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80-211 Gdańsk, Poland

2 Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Debinki St.,
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Abstract: The aim of this study was to evaluate the possibility of the gamma oscillation function
(40–130 Hz) to reduce Alzheimer’s disease related pathology in a computer model of the hippocampal
network dentate gyrus, CA3, and CA1 (DG-CA3-CA1) regions. Methods: Computer simulations were
made for a pathological model in which Alzheimer’s disease was simulated by synaptic degradation
in the hippocampus. Pathology modeling was based on sequentially turning off the connections with
entorhinal cortex layer 2 (EC2) and the dentate gyrus on CA3 pyramidal neurons. Gamma induction
modeling consisted of simulating the oscillation provided by the septo-hippocampal pathway with
band frequencies from 40–130 Hz. Pathological models with and without gamma induction were
compared with a control. Results: In the hippocampal regions of DG, CA3, and CA1, and jointly
DG-CA3-CA1 and CA3-CA1, gamma induction resulted in a statistically significant improvement in
terms of increased numbers of spikes, spikes per burst, and burst duration as compared with the model
simulating Alzheimer’s disease (AD). The positive maximal Lyapunov exponent was negative in both
the control model and the one with gamma induction as opposed to the pathological model where
it was positive within the DG-CA3-CA1 region. Gamma induction resulted in decreased transfer
entropy in accordance with the information flow in DG→ CA3 and CA3→ CA1. Conclusions: The
results of simulation studies show that inducing gamma oscillations in the hippocampus may reduce
Alzheimer’s disease related pathology. Pathologically higher transfer entropy values after gamma
induction returned to values comparable to the control model.

Keywords: entropy; neural networks; Alzheimer’s disease; hippocampus; long-term potentiation
(LTP); gamma oscillations; computer simulation

1. Introduction

Gamma oscillations in the hippocampus are nested in slower theta oscillations and are associated
with cognitive function, working memory, and learning, among other functions [1–13]. The results of
several studies confirm that there are two independent generators of gamma waves in the hippocampus,
which are located in the dentate gyrus (DG) and CA3-CA1 regions [1]. In the hippocampus, the
amplitude and frequency of gamma waves may vary from region to region and function independently
in DG, CA3, and CA1 regions [14–16].
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Studies in 5XFAD/PV-Cre mice showed that optogenetic stimulation at a frequency of 40 Hz
decreased the levels of amyloid-β (Aβ) peptide and induced changes in microglia morphology by
increasing Aβ in these glial cells [13–16]. In another study, Roy et al. showed that optogenetic
stimulation with high gamma frequency (100 Hz) reduced memory impairment in APP/PSEN1
mice [17]. In turn, Xia et al. (2017) performed electrical stimulation of entorhinal cortex layer (EC)
cells at a frequency of 130 Hz in a mouse TgCRND8 model (mice genetically engineered to model
Alzheimer’s disease (AD)). The frequency of this stimulation was above the range of biological gamma
oscillation (60–100 Hz), and they found that EC stimulation resulted in blocking accumulation of
consecutive Aβ and reduction of cognitive deficits [18]. The results of these studies indicate the role
of gamma oscillations in reducing not only AD-related cognitive impairment but also AD-related
pathology, and they were inspired by studies by Laxton et al. and Lozano et al. [19,20]. Disturbed
gamma waves associated with a decline in cognitive function have been observed in neurodegenerative
diseases such as AD [21–23]. In experiments simulating memory processes in the Alzheimer’s disease
brain, we distinguish two models of neural networks: biophysical- and connection-oriented [24–27].
Models of neural systems are used in simulations of memory dysfunctions (for example AD) where
gamma oscillation is required as well as various types of neurons. It was proven that both of those
models clearly presented some universal behaviors depending on the manipulations of network factors.
Application of gamma and theta oscillations with different numbers and types of neurons were used in
simulations of memory disorders in Alzheimer’s disease [28–30].

Methods describing the complexity of biological systems such as the hippocampus use positive
Lyapunov exponents, correlative dimensions, Shannon entropy, entropy transfer, and mutual
information [31–34], among others. In many studies of patients with AD, the usefulness of entropy in
the analysis of electroencephalography (EEG) signals has been demonstrated [35–39]. Studies have been
done on experimental treatment strategies in humans with the application of deep brain stimulation to
the fornix–fimbria system, but despite Hz stimulation values they do have not any similarity with
gamma frequencies from the EC to the dentate gyrus. In the fornix there are reciprocal connection
loops between the septum and the hippocampus with various neurotransmitters. We modeled in
our experiments disinhibitory inputs from medial septum–diagonal band gamma-aminobutyric acid
(GABA)ergic cells on hippocampal interneurons provided at a theta frequency of 8 Hz [20,40].

Because there is a lack of studies on the influence of gamma stimulation in Alzheimer’s disease,
our goal was to determine its effect on the pathology of memory processes in the hippocampus in
a computer model. An understanding of these mechanisms can have very important implications
for possible future therapeutic interventions in patients with neurodegenerative diseases such as
Alzheimer’s.

The aim of this study was to examine the hypothesis that inducing the gamma oscillation function
(40–130 Hz) could potentially reduce the symptoms of synaptic breakdown in AD using computational
methods describing the complexity of systems.

2. Materials and Methods

2.1. Study Design

Figure 1 shows a detailed diagram of a simulation of the DG-CA3-CA1 hippocampus network.
Computer simulations were performed for the control model and for pathological models; two models
were for the induction of gamma oscillations, and one model was for no induction. In brief, modeling
of Alzheimer’s disease was based on sequentially turning off connections from EC2 on granule cells
of the dentate gyrus and pyramidal neurons of the CA3 region as well as on inhibitory interneurons
(interrupted connections marked in Figure 2). There were only computer simulations in agreement
with previous statements about staging of Alzheimer’s pathology in humans, especially “preclinical”
stages “0” and “1” with very mild memory impairment, but degeneration of some stellate cells in EC2
already existed in practically all humans above 60 years of age [41,42] (Figure 2). Modeling of gamma
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induction consisted of simulating oscillation of the perforant pathway from EC2 to the dentate gyrus
and CA3 region with band frequencies from 40–100 Hz and with 130 Hz after [18] (Figures 2 and 3).
Our simulation studies allowed comparisons of neuronal parameters, highlighting the complexity of
systems such as the hippocampus, and information theories.
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Figure 1. Simulation Diagram of the dentate gyrus (DG)-CA3-CA1 hippocampal network (control
model vs. pathology model with and without gamma induction (40–130 Hz); red rectangle represents
thumbnail network).
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Figure 2. Simulation study. Dentate gyrus (DG): granule cells (G1–G4), basket cells (B5–B6), and mossy
cell (MC). CA3 region: pyramidal cells (P5–P8), basket cells (B3–B4), and oriens-lacunosum/moleculare
(O-LM2). CA1 region: pyramidal cells (P1–P4), basket cells (B1–B2), and oriens-lacunosum/moleculare
(O-LM1). Ex—excitatory inputs, Inh—inhibitory inputs, and MS-DB—medial septum-diagonal band
region. Modeling of Alzheimer’s disease was based on sequentially turning off connections from EC2
on granule cells of the dentate gyrus and pyramidal neurons of the CA3 region as well as on inhibitory
interneurons (interrupted connections marked in red in DG and CA3 regions). The deletions were
made only in DG-CA3 microcircuits. Modeling of gamma induction consisted of simulating oscillation
of the perforant pathway from entorhinal cortex layer 2 (EC2) to the dentate gyrus and CA3 region,
with band frequencies from 40–130 Hz (marked in purple).
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color changes show the actual weight of particular excitatory synapses, which could be observed on 
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Figure 3. Screen capture from the simulation showing an example of inputs and outputs of the principal
cell (Granule G1—control) on left. On the right, a general diagram of the used neuron model. Red
lines (Ex 1–13) represent excitatory inputs, green lines (Inh 14–16) represent inhibitory inputs, and bars
above the red threshold line (left–bottom) mean output spikes (action potentials—two bursts of five
spikes). Connections from EC2 to granule cells are shown at Ex 1–9. For Ex 1–7, there are bursts of five
action potentials (100 Hz) with inter-burst theta frequency at 8 Hz, shifted in phase between particular
lines. On lines Ex 8 and 9 there were no spikes (silent synapses). For experiments, gamma oscillations
were added at 40, 100, or 130 Hz. On the pyramidal cell model configuration on the right, small
rectangles below synapses mean postsynaptic thickenings. Their color changes show the actual weight
of particular excitatory synapses, which could be observed on the line for each cell during simulation.

2.2. Dentate Gyrus (DG)-CA3-CA1 Model

The neural network scheme associated with DG-CA3-CA1 hippocampal subregions uses
mathematical formulas based on previous studies [43–49]. The detailed hippocampal network
organization is presented in Figure 4 from a recently published paper in Entropy [49]. In brief, our
neural network model consisted of 21 cells, with 4 granule cells, 2 inhibitory interneurons (2 basket
cells), and 1 mossy cell in the DG region, and 4 pyramidal cells, 3 inhibitory interneurons (2 basket
cells, and an oriens-lacunosum/moleculare (O-LM) cell in the CA3 and CA1 regions. Figure 4 shows an
abbreviated diagram of DG and CA3 connections needed for a detailed explanation of the simulation
experiments as shown in Figure 2. The morphology of nerve cells was based on simplification, which
included the cell body, part of the axon, and dendrites with the properties used in the experiments
described in the literature [50–55].
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Figure 4. DG-CA3-CA1 hippocampal formation microcircuit, with the dentate gyrus (DG) region on
the left and CA3 on the right. Major cell types and their connectivity: granule (G1–G4), pyramidal
(P5–P8), basket (B3–B6), oriens-lacunosum/moleculare (O-LM) (2) cell, and mossy cell (MC). T4–T9
represent gamma-aminobutyric acid (GABA)ergic cells in the medial septum-diagonal band (MS-DB)
region. Pyramidal, granule, basket, and O-LM cells consist of 16 compartments with 13 excitatory and
3 inhibitory synapses. Simplified demo version of FC-neuron model available on ModelDB (https:
//senselab.med.yale.edu/modeldb) or (https://medinf.gumed.edu.pl/383.html). With simultaneous
(only on granule, pyramidal, and O-LM cells) action potential on excitatory input and opened
N-methyl-D-aspartate (NMDA) channels, since there is enough depolarization of the postsynaptic
region, long-term potentiation (LTP) induction occurs, and the weight of this synapse is increased.
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2.3. Synaptic Properties

In our DG-CA3-CA1 neural network model, pyramidal, basket, and O-LM cells were built with
16 compartments. In addition, dendrite had both excitatory and inhibitory synapses. We used
computational formality, which characterized the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPA), N-methyl-D-aspartate receptor (NMDA), and receptors that responded to
GABA from previous works [46–49].

2.4. Correlation Dimension, Shannon Entropy, Positive Maximal Lyapunov Exponent, Mutual Information,
and Transfer Entropy

Nonlinear analysis of the results of the control model simulation of pathologies allowed for the
reconstruction of the phase space as a method to describe the complexity of the dynamic system [56].
Reconstruction of the attractor used the time delay method [57,58]. In contrast, the method of false
nearest neighbors selected a minimum dimension of deposition of a one-dimensional time series of
simulation results of neural networks [59]. The final stage was the calculation of correlation dimension,
Shannon entropy, and the positive maximal Lyapunov exponent with the method of recurrence
quantification analysis proposed by Webber and Zbilut [59]. The Shannon entropy of time series of
simulations was based on [60].

In terms of information theory, mutual information was designated as an alternative to correlation
analysis [61–63]. However, because mutual information measures how much information we can have
about signal A knowing B, but does not provide knowledge about the dynamics and direction of flow,
the method of entropy transfer was used [33,34].

2.5. Statistical Methods and Software

Statistical analysis was performed using TIBCO Software Inc. (2017), Statistica (data analysis
software system), version 13, (Palo alto, CA, USA, 2017, http://statistica.io). The significance of
difference between more than two groups was assessed with either Fisher or Kruskal–Wallis tests. For
statistically significant differences between two groups, post hoc tests were used. Chi-squared tests for
independence were used for qualitative variables. In order to determine dependence, strength, and
direction between variables, a correlation analysis was used by determining the Pearson or Spearman’
correlation coefficients. All calculations used a statistical significance level of α = 0.05. Parameter
calculations for complex systems and information theory were made in Neuroscience Information
Theory Toolbox software (Version 2 (2017)) [33].

3. Results

3.1. Neuronal Parameters

In simulations comparing the control model with pathological models with and without induction
of gamma oscillation, the following parameters were used: number of spikes, spikes per burst, burst
duration, and inter-burst interval. These parameters were compared for both the DG-CA3-CA1 and
CA3-CA1 hippocampal regions as well as for the DG, CA3, and CA1 regions separately.

3.1.1. DG-CA3-CA1

The mean values for number of spikes obtained in computer simulations were 505.0 (standard
deviation (SD) 86.4) in the control model, 342.2 (81.3) in the pathological model without gamma
induction, 469.4 (92.7) with gamma induction (40 Hz), 513.4 (46.5) with gamma induction (100 Hz),
and 630.1 (71.0) with artificial stimulation (130 Hz). The pathological model without gamma induction
showed a significantly lower number of spikes compared to the control (p < 0.001) and the pathological
models with induction (40–130 Hz) (p < 0.001). A comparison of the pathological models with gamma
induction (40–100 Hz) relative to the control did not show a statistically significant difference in number
of spikes. The pathological model with artificial induction at 130 Hz showed a significantly higher

http://statistica.io
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number of spikes compared to the control (p < 0.05) and the pathological model with induction (40 Hz)
(p < 0.001) (Figure 5).
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Figure 5. Analysis of simulations of DG-CA3-CA1 (left) and CA3-CA1 (right). Number of spikes, spikes
per burst, burst duration, and inter-burst interval for pyramidal cell compared with control model and
pathology model, with and without induction (40–130 Hz) (* p < 0.05; ** p < 0.01; *** p < 0.001; ns, not
statistically significant).
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Similar associations were obtained for spikes per burst. In the control model the value was
5.4 (1.1); in the pathological model without gamma induction it was 3.4 (1.0), with gamma induction
(40 Hz) it was 5.0 (1.2), with gamma induction (100 Hz) it was 4.5 (0.9), and with induction (130 Hz) it
was 5.7 (1.0). The pathological model without gamma induction showed significantly fewer spikes
per burst relative to the control (p < 0.001) and the pathological models with induction (40–130 Hz)
(p < 0.001). A comparison of the pathological models with induction with the control did not show
a statistically significant difference in spikes per burst (Figure 5).

Calculations comparing burst duration showed that the control was 41.9 (1.3); the pathological
model without gamma induction was 26.6 (7.8), with gamma induction (40 Hz) it was 37.8 (9.2),
with gamma induction (100 Hz) it was 39.4 (7.6), and with induction (130 Hz) it was 40.9 (7.8). The
pathological model without gamma induction showed a significantly lower burst duration relative to
the control (p < 0.001) and the pathological models with induction (p < 0.001). A comparison of the
pathological models with induction (40–130 Hz) with the control did not show a statistically significant
difference in burst duration (Figure 5).

According to predictions, the inter-burst interval parameter for the control was 84.1 (1.3); in the
pathological model without gamma induction it was 102.1 (10.3), with gamma induction (40 Hz) it was
88.8 (9.0), with gamma induction (100 Hz) it 93.4 (8.7), and with artificial induction (130 Hz) it was 91.7
(7.2). The pathological model without gamma induction showed a significantly greater inter-burst
interval relative to the control (p < 0.001) and the pathological models with induction (p < 0.001)
(Figure 3). A comparison of the pathological models with induction with the control did not show
a statistically significant difference in inter-burst intervals (Figure 5).

There were no statistically significant differences between number of spikes per burst,
burst duration, inter-burst interval, and hippocampal models with induction (40–130 Hz) in the
DG-CA3-CA1 region.

3.1.2. CA3-CA1

In the CA3-CA1 hippocampal region, the number of spikes was 550.6 (67.3) in the control model,
364.4 (79.4) in the pathological model without gamma induction, 499.7 (88.7) with gamma induction
(40 Hz), 523.4 (76.7) with gamma induction (100 Hz), and 658.0 (77.1) with artificial induction (130 Hz).
The number of spikes per burst in the control model was 6.0 (0.9); in the pathological model without
gamma induction it was 3.7 (1.0), with gamma induction (40 Hz) it was 5.4 (1.1), with gamma induction
(100 Hz) it was 4.5 (0.7), and with induction (130 Hz) it was 5.9 (1.0). The burst duration in the control
was 42.1 (1.6); in the pathological model without gamma induction it was 26.3 (8.0), with gamma
induction (40 Hz) it was 37.5 (9.3), with gamma induction (100 Hz) it was 39.6 (7.9), and with induction
(130 Hz) it was 40.2 (8.1). The inter-burst interval parameter in the control was 84.3 (1.6); in the
pathological model without gamma induction it was 103.2 (10.2), with gamma induction (40 Hz) it
was 89.6 (9.4), with gamma induction (100 Hz) it was 93.5 (8.7), and with induction (130 Hz) it was
91.3 (6.5) (Figure 5). The results of the statistical tests were the same as those for the corresponding
parameters in the DG-CA3-CA1 region (Section 3.1.1, DG-CA3-CA1).

There were no statistically significant differences between number of spikes per burst,
burst duration, inter-burst interval, and hippocampal models with induction (40–130 Hz) in the
CA3-CA1 region.

3.1.3. DG, CA3, and CA1

In the DG hippocampal region, the number of spikes was 413.0 (5.0) in the control model, 297.8
(67.2) in the pathological model without gamma induction, 384.4 (79.6) and 409.6 (69.3) with gamma
induction (40 and 100 Hz), and 574.3 (58.9) with artificial stimulation at 130 Hz. The number of spikes
in the CA3 region was 587.8 (20.1) in the control model, 388.0 (80.2) in the pathological model without
gamma induction, 492.2 (108.0) and 526.5 (92.8) with gamma induction (40 and 100 Hz), and 649.7 (96.3)
with artificial stimulation at 130 Hz. The corresponding values in the CA1 region were 513.5 (80.5) in
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the control, 340.8 (73.6) in the pathological model without gamma induction, 443.1 (94.0) and 513.6
(76.5) with gamma induction (40 and 100 Hz), and 666.3 (57.8) with artificial stimulation at 130 Hz
(Figure 6).
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Figure 6. Analysis of simulations DG, CA3, and CA1. Number of spikes, spikes per burst, burst duration,
and inter-burst interval for pyramidal cells comparing control model and pathology model with and
without induction (40–130 Hz) (* p < 0.05; ** p < 0.01; *** p < 0.001; ns, not statistically significant).
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The number of spikes per burst in the DG region was 4.2 (0.1) in the control model, 2.8 (0.8) in the
pathological model without gamma induction, 3.9 (1.0) and 4.2 (0.7) with gamma induction (40 and 100
Hz), and 5.2 (0.9) with artificial stimulation at 130 Hz. The values in the CA3 region were 6.4 (0.3) in
the control, 4.0 (1.0) in the pathological model without induction, 5.3 (1.3) and 5.7 (0.7) with induction
(40 and 100 Hz), and 6.1 (0.9) with artificial stimulation at 130 Hz. The values in the CA1 region were
5.5 (1.0) in the control, 3.4 (0.9) and 4.7 (1.2) in the pathological models (40 and 100 Hz), and 5.7 (1.1)
with artificial stimulation at 130 Hz (Figure 6).

The burst duration values of the DG region were 41.6 (0.5) in the control model, 27.3 (7.8) in the
pathological model without gamma induction, 45.3 (0.5) and 40.7 (6.8) with gamma induction (40 and
100 Hz), and 42.3 (7.3) with artificial stimulation at 130 Hz. The values in the CA3 region were 43.0
(1.1) in the control, 27.2 (8.2) in the pathological model without induction, 35.4 (10.0) and 37.9 (9.6)
with gamma induction (40 and 100 Hz), and 41.2 (8.7) with artificial stimulation at 130 Hz. In the
CA1 region, the values were 41.2 (1.7) in the control, 25.3 (7.8) in the pathological model without
induction, 34.5 (9.9), and 37.1 (9.4) in the pathological models (40 and 100 Hz), and 39.2 (7.4) with
artificial stimulation at 130 Hz (Figure 6).

The inter-burst interval values of the DG region were 83.7 (0.5) in the control model, 99.9 (10.3) in
the pathological model without gamma induction, 90.3 (9.6) and 94.4 (11.2) with gamma induction
(40 and 100 Hz), and 92.6 (8.7) with artificial stimulation at 130 Hz. In the CA3 region, they were 83.4
(1.1) in the control, 101.2 (10.3) in the pathological model without induction, 91.7 (10.7) and 92.4 (5.2) in
the pathological models with induction (40 and 100 Hz), and 90.2 (4.6) with artificial stimulation at 130
Hz. In the CA1 region the values obtained were 85.2 (1.7), 105.2 (10.0), 94.1 (11.0) and 95.3 (10.6), and
92.3 (8.4), respectively (Figure 6).

The results of the statistical tests were the same as those for the corresponding parameters in the
DG-CA3-CA1 region (Section 3.1.1) and CA3-CA1 region (Section 3.1.2).

There were no statistically significant differences between number of spikes per burst, burst
duration, inter-burst interval, and hippocampal models with induction (40–100 Hz) in the DG, CA3,
and CA1 regions.

3.2. Parameters in the Complex System: Hippocampus

The parameters of correlation dimension, Shannon entropy, and positive maximal Lyapunov
exponent were compared between the control model and the pathological models with and without
gamma induction.

3.2.1. DG-CA3-CA1

In the DG-CA3-CA1 hippocampal region, the correlation dimension was 6.0 (1.5) in the control
model, 5.3 (2.7) in the pathological model without gamma induction, 5.4 (2.3) and 6.1 (2.4) with gamma
induction (40 and 100 Hz), and 5.9 (1.9) with artificial stimulation at 130 Hz. There were no statistically
significant differences in the correlation dimension of the models (p > 0.05).

Shannon entropy was 1.9 (1.3) in the control model, 2.2 (1.1) in the pathological model without
gamma induction, 0.9 (0.3) and 0.9 (0.4) with gamma induction (40 and 100 Hz), and 1.0 (0.3) with
artificial stimulation at 130 Hz. In the pathological model with induction, a statistically significant
decrease in entropy was seen relative to the model without induction (p < 0.001) and to control
(p < 0.01).

Positive Lyapunov exponents were −0.1 (0.3) in the control model, 0.1 (0.1) in the pathological
model without gamma induction, −0.9 (0.3) and −1.0 (0.3) with gamma induction (40 and 100 Hz), and
−1.0 (0.2) with artificial stimulation at 130 Hz. In the pathological models with induction, a statistically
significant decrease in the positive Lyapunov exponent was seen relative to the model without induction
(p < 0.001) and the control (p < 0.001) (Figure 7).
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Figure 7. Nonlinear analysis of simulations of DG-CA3-CA1 region (left) and CA3-CA1 (right).
Comparison of control model and pathological model with and without induction (40–130 Hz);
correlation dimension, entropy, and positive Lyapunov exponent for pyramidal cells (* p < 0.05, ** p <

0.01, and *** p < 0.001).

There were no statistically significant differences between correlation dimension, Shannon entropy,
positive Lyapunov exponents, and hippocampal models with gamma induction (40 and 100 Hz) in the
DG-CA3-CA1 region.
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3.2.2. CA3-CA1

Similar to the DG-CA3-CA1 hippocampal region, there were no statistically significant differences
between correlation dimension of models (p > 0.05), and the values obtained were 5.5 (1.7) in the
control model, 5.3 (2.5) in the pathological model without gamma induction, 4.7 (2.3) and 6.0 (2.4) with
gamma induction (40 and 100 Hz), and 5.5 (2.0) with artificial stimulation at 130 Hz.

Shannon entropy in the CA3-CA1 region was 1.3 (1.1) in the control model, 1.6 (0.9) in the
pathological model without gamma induction, 0.9 (0.2) and 1.0 (0.4) with gamma induction (40 and
100 Hz), and 1.1 (0.3) with artificial stimulation at 130 Hz. Contrary to the DG-CA3-CA1 region,
a statistically significant decrease in entropy in the pathological model with gamma induction compared
to the model without induction was seen (p < 0.001).

In contrast, positive Lyapunov exponents were −0.1 (0.4) in the control model, 0.1 (0.1) in the
pathological model without gamma induction, −0.9 (0.3) and −1.0 (0.3) with gamma induction (40 and
100 Hz), and −1.0 (0.3) with artificial stimulation at 130 Hz. In the pathological models with induction,
a statistically significant decrease in the positive Lyapunov exponent relative to the model without
induction (p < 0.001) and to control (p < 0.001) was seen. In addition, the positive Lyapunov exponent
of the control model was significantly lower compared to the positive Lyapunov exponent of the
pathological model without induction (p < 0.05) (Figure 7).

There were no statistically significant differences between correlation dimension, Shannon entropy,
positive Lyapunov exponents, and hippocampal models with gamma induction (40–100 Hz) in the
CA3-CA1 region.

3.2.3. DG, CA3, and CA1

The correlation dimension values in the DG region were 7.0 (0.1) in the control model, 5.3 (3.3) in
the pathological model without gamma induction, 7.0 (1.5) and 6.5 (2.3) with gamma induction (40 and
100 Hz), and 6.8 (1.8) with artificial stimulation at 130 Hz. Correlation dimension was significantly
higher in the pathological models with induction compared to the model without induction (p < 0.01)
and to control (p < 0.05). The values in the CA3 region were 5.5 (1.7) in the control and 5.8 (2.5) in the
pathological model without induction, 4.6 (1.9) and 6.0 (2.1) in the pathological models with induction
(40 and 100 Hz), and 5.8 (2.0) with artificial stimulation at 130 Hz. The values in the CA1 region were
5.5 (1.9), 4.8 (2.4), 4.7 (2.7), and 5.0 (2.3) in the control and pathological models, respectively. The value
in the CA3 region was 5.1 (1.9) in the pathological model with artificial stimulation at 130 Hz. In both
the CA3 and CA1 regions, there were no statistically significant differences in correlation dimension
relative to hippocampus models (p > 0.05).

The Shannon entropy of the DG region was 3.2 (0.7) in the control model, 3.4 (0.2) in the pathological
model without gamma induction, 0.8 (0.4) and 0.8 (0.5) with gamma induction (40 and 100 Hz), and 0.9
(0.4) with artificial stimulation at 130 Hz. Shannon entropy was significantly lower in the pathological
models with gamma induction than in the model without induction (p < 0.001) and the control (p < 0.01).
In the CA3 region, the values were 1.9 (0.9) in the control, 1.9 (0.5) in the pathological model without
induction, 0.9 (0.3) and 0.9 (0.4) in the pathological models with induction (40 and 100 Hz), and 0.9 (0.3)
with artificial stimulation at 130 Hz. In the CA1 region, the values were 0.7 (0.9), 1.3 (1.1), 1.0 (0.1), and
1.2 (0.2) in the control and pathological models, respectively. The Shannon entropy of the CA3 region
was 1.3 (0.3) in the pathological model with artificial stimulation at 130 Hz. In both CA3 and CA1
regions, there were no statistically significant differences between Shannon entropy and hippocampal
models (p > 0.05) (Figure 8).

Positive Lyapunov exponents of the DG region were 0.02 (0.01) in the control model, 0.02 (0.01) in
the pathological model without gamma induction, and −0.7 (0.5) and −0.8 (0.4) with gamma induction
(40 and 100 Hz). In the CA3 region, the values were −0.1 (0.4) in the control, 0.04 (0.01) in the
pathological model without induction, −0.9 (0.4) and −1.0 (0.3) with induction (40 and 100 Hz), and
−1.0 (0.2) with artificial stimulation at 130 Hz. In the pathological model with induction, we observed
a statistically significant decrease in the positive Lyapunov exponent relative to the induction-free
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model (p < 0.001) and control (p < 0.001) in both DG and CA3. Positive Lyapunov exponents of the
CA1 region were −0.1 (0.4) in the control model, 0.1 (0.03) in the pathological model without gamma
induction, −1.0 (0.01) with gamma induction (40 and 100 Hz), and −1.0 (0.3) with artificial stimulation
at 130 Hz. In the pathological models with induction, we observed a statistically significant decrease
in the positive Lyapunov exponent relative to the model without induction (p < 0.001) and control
(p < 0.001). In addition, the positive Lyapunov exponent of the control model was significantly lower
compared to that of the pathological model without induction (p < 0.05) (Figure 8).

There were no statistically significant differences between correlation dimension, Shannon entropy,
positive Lyapunov exponents, and hippocampal models with gamma induction (40 and 100 Hz) in the
DG, CA3, and CA1 regions.
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Figure 8. Nonlinear analysis of simulations of DG, CA3, and CA1. Comparison of control model
and pathological model with and without induction (40–130 Hz); correlation dimension, entropy, and
positive Lyapunov exponent for pyramidal cells (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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3.3. Transfer Entropy and Mutual Information

Figure 9 presents the transfer entropy of control and pathological models with and without
induction (40–130 Hz) between neurons of the DG and CA3 regions as well as CA3 and CA1 regions.
Figure 10 provides mutual information between all neurons of the DG, CA3, and CA1 regions in the
control and pathological models. In the control and the pathological model with induction, transfer
entropy had lower values compared to the pathological model without induction according to the flow
of information from DG to CA3. Similarly, there was an increase in transfer entropy in the pathological
model without induction relative to the control and the pathological models with induction from CA3
to CA1.

Figure 10 presents the mutual information of the control and pathological models with and
without induction (40–130 Hz) between neurons of the DG and CA3 regions as well as CA3 and CA1
regions. Figure 10 presents mutual information between all neurons of the DG, CA3, and CA1 regions
of the control and pathological models. In the control and pathological models with gamma induction,
transfer entropy had lower values compared to the pathological model without induction according to
the flow of information from DG to CA3. Similarly, there was an increase in mutual information in
the pathological model without induction relative to the control and the pathological models with
induction from CA3 to CA1.

In the control model, mutual information of neurons in the CA1, CA3, and DG regions was
very high. However, the relationships between neurons in the DG and CA3 as well as CA3 and CA1
regions were much less. In the pathological model without induction, there was a reduction in the
degree of interactions between neurons in the CA3, CA1, and DG regions. However, there was an
increase in mutual information of the neurons of DG and CA3. The use of gamma induction (40
Hz) in the pathological model caused mutual information between neurons in particular areas of the
hippocampus to have similar values as the control model.
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Figure 9. Transfer entropy (TE) between neurons of DG and CA3, and CA3 and CA1 for control and
pathological models with and without gamma induction (40–130 Hz) (G1–G4 granule cells of DG,
P1–P4 pyramidal cells of CA1, and P5–P8 pyramidal cells of CA3 region).
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Figure 10. Mutual information (MI) between neurons of hippocampus (DG-CA3-CA1) for control and
pathological models with and without gamma induction (40–130 Hz) (G1–G4 granule cells of DG,
P1–P4 pyramidal cells of CA1, and P5–P8 pyramidal cells of CA3 region).
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4. Discussion

The results of the experiments described in the literature show that gamma oscillations in the
hippocampus are very important in cognitive processes [12,64,65]. In our simulation study, we showed
that gamma induction in the pathological model of Alzheimer’s disease influenced the improvement
of cognitive function in the form of increased number of spikes, spikes per burst, burst duration, and
reduced inter-burst interval relative to the model without induction. An interesting confirmation of this
improvement was the lack of statistically significant differences in the values of neuronal parameters
relative to the control. The results of our simulation experiment can be compared to the results of the
study in 5XFAD mice, where the induction of gamma oscillation, using optogenetics, influenced the
reduction of Aβ peptides [66]. In addition, reduced gamma oscillation has been observed in many
regions of the brain in neurological disorders, including patients with Alzheimer’s disease and many
mouse models of AD [13–16].

Hasselmo et al. created a model based on runaway synaptic modification, as a mechanism of
degradation of memory in AD [67,68], whereas the models of Menschik and Finkel, inspired by the
exponential increase in the strength of synaptic connections, were based on the loss of cholinergic
connections in Alzheimer’s disease [24,28–30]. Our model of the hippocampal network system was
a full connectionist model, which means that each synaptic connection was individually positioned on
a particular neuron, and there were various types of neurons and input patterns [46–49].

A detailed analysis of the nonlinear dynamics of the simulation results of pathological and control
models showed that the correlation dimension played a significant role only in the DG region. The
complexity of this region was significantly higher in the pathological model with gamma induction
relative to the model without induction and the control. It can be concluded that gamma induction,
which causes an increase in neuronal parameters, requires more degrees of freedom.

Shannon entropy, considered as the average amount of information, was significantly lower after
gamma induction in the pathological model in DG-CA3-CA1, CA3-CA1, and DG regions relative to the
model without gamma induction. The calculated Lyapunov exponents showed that the control and
the pathological model with gamma induction in DG-CA3-CA1, CA3-CA1, DG, CA3, and CA1 regions
had negative values (i.e., they were stable systems). Positive Lyapunov exponents for the pathological
model without induction make it an unstable system with chaos. Gamma induction in a pathological
model brings the system to a stable point. The usefulness of Shannon entropy and transfer entropy in
the analysis of EEG signals in Alzheimer’s disease has been demonstrated. The increased value of
Shannon entropy in AD has been shown in previous studies [35–38].

Information in the hippocampus flows from DG to CA3 and from CA3 to CA1. Although the
calculated Shannon information entropy values showed its decline with the direction of information
flow for the control and the pathological model without induction, the process of constant dissipation
of energy caused its growth for the entire brain. The results of the mutual information analysis showed
a very strong linkage between the neurons of DG, CA3, and CA1 areas of the hippocampus, while
the interaction of DG with CA3 in the control model was weak. The pathological model without
gamma induction showed a weakening of the linkage in the CA3, CA1, and DG areas while enhancing
the interaction between DG and CA3. The promising result after the use of gamma induction in the
pathological model was a return to conditions close to control.

In our control model simulation experiment, transfer entropy values from DG to CA3 and from
CA3 to CA1 fell into the medium range and showed mutual balance. The pathological model without
induction indicated an increase in transfer entropy from DG to CA3 with a very strong increase from
CA3 to CA1. Gamma (40–100 Hz) induction reduced the symptoms of AD pathology in simulations.
The use of gamma induction (40 Hz) in the pathological model caused mutual information between
neurons in particular areas of the hippocampus to have similar values as the control model. The use of
130 Hz stimulation of granule cells improved the out-coming firing to values even higher than control
simulations without synaptic deletion. It is impossible to compare results of our 10 s model simulation
to 1 h entorhinal deep-brain stimulation and to the extensive behavioral experiments during a few
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months, as seen in Frances Xia et al. [18] where their results in a genetically-based mouse model of AD
are very impressive.

5. Conclusions

The results of simulation studies show that inducing gamma oscillations in the hippocampus
may reduce Alzheimer’s disease related pathology. Pathologically higher transfer entropy values after
gamma induction returned to values comparable to the control model.
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48. Świetlik, D. Simulations of Learning, Memory, and Forgetting Processes with Model of CA1 Region of the
Hippocampus. Complexity 2018, 2018. [CrossRef]
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