by genetic drift [37]. To circumvent this, a winning
particle is prevented from competing in the next competition, preventing any particle from continually
winning (Lines 10 and 11). In our algorithm, the losing particles are updated by the winning operator
in the next iteration on Lines 17 and 22.

Finally, we conducted a theoretical analysis of the time complexity of the proposed method. In the
evolutionary search, each feature subset should be evaluated by the learning algorithm to obtain
the fitness value. This involves complicated sub-procedures including a decision-making process
for multiple categories and repetitive cross-validation to simulate realistic performance [38]. Thus,
the maximum number of FFCs permitted can be used to represent the computational complexity of
the proposed method, i.e., O(v).

3.4. Information-Theoretic Multi-Label Feature Filter Operator

The information theory is frequently used in conventional studies because of its capability to
quantify the similarity between probability distributions. The information-theory-based feature filter
methods generally evaluate the importance of features based on the joint entropy between each
feature and labels. We selected the information-theoretic multi-label feature filter, namely quadratic
programming-based multi-label feature selection [39], as a filter operator. This is because it has
performed effectively in multi-label feature selection problems. It calculates a score vector based on a
criterion that maximizes the dependency on labels and minimizes the redundancy among the features.
Here, the score vector represents the importance of each feature.

Given a set of features F = { f1, ..., fd} and label set L = {l1..., l|L|}, the score vector X is calculated
by solving the following maximization problem:

max
X

QX = ∑
fi∈F

∑
lj∈L

I( fi; lj)X(i)− ∑
fi , f j∈F

I( fi; f j)X(i)X(j), (5)

where I(a; b) = H(a) + H(b) − H(a, b) is the Shannon’s mutual information between the random
variables a and b. H(a) = −∑i p(ai) log2(p(ai)) is the joint entropy of the probability distributions
p(a), p(b), and p(a, b). Specifically, the left-hand side implies dependency between each feature and
multiple labels, and the right-hand side implies redundancy among features. In addition, the score
vector X has the following constraints:

X(1), X(2), ..., X(d) ≥ 0,
d

∑
i=1

X(i) = 1. (6)

These constraints enable the consideration of the score vector X as a probability vector. Therefore,
the score vector can be used as the particle’s location.

4. Experimental Results

4.1. Experimental Settings

We conducted experiments using 16 datasets from the RCV1 and Yahoo collections, which together
comprise over 10,000 features. We used the top 2% and 5%, respectively, of the features with the highest
document frequency because the categorization performance would not be affected significantly by
the removal of features [40,41]. The datasets contain text data with multiple labels. Herein, the labels
correspond to specific subjects related to the document. In the text data, each feature corresponds to the
frequency of a word within the document. Table 3 presents the standard statistics for the multi-label
datasets used in our experiments. The statistics include the number of patterns in the dataset |W|,
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number of features |F|, feature type, and number of labels |L|. In addition, the label cardinality Card
represents the average number of labels for each pattern. Moreover, the label density Den is the label
cardinality over the total number of labels. Furthermore, Distinct indicates the number of unique label
subsets in L. The experiments conducted in this study included only text data.

Table 3. The standard statistics of multi-label text datasets.

Dataset |W | |F| Type |L| Card. Den. Distinct. Domain

RCV1 (S1) 6000 945 Numeric 101 2.880 0.029 1028 Text
RCV1 (S2) 6000 945 Numeric 101 2.634 0.026 954 Text
RCV1 (S3) 6000 945 Numeric 101 2.614 0.026 939 Text
RCV1 (S4) 6000 945 Numeric 101 2.484 0.025 816 Text
RCV1 (S5) 6000 945 Numeric 101 2.642 0.026 946 Text
Arts 7484 1157 Numeric 26 1.654 0.064 599 Text
Business 11,214 1096 Numeric 30 1.599 0.053 233 Text
Computers 12,444 1705 Numeric 33 1.507 0.046 428 Text
Education 12,030 1377 Numeric 33 1.463 0.044 511 Text
Entertainment 12,730 1600 Numeric 21 1.414 0.067 337 Text
Health 9205 1530 Numeric 32 1.644 0.051 335 Text
Recreation 12,828 1516 Numeric 22 1.429 0.065 530 Text
Reference 8027 1984 Numeric 33 1.174 0.036 275 Text
Science 6428 1859 Numeric 40 1.450 0.036 457 Text
Social 12,111 2618 Numeric 29 1.279 0.033 361 Text
Society 14,512 1590 Numeric 27 1.670 0.062 1054 Text

We compared the proposed method with two hybrid-based feature selection methods and a
PSO-based feature selection method: EGA + CDM [16], bALO-QR [18], and competitive swarm
optimizer (CSO) [9], respectively. EGA + CDM combines an enhanced genetic algorithm (EGA) [16]
with a class discriminating measure (CDM). bALO-QR initializes the ants in a binary ant lion optimizer
(bALO) [42] using the quick reduct (QR). CSO is a PSO-based method that uses multiple swarm.
For each method, the parameters were set to the values recommended in the original study, and a
problem transformation enabled each label subset to be treated as a single class when calculating each
filter algorithm. This is because these were designed to handle single-label datasets. To prevent bias,
we set the maximum permissible FFCs to 300. The maximum number of selected features was set
to 50. The population size was set to 30. To evaluate the quality of the feature subsets obtained by
each method, we used the multi-label naive Bayes (MLNB) [43] and extreme learning machine for
multi-label (ML-ELM) [44] classifier with the holdout cross-validation method. For each dataset, 80% of
the data was selected for the training set. The remaining 20% was used as the test set. We performed
each experiment 10 times and used the average value to represent the categorization performance of
each feature selection method.

In the proposed method, to demonstrate the superiority of information-theoretic multi-label filter
operator for improving search capability, we employed an additional frequency-based filter operator,
namely a normalized difference measure [23]. In our experiments, it competes with the evolutionary
operator as well as the information-theoretic filter operator. A comparison between the operators is
described in Section 5. For three operators, we set the size of the corresponding particle group to 10.

To evaluate the performance of each feature selection method, we employed four evaluation
metrics: Hamming loss, one-error, multi-label accuracy, and subset accuracy [45–47]. Let T =

{(wi, λi)|1 ≤ i ≤ |T|} be a specified test set. Here, λi ⊆ L is a correct label subset related to wi.
Given a test sample wi, a predicted label set Yi ⊆ L is estimated by a classifier such as MLNB.
In detail, a family |L| of functions { f1, f2, ..., f|L|} is induced from the multi-label training examples.
Here, each function fk determines the class membership of lk with respect to each instance, i.e.,
Yi = {lk| fk(wi) > θ, 1 ≤ k ≤ |L|}; moreover, θ is a predefined threshold. Using the correct label
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subsets and predicted label sets, we can compute the four metrics. The Hamming loss is defined
as follows:

hloss(T) =
1
|T|

|T|

∑
i=1

1
|L| |λi4Yi|, (7)

where4 denotes the symmetric difference between two sets. The one-error is defined as

oneerr(T) =
1
|T|

|T|

∑
i=1

[ arg max
lk∈L

f (wi) /∈ λi], (8)

where [ · ] returns a value of one if the proposition stated in the brackets is true, and zero otherwise.
The multi-label accuracy is calculated as

mlacc(T) =
1
|T|

|T|

∑
i=1

|λi ∩Yi|
|λi ∪Yi|

. (9)

Finally, the subset accuracy is defined as

setacc(T) =
1
|T|

|T|

∑
i=1

[λi = Yi]. (10)

Higher values of the multi-label accuracy and subset accuracy and lower values of the Hamming
loss and one-error indicate higher performance.

We conducted a statistical test to compare the proposed method to previous techniques. First, we
employed the widely used Friedman test to compare multiple methods [38]. Based on the average
rank for each method, the null hypothesis that all the methods perform equally well is either rejected
or accepted. When the null hypothesis was rejected, we proceeded with a certain post-hoc test to
analyze the relative performance among the methods being compared [38]. Thus, we employed the
Bonferroni–Dunn test, which compares the difference between the average ranks of the proposed
method and of another method [48]. For the Bonferroni–Dunn test, the performances of the proposed
method and of the other methods are regarded as statistically similar if their average ranks over all
datasets are within one critical difference (CD). In our experiments, the CD was 1.093 [38].

4.2. Comparison Results

Tables 4–11 contain the experimental results for the proposed method and the other methods, on
16 multi-label text datasets. They are presented as the average performance, with the corresponding
standard deviations. In Tables 4–7 and Tables 8–11, MLNB and ML-ELM, respectively, are used as
classifiers. The highest performance is shown in bold font and indicated by a check mark. Finally,
Tables 12 and 13 contain the Friedman statistics and the corresponding critical values on each evaluation
measure for each classifier. Here, we set the significance level α = 0.05. In Figures 2 and 3, the CD
diagrams illustrate the relative performance of the proposed method and of other methods. Herein,
the average rank of each method is marked along the upper axis, with the higher ranks placed on the
right side of each subfigure. We also present the CD from the perspective of the proposed method
above the graph. This implies that the methods within the range are not significantly different from
each other [38]. Those for which the difference is not significant are connected by a thick line.
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Table 4. Comparison results of four compared methods in terms of Hamming loss for MLNB (The
highest performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.029 ± 0.001 0.030 ± 0.001 0.030 ± 0.000 0.029 ± 0.001X
RCV1 (S2) 0.027 ± 0.001X 0.028 ± 0.003 0.027 ± 0.001 0.027 ± 0.001
RCV1 (S3) 0.026 ± 0.000X 0.027 ± 0.001 0.027 ± 0.001 0.026 ± 0.001
RCV1 (S4) 0.024 ± 0.001X 0.025 ± 0.001 0.025 ± 0.001 0.024 ± 0.001
RCV1 (S5) 0.026 ± 0.001X 0.028 ± 0.003 0.028 ± 0.001 0.026 ± 0.001
Arts 0.061 ± 0.001X 0.067 ± 0.002 0.069 ± 0.002 0.066 ± 0.002
Business 0.030 ± 0.001X 0.036 ± 0.004 0.034 ± 0.001 0.034 ± 0.002
Computers 0.042 ± 0.002X 0.051 ± 0.004 0.046 ± 0.001 0.047 ± 0.001
Education 0.043 ± 0.001X 0.048 ± 0.002 0.048 ± 0.002 0.047 ± 0.001
Entertainment 0.059 ± 0.002X 0.069 ± 0.003 0.065 ± 0.001 0.065 ± 0.001
Health 0.039 ± 0.001X 0.050 ± 0.003 0.047 ± 0.001 0.047 ± 0.002
Recreation 0.058 ± 0.001X 0.070 ± 0.003 0.067 ± 0.002 0.065 ± 0.001
Reference 0.031 ± 0.001X 0.040 ± 0.003 0.037 ± 0.002 0.037 ± 0.001
Science 0.036 ± 0.001X 0.043 ± 0.003 0.042 ± 0.001 0.042 ± 0.001
Social 0.026 ± 0.001X 0.042 ± 0.004 0.032 ± 0.002 0.032 ± 0.001
Society 0.057 ± 0.001X 0.065 ± 0.004 0.064 ± 0.001 0.063 ± 0.001

Avg. Rank 1.06X 3.88 2.94 2.13

Table 5. Comparison results of four compared methods in terms of one-error for MLNB (The highest
performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.573 ± 0.151X 0.637 ± 0.129 0.621 ± 0.134 0.648 ± 0.125
RCV1 (S2) 0.513 ± 0.013X 0.654 ± 0.023 0.580 ± 0.015 0.599 ± 0.019
RCV1 (S3) 0.609 ± 0.206X 0.718 ± 0.150 0.671 ± 0.174 0.683 ± 0.168
RCV1 (S4) 0.591 ± 0.216X 0.696 ± 0.160 0.671 ± 0.175 0.672 ± 0.174
RCV1 (S5) 0.603 ± 0.210X 0.695 ± 0.161 0.656 ± 0.182 0.652 ± 0.185
Arts 0.649 ± 0.181X 0.712 ± 0.149 0.710 ± 0.149 0.712 ± 0.149
Business 0.383 ± 0.410X 0.399 ± 0.409 0.398 ± 0.400 0.396 ± 0.406
Computers 0.415 ± 0.009X 0.469 ± 0.006 0.445 ± 0.009 0.448 ± 0.007
Education 0.598 ± 0.012X 0.661 ± 0.008 0.616 ± 0.020 0.639 ± 0.016
Entertainment 0.536 ± 0.017X 0.605 ± 0.019 0.563 ± 0.015 0.586 ± 0.015
Health 0.726 ± 0.342X 0.774 ± 0.282 0.764 ± 0.300 0.778 ± 0.238
Recreation 0.553 ± 0.011X 0.739 ± 0.013 0.675 ± 0.013 0.675 ± 0.011
Reference 0.690 ± 0.262X 0.715 ± 0.243 0.718 ± 0.241 0.715 ± 0.243
Science 0.630 ± 0.024X 0.707 ± 0.018 0.696 ± 0.027 0.696 ± 0.023
Social 0.439 ± 0.197X 0.571 ± 0.152 0.472 ± 0.186 0.490 ± 0.179
Society 0.447 ± 0.014X 0.510 ± 0.017 0.489 ± 0.019 0.479 ± 0.016

Avg. Rank 1.00X 3.75 2.31 2.94

Table 6. Comparison results of four compared methods in terms of Multi-label accuracy for MLNB
(The highest performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.198 ± 0.010X 0.176 ± 0.011 0.168 ± 0.013 0.124 ± 0.013
RCV1 (S2) 0.243 ± 0.013X 0.177 ± 0.011 0.179 ± 0.014 0.157 ± 0.018
RCV1 (S3) 0.227 ± 0.018X 0.161 ± 0.004 0.178 ± 0.019 0.168 ± 0.014
RCV1 (S4) 0.267 ± 0.016X 0.170 ± 0.007 0.192 ± 0.014 0.183 ± 0.019
RCV1 (S5) 0.234 ± 0.013X 0.187 ± 0.009 0.191 ± 0.016 0.165 ± 0.012
Arts 0.195 ± 0.012X 0.094 ± 0.008 0.099 ± 0.008 0.106 ± 0.012
Business 0.680 ± 0.010X 0.662 ± 0.009 0.654 ± 0.008 0.656 ± 0.011
Computers 0.424 ± 0.007X 0.369 ± 0.010 0.388 ± 0.006 0.391 ± 0.008
Education 0.122 ± 0.010X 0.075 ± 0.008 0.109 ± 0.012 0.085 ± 0.018
Entertainment 0.267 ± 0.011X 0.173 ± 0.007 0.220 ± 0.011 0.188 ± 0.011
Health 0.502 ± 0.010X 0.410 ± 0.017 0.397 ± 0.019 0.423 ± 0.020
Recreation 0.235 ± 0.014X 0.045 ± 0.004 0.111 ± 0.011 0.119 ± 0.008
Reference 0.387 ± 0.015X 0.360 ± 0.010 0.352 ± 0.009 0.350 ± 0.013
Science 0.130 ± 0.011X 0.075 ± 0.007 0.064 ± 0.010 0.070 ± 0.017
Social 0.533 ± 0.015X 0.340 ± 0.021 0.471 ± 0.014 0.449 ± 0.025
Society 0.357 ± 0.043X 0.290 ± 0.019 0.254 ± 0.012 0.211 ± 0.041

Avg. Rank 1.00X 3.19 2.75 3.06
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Table 7. Comparison results of four compared methods in terms of subset accuracy for MLNB (The
highest performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.017 ± 0.007X 0.009 ± 0.002 0.012 ± 0.007 0.012 ± 0.005
RCV1 (S2) 0.099 ± 0.012X 0.011 ± 0.005 0.087 ± 0.010 0.087 ± 0.004
RCV1 (S3) 0.115 ± 0.018X 0.025 ± 0.005 0.093 ± 0.009 0.102 ± 0.005
RCV1 (S4) 0.150 ± 0.008X 0.033 ± 0.014 0.120 ± 0.016 0.126 ± 0.016
RCV1 (S5) 0.094 ± 0.014X 0.013 ± 0.003 0.082 ± 0.012 0.091 ± 0.011
Arts 0.151 ± 0.010X 0.058 ± 0.007 0.071 ± 0.007 0.075 ± 0.006
Business 0.527 ± 0.014X 0.514 ± 0.016 0.507 ± 0.011 0.512 ± 0.011
Computers 0.351 ± 0.011X 0.299 ± 0.011 0.316 ± 0.010 0.319 ± 0.009
Education 0.094 ± 0.011X 0.047 ± 0.009 0.074 ± 0.007 0.064 ± 0.013
Entertainment 0.228 ± 0.010X 0.130 ± 0.009 0.188 ± 0.010 0.176 ± 0.022
Health 0.389 ± 0.010X 0.307 ± 0.016 0.314 ± 0.009 0.308 ± 0.054
Recreation 0.192 ± 0.010X 0.020 ± 0.003 0.093 ± 0.013 0.106 ± 0.016
Reference 0.345 ± 0.011X 0.321 ± 0.006 0.316 ± 0.011 0.294 ± 0.074
Science 0.109 ± 0.014X 0.053 ± 0.008 0.048 ± 0.005 0.055 ± 0.011
Social 0.488 ± 0.016X 0.287 ± 0.022 0.432 ± 0.016 0.412 ± 0.012
Society 0.284 ± 0.015X 0.215 ± 0.012 0.179 ± 0.028 0.157 ± 0.021

Avg. Rank 1.00X 3.56 2.81 2.63

Table 8. Comparison results of four compared methods in terms of Hamming loss for ML-ELM (The
highest performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.037 ± 0.002X 0.038 ± 0.001 0.039 ± 0.001 0.040 ± 0.001
RCV1 (S2) 0.034 ± 0.002X 0.037 ± 0.003 0.037 ± 0.001 0.036 ± 0.000
RCV1 (S3) 0.033 ± 0.002X 0.037 ± 0.001 0.037 ± 0.003 0.036 ± 0.001
RCV1 (S4) 0.033 ± 0.002X 0.036 ± 0.002 0.035 ± 0.001 0.034 ± 0.001
RCV1 (S5) 0.034 ± 0.001X 0.036 ± 0.001 0.035 ± 0.001 0.035 ± 0.001
Arts 0.080 ± 0.002X 0.092 ± 0.005 0.089 ± 0.001 0.088 ± 0.002
Business 0.028 ± 0.001X 0.029 ± 0.001 0.029 ± 0.001 0.029 ± 0.001
Computers 0.042 ± 0.001X 0.045 ± 0.001 0.044 ± 0.001 0.044 ± 0.001
Education 0.052 ± 0.001X 0.060 ± 0.002 0.057 ± 0.001 0.056 ± 0.001
Entertainment 0.078 ± 0.004X 0.088 ± 0.003 0.088 ± 0.004 0.083 ± 0.002
Health 0.038 ± 0.001X 0.049 ± 0.002 0.047 ± 0.002 0.046 ± 0.001
Recreation 0.090 ± 0.003X 0.115 ± 0.006 0.102 ± 0.003 0.100 ± 0.005
Reference 0.034 ± 0.001X 0.038 ± 0.001 0.037 ± 0.001 0.037 ± 0.001
Science 0.047 ± 0.003X 0.053 ± 0.002 0.051 ± 0.001 0.050 ± 0.001
Social 0.026 ± 0.001X 0.036 ± 0.001 0.028 ± 0.001 0.029 ± 0.001
Society 0.060 ± 0.001X 0.064 ± 0.002 0.062 ± 0.001 0.062 ± 0.001

Avg. Rank 1.00X 3.75 2.88 2.38

Table 9. Comparison results of four compared methods in terms of one-error for ML-ELM (The highest
performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.531 ± 0.016X 0.704 ± 0.026 0.602 ± 0.018 0.614 ± 0.014
RCV1 (S2) 0.526 ± 0.009X 0.715 ± 0.023 0.612 ± 0.017 0.611 ± 0.017
RCV1 (S3) 0.521 ± 0.018X 0.727 ± 0.010 0.598 ± 0.020 0.606 ± 0.014
RCV1 (S4) 0.484 ± 0.025X 0.698 ± 0.011 0.589 ± 0.020 0.567 ± 0.018
RCV1 (S5) 0.512 ± 0.030X 0.692 ± 0.014 0.580 ± 0.025 0.588 ± 0.029
Arts 0.542 ± 0.011X 0.633 ± 0.021 0.637 ± 0.018 0.626 ± 0.019
Business 0.131 ± 0.008X 0.132 ± 0.007 0.133 ± 0.006 0.131 ± 0.007
Computers 0.416 ± 0.010X 0.455 ± 0.009 0.441 ± 0.006 0.439 ± 0.009
Education 0.594 ± 0.012X 0.636 ± 0.014 0.598 ± 0.013 0.620 ± 0.020
Entertainment 0.527 ± 0.019X 0.591 ± 0.016 0.556 ± 0.019 0.569 ± 0.022
Health 0.326 ± 0.014X 0.433 ± 0.017 0.422 ± 0.017 0.398 ± 0.023
Recreation 0.541 ± 0.018X 0.741 ± 0.025 0.661 ± 0.019 0.666 ± 0.021
Reference 0.450 ± 0.018X 0.511 ± 0.017 0.507 ± 0.014 0.502 ± 0.012
Science 0.582 ± 0.018X 0.689 ± 0.025 0.663 ± 0.016 0.674 ± 0.021
Social 0.355 ± 0.014X 0.512 ± 0.021 0.386 ± 0.017 0.421 ± 0.020
Society 0.433 ± 0.011X 0.479 ± 0.018 0.470 ± 0.014 0.463 ± 0.015

Avg. Rank 1.00X 3.88 2.63 2.50
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Table 10. Comparison results of four compared methods in terms of Multi-label accuracy for ML-ELM
(The highest performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.275 ± 0.009X 0.214 ± 0.007 0.220 ± 0.006 0.215 ± 0.011
RCV1 (S2) 0.305 ± 0.014X 0.198 ± 0.010 0.242 ± 0.016 0.243 ± 0.013
RCV1 (S3) 0.320 ± 0.020X 0.202 ± 0.006 0.251 ± 0.010 0.258 ± 0.010
RCV1 (S4) 0.343 ± 0.014X 0.215 ± 0.009 0.266 ± 0.009 0.275 ± 0.010
RCV1 (S5) 0.309 ± 0.013X 0.206 ± 0.006 0.256 ± 0.012 0.256 ± 0.012
Arts 0.362 ± 0.009X 0.275 ± 0.012 0.283 ± 0.009 0.284 ± 0.014
Business 0.686 ± 0.007 0.686 ± 0.010X 0.680 ± 0.010 0.681 ± 0.008
Computers 0.475 ± 0.008X 0.427 ± 0.010 0.441 ± 0.010 0.441 ± 0.008
Education 0.337 ± 0.009X 0.286 ± 0.011 0.315 ± 0.012 0.318 ± 0.013
Entertainment 0.418 ± 0.018X 0.336 ± 0.015 0.362 ± 0.014 0.362 ± 0.009
Health 0.545 ± 0.013X 0.449 ± 0.011 0.462 ± 0.019 0.466 ± 0.012
Recreation 0.379 ± 0.009X 0.210 ± 0.007 0.263 ± 0.017 0.285 ± 0.023
Reference 0.493 ± 0.012X 0.437 ± 0.007 0.437 ± 0.016 0.447 ± 0.009
Science 0.340 ± 0.017X 0.246 ± 0.011 0.254 ± 0.017 0.270 ± 0.014
Social 0.583 ± 0.016X 0.435 ± 0.021 0.543 ± 0.015 0.519 ± 0.021
Society 0.422 ± 0.014X 0.392 ± 0.010 0.398 ± 0.011 0.402 ± 0.011

Avg. Rank 1.06X 3.81 2.81 2.31

Table 11. Comparison results of four compared methods in terms of subset accuracy for ML-ELM (The
highest performance is shown in bold font and indicated by a check mark).

Dataset Proposed EGA+CDM bALO-QR CSO

RCV1 (S1) 0.025 ± 0.016X 0.012 ± 0.002 0.011 ± 0.006 0.013 ± 0.006
RCV1 (S2) 0.114 ± 0.009X 0.011 ± 0.003 0.090 ± 0.012 0.099 ± 0.009
RCV1 (S3) 0.129 ± 0.017X 0.011 ± 0.004 0.108 ± 0.007 0.111 ± 0.009
RCV1 (S4) 0.166 ± 0.016X 0.023 ± 0.005 0.120 ± 0.014 0.126 ± 0.012
RCV1 (S5) 0.113 ± 0.009X 0.008 ± 0.003 0.090 ± 0.014 0.092 ± 0.012
Arts 0.190 ± 0.011X 0.118 ± 0.009 0.143 ± 0.009 0.140 ± 0.020
Business 0.528 ± 0.008 0.527 ± 0.015 0.526 ± 0.013 0.529 ± 0.011X
Computers 0.372 ± 0.010X 0.323 ± 0.011 0.338 ± 0.011 0.340 ± 0.007
Education 0.247 ± 0.009X 0.186 ± 0.016 0.197 ± 0.019 0.214 ± 0.010
Entertainment 0.326 ± 0.018X 0.231 ± 0.021 0.243 ± 0.017 0.276 ± 0.013
Health 0.408 ± 0.014X 0.315 ± 0.015 0.325 ± 0.011 0.352 ± 0.014
Recreation 0.270 ± 0.041X 0.086 ± 0.010 0.137 ± 0.016 0.146 ± 0.017
Reference 0.427 ± 0.015X 0.376 ± 0.007 0.379 ± 0.013 0.386 ± 0.015
Science 0.228 ± 0.030X 0.153 ± 0.015 0.176 ± 0.015 0.179 ± 0.013
Social 0.520 ± 0.011X 0.333 ± 0.018 0.482 ± 0.017 0.468 ± 0.014
Society 0.296 ± 0.014X 0.274 ± 0.012 0.281 ± 0.010 0.289 ± 0.014

Avg. Rank 1.06X 3.88 3.00 2.06

Table 12. Friedman statistics and critical value in terms of each evaluation measure for MLNB.

Evaluation Measure Friedman Statistics Critical Values (α = 0.05)

Hamming loss 101.914

2.812One-error 63.304
Multi-label accuracy 24.520
Subset accuracy 34.557

Table 13. Friedman statistics and critical value in terms of each evaluation measure for ML-ELM.

Evaluation Measure Friedman Statistics Critical values (α = 0.05)

Hamming loss 61.632

2.812One-error 81.314
Multi-label accuracy 51.484
Subset accuracy 114.668
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(a) Hamming loss (b) One-error

(c) Multi-label accuracy (d) Subset accuracy

Figure 2. Bonferroni–Dunn test results of four comparison methods with four evaluation measures
for MLNB.

(a) Hamming loss (b) One-error

(c) Multi-label accuracy (d) Subset accuracy

Figure 3. Bonferroni–Dunn test results of four comparison methods with four evaluation measures
for ML-ELM.

From the results in Tables 4–11, it is evident that the proposed method outperformed the
state-of-the-art feature selection methods for most of the multi-label text datasets. For MLNB,
the proposed method achieved the highest performance on 94% of the datasets in terms of Hamming
loss, and on all datasets in terms of one-error, multi-label accuracy, and subset accuracy. For ML-ELM,
the proposed method achieved the highest performance on all datasets in terms of Hamming loss
and one-error, and on 94% of the datasets in terms of multi-label accuracy and subset accuracy.
Consequently, the proposed method consistently achieved the highest average rank in all the
experiments. As shown in Figure 2, the proposed method significantly outperformed all other
algorithms in terms of one-error, multi-label accuracy, and subset accuracy for MLNB. As shown
in Figure 2a, the proposed method was significantly better than EGA-CDM and bALO-QR in terms
of Hamming loss for MLNB. Figure 3 shows that the proposed method significantly outperformed
all the other algorithms in terms of Hamming loss, one-error, and multi-label accuracy for ML-ELM.
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Figure 3d shows that the proposed method is significantly better than EGA-CDM and bALO-QR in
terms of the subset accuracy for ML-ELM.

In summary, the experimental results demonstrate that the proposed method outperformed the
three reference algorithms on 16 text datasets. Statistical tests verified that the proposed method was
significantly superior to the other methods in terms of one-error, multi-label accuracy, and subset
accuracy for MLNB and in terms of Hamming loss, one-error, and multi-label accuracy for ML-ELM.

5. Analysis for Engagement of the Evolutionary and Filter Operators

To describe the competition results for each iteration, Figure 4 shows the engagement of each
operator during the search process. Here, each engagement is represented as the average across
10 experimental trials with MLNB. Specifically, the engagement refers to the number of times an
evolutionary operator and two filter operators modify the particles in each iteration. As shown in
Figure 4, the effectiveness of the operators could be varied according to the progress of search on
a specified dataset. This indicates that the capability of evolutionary search and the performance
of a filter method could vary. Such situations could be intensified in text applications owing to the
sparsity of the data. Figure 4a–e shows that the filter operator could rapidly improve the particles on
the RCV1 dataset in the early stages of the search process. Additionally, Figure 4m shows that the
information-theory-based filter operator is more frequently engaged than the evolutionary operator
in the early stages when the reference dataset was used. However, the information-theory-based
filter operator was more frequently engaged than the evolutionary operator across the entire
search process on the dataset in Figure 4f–l,n–p. Moreover, the frequency-based filter operator
was more frequently engaged than the evolutionary operator on the dataset in Figure 4h–j,o–p.
In addition, the information-theory-based filter operator was more frequently engaged than the
frequency-based filter operator on 81% of the datasets in Figure 4. This demonstrates the superiority
of the information-theoretic measure in improving the search capability.

This study was motivated by the consideration that competitive engagement via competition
between the evolutionary and filter operators could improve the performance of the learning algorithm.
To validate this, we conducted an additional experiment in which we compared the proposed method
to a non-competitive reference algorithm. Specifically, in the initialization step, the particle groups
were initialized as in the proposed method. However, the evolutionary and filter operators equally
modified particles during the search process, unlike in the proposed method. We set the maximum
permissible FFCs to 300 and the size of each particle group to 10, as stated in Section 4.

Figure 5 compares the subset accuracy of the proposed and reference algorithm on 16 datasets
using MLNB. In Figure 5, the vertical axis indicates the subset accuracy. To determine whether the
two methods were statistically different for each dataset, we conducted a Wilcoxon rank sum test [49].
The corresponding p-values are shown in each subfigure. The test used the results from 10 repeated
experiments on each dataset. As shown in Figure 5, the additional experiments demonstrate that the
competitive engagement of the operators could improve the search capability.
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Figure 4. Cont.
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Figure 4. Competition results between particle groups for proposed method in terms of subset accuracy.
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6. Discussion

The main contribution of this study is the proposal of a new process for advance estimation of the
relative effectiveness of the evolutionary and filter operators and their selective engagement in each
iteration to improve the hybrid search. Our method compares the fitness of particles modified by each
operator and determines the operator to be applied according to the results of the tournament.

The proposed method has the following advantages. By selectively applying each operator,
our method can reduce the number of feature subsets that are discarded because of not having been
improved after modification by each operator. That is, the method increases the number of times the
fitness is improved. In addition, comparison of the effectiveness of each operator does not require
additional computations. The proposed method permits more evolution-based particles to explore
and exploit locations exhibiting potential, by increasing the engagement of the evolutionary operator
when its effectiveness is higher than that of the filter operator. In the converse case, important features
are selected with higher probabilities by increasing the engagement of the filter operator. In this
regard, the proposed method may be more stable than conventional hybrid methods in the feature
selection tasks. Other PSO variants (such as predator–prey PSO [50,51]) can be applied to our method.
For example, multi-swarm PSO methods (such as competitive swarm optimizer [9]) can be applied by
dividing evolution-based particles into multiple swarms. Similarly, other filter methods can be applied
by using multiple filter operators.

In this study, a method for estimating the superiority of each operator is developed to improve
the effectiveness of hybrid search. After the operator to be applied is selected, a new feature subset
is created and evaluated. Thus, the proposed method selects between two feasible feature subsets:
one is a feature subset modified by the evolutionary operator, and the other is a feature subset
modified by the filter operator. This concept originated from the well-established informed best-first
search [52], i.e., when the algorithm encounters several nodes to be visited, one is selected based
on its potential, which is typically measured by a heuristic function or process. In our experiments,
the superiority between the two operators was determined based on the fitness-based tournament.
Furthermore, the effectiveness of our method was verified because the proposed method outperformed
the reference algorithms.

Tables 4–11 reveal that the proposed method outperformed three state-of-the-art methods.
The results demonstrate that the proposed method is an effective feature selection method. Figure 5b–e
shows that the proposed method exhibited higher exploration and exploitation capability than
the reference algorithm as the search progressed. This is because, as shown in Figure 4, the
evolution-based particles generated better feature subsets than the filter-based particles, on the
RCV1 dataset. Furthermore, increasing the engagement of the evolutionary operator permitted
more evolution-based particles to explore and exploit locations exhibiting potential. Figures 4j–l and
5j–l show that, when the effectiveness of the filter operator was higher than that of the evolutionary
operator, increasing the engagement of the filter operator aided in selecting the important features.
Finally, the experimental results demonstrate that the competitive engagement of the operators could
successfully improve the search performance.

7. Conclusions

Most conventional hybrid approaches for multi-label feature selection do not consider the relative
effectiveness between the evolutionary and filter operators. In this study, we proposed a novel
competitive hybrid approach for multi-label text feature selection aimed at improving the learning
performance by selective engagement of the operators via competition. The experimental results and
a statistical test verified that the proposed method significantly outperformed three state-of-the-art
feature selection methods, on 16 multi-label text datasets.

Future research will focus on the applications for our approach. The proposed method was
designed for multi-label text feature selection. However, it can be applied to other scenarios.



Entropy 2019, 21, 602 21 of 23

The evolutionary feature wrapper and filters should be selected according to the specific application.
We will study this issue further.
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