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Abstract: We consider a repeated betting market populated by two agents who wage on a binary
event according to generic betting strategies. We derive new simple criteria, based on the difference of
relative entropies, to establish the relative wealth of the two agents in the long-run. Little information
about agents’ behavior is needed to apply the criteria: it is sufficient to know the odds traders believe
fair and how much they would bet when the odds are equal to the ones the other agent believes fair.
Using our criteria, we show that for a large class of betting strategies, it is generically possible that
the ultimate winner is only decided by luck. As an example, we apply our conditions to the case of
Constant Relative Risk Averse (CRRA) and quantal response betting.

Keywords: bounded rationality; betting strategies; market selection; recurrent processes; luck

1. Introduction

Consider a repeated market for betting where two agents wage on the outcomes of a binary event.
Agent behavior is described by generic betting strategies that depend on prevailing odds. If the odds
are fixed, the strategy that guarantees optimal wealth growth is the Kelly rule [1,2]. If the odds depend
on agents’ bets via the parimutuel procedure, in a population of Kelly bettors, the one with the most
accurate beliefs accrues all the wealth and asymptotically dominates the market [3]. This is a particular
case of the results derived in the equivalent setting of inter-temporal general equilibrium models with
short-lived securities [4,5]. In a similar framework, an agent adopting the Kelly strategy and having
correct beliefs will surely retain a positive wealth share, that is he/she survives, when trading against
price-independent rules [6]. The global behavior of the Kelly strategy with perfect information being
established, it remains to understand what happens when agents do not bet according to Kelly and/or
are not perfectly informed. In a market populated by utility maximizers, the agent who trades knowing
the correct probabilities always realizes a non-negative expected profit [7]. In the case of bettors using
the fractional Kelly rule, a generalization of the Kelly rule that includes a risk-aversion parameter,
sufficient and, apart from hairline cases, necessary conditions for strategy dominance or survival
has been derived [8,9]. These conditions generalize and correct previous tentative results based on
numerical simulations [10]. In intertemporal equilibrium models, when more general strategies are
adopted, one can observe path-dependent cases, in which the agent who dominates depends on the
sequence of realized events [11]. In general equilibrium models, a necessary and sufficient condition for
a trader to vanish, i.e., to lose everything almost surely, can be obtained by approximating prices with
a convex combination of traders’ discounted beliefs [12]. In the same framework, using arguments
similar to those presented in this paper, one can obtain general conditions to study the long-run
dynamics of relative consumption and, eventually, agent survival. When agents’ utility is not time
separable, several long-run selection outcomes may occur, included cases in which path dependency
emerges [13].
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In the present paper, we propose criteria, based on the signs of the differences of relative entropies,
that can be applied to generic strategies depending on prevailing market odds. The criteria are simple
and abstract from strategy-specific details. It is sufficient to know the odds bettors consider fair and the
amount each bettor is willing to bet when the odds are equal to the ones the other bettor believes fair
to understand if one bettor will eventually dominate the market or, conversely, if the two bettors will
asymptotically retain a finite, and fluctuating, amount of wealth. Interestingly, by considering generic
strategies, one recovers the traditional role of luck in the game of chance, often neglected in some of
the previously-mentioned studies. Indeed, in our setting, it is generically possible that the ultimate
fate of a bettor is not only decided by the adopted strategy, but also by the specific realized sequence
of binary events. As examples, we apply the new criteria to the case of Constant Relative Risk Averse
(CRRA) bettors and to the case of agents following logit quantal response betting strategies [14,15].

2. Model

Consider two agents who make a sequence of consecutive bets against each other on binary
events. The rounds of betting are indexed by t ∈ N, and in each t, the outcome of the event st ∈ {0, 1}
is an independent Bernoulli trial with success probability π∗: st = 1 means that the event occurs,
while st = 0 that it does not. In each round t, agent i ∈ {1, 2} has to choose the fraction of wealth
to be wagered bi

t and the side of the bet σi
t ∈ {0, 1}, where one means betting on the occurrence of

the event, while zero betting against it. We assume that the amount bet is redistributed among the
winners according to the parimutuel procedure, that is proportionally to how much they have bet,
without any house-take. Let pt be the prevailing inverse odds ratio at round t for the occurrence of the
event. Thus, if st = 1, the agent betting on the occurrence of the event receives 1/pt times the amount
bet, while if st = 0, the agent betting against the occurrence of the event receives 1/(1− pt) times the
amount bet. Agents’ betting strategies are based on prevailing odds, and they try to maximize their
gain by increasing their bet when they perceive favorable opportunities. Following [10], we assume
the following:

1. for each agent i, there exists a constant “fair” inverse odds p̄i ∈ (0, 1);
2. each agent i chooses the side of the bet comparing prevailing odds with those she/he believes

fair: she/he bets on the occurrence of the event (σi
t = 1) if the odds are higher than those she/he

believes fair (pt < p̄i), while she/he bets against the occurrence of the event (σi
t = 0) if the odds

are lower than those she/he believes fair (pt > p̄i);
3. for each agent i, there exists a continuous betting function bi ∈ [0, 1) such that:

(a) bi( p̄i) = 0: agent i is willing to bet nothing when she/he considers prevailing odds fair,
(b) 0 < bi(pt) < 1 when pt 6= p̄i: agent i cannot bet more than what she/he owns. The

possibility that she/he bets all her wealth is ruled out as it would lead to wealth zero
almost surely.

Without loss of generality we set p̄1 < p̄2. Thus, if wi
t−1 is the wealth of agent i ∈ {1, 2} before the

event at time t is realized, the prevailing inverse odds pt are set by the equation:

w1
t−1b1(pt)

1− pt
=

w2
t−1b2(pt)

pt
(1)

being always σ1
t = 0 and σ2

t = 1. We require that the functions bi are such that (1) admits one and only
one solution. This is for instance the case if they are monotonic, strictly concave, or strictly convex on
the set of attainable prices. The amount of wealth that is not bet is invested in a risk-less asset that pays
no interest. Hence, after the event at round t is realized, the wealth of agents is updated according to
wi

t = Ri
st(pt)wi

t−1 with:

Ri
s(p) = (1− bi(p)) + δs,i−1 bi(p)

(
δi,1

1− p
+

δi,2

p

)
(2)
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where δa,b is the Kronecker delta and Ri
s(p) represents the gross return of wealth of agent i, conditional

or prevailing odds p, and realized outcome s. Since the house takes no fee, the aggregate wealth is
constant, and we set wt = w1

t + w2
t = 1 such that pt ∈ [ p̄1, p̄2] and pt = p̄i if and only if wi

t = 1.

3. Long-Run Selection

The dynamics of wealth described by (2) can lead to two different outcomes: either a single
agent accrues all the wealth and dominates the market or both agents indefinitely survive, each with
a positive, and fluctuating, fraction of wealth. In general, the fate of an agent could depend on the
specific sequence of realizations of the random variable st. The behavior of the system can be described
using the logarithm of the relative wealth of Agent 2 with respect to Agent 1, zt = log(w2

t /w1
t ).

Indeed, the asymptotic behavior of zt summarizes all the relevant information about the agents’ fate: zt

diverges toward +∞ if and only if w1
t → 0 and w2

t → 1; zt diverges toward −∞ if and only if w1
t → 1

and w2
t → 0; zt does not diverge if and only if both agents maintain a strictly positive wealth share in

the long-run.
Consider the conditional odds-adjusted wealth growth rate for agent i obtained by dividing the

realized wealth growth rate by the odds of the realized outcome:

Qi
0(p) = Ri

0(p) (1− p) , Qi
1(p) = Ri

1(p) p .

Due to individual budget constraints and market clearing condition (1), one has ∑1
s=0 Qi

s(p) = 1.
Those quantities can be thought of as the wealth shares the agent allocates to the possible realizations
of the Bernoulli trial [13,16]. Since in every t, each agent i keeps a fraction 1− bi(pt) of her/his wealth
in the risk-less security, this is as if she/he is constantly allocating a share (1− bi(pt))pt of her/his
wealth on the realization of the event and a share (1− bi(pt))(1− pt) against the realization of the
event. To those fractions, Agent 1 adds b1(pt) against the event, while Agent 2 adds b2(pt) on the
occurrence of the event. Then, we define the relative entropy of the odds-adjusted growth rate with
respect to the true probability of the outcome:

Ii
π∗(p) = π∗ log

(
π∗

Qi
1(p)

)
+ (1− π∗) log

(
1− π∗

Qi
0(p)

)
. (3)

Under the wealth shares interpretation of {Qi
s(p)}, Ii

π∗(p) can be interpreted as a measure of how
different from the best possible allocation agent i’s one is [11]. We know from the literature [3–5,10]
that the best allocation is the Kelly rule, which corresponds to allocating wealth to each possible
realization of the Bernoulli trial according to the true probabilities, π∗ and 1− π∗.

It is immediate to verify that the drift of the process zt conditional on prevailing odds is just the
difference of the relative entropy (3) of the odds-adjusted growth rates of the two agents:

µz(p) = E[zt − zt−1|p] = I1
π∗(p)− I2

π∗(p) . (4)

The agent who gains wealth in expectation is the agent whose odds-adjusted growth rates have
the lowest relative entropy with respect to the true probabilities at prevailing odds, or, equivalently,
the one whose wealth shares allocated to the realizations of the Bernoulli trial have the lowest relative
entropy with respect to the Kelly rule at prevailing odds. Studying the details of the trajectory of the
agents’ relative wealth would require detailed knowledge of the betting strategies. Nonetheless, in
order to characterize the long-run behavior of the model, such full knowledge is not necessary.

Proposition 1. Let σ = {s1, s2, . . .} denote a realization of the Bernoulli process, and let wi
t(σ) be the associated

sequence of agent i’s wealth. If agents’ betting strategies satisfy the requirements of Section 2, then:

(i) if I1
π∗( p̄1) > I2

π∗( p̄1) and I1
π∗( p̄2) > I2

π∗( p̄2), then almost surely Agent 2 dominates: she/he accrues all
the wealth, limt→∞ w2

t = 1 and limt→∞ pt = p̄2;
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(ii) if I1
π∗( p̄1) < I2

π∗( p̄1) and I1
π∗( p̄2) < I2

π∗( p̄2), then almost surely Agent 1 dominates: she/he accrues all
the wealth, limt→∞ w1

t = 1 and limt→∞ pt = p̄1;
(iii) if I1

π∗( p̄2) < I2
π∗( p̄2) and I1

π∗( p̄1) > I2
π∗( p̄1), then almost surely both agents survive: they retain a

positive amount of wealth, lim supt→∞ wi
t > 0 for i = 1, 2, and prevailing odds fluctuate in ( p̄1, p̄2);

(iv) if I1
π∗( p̄2) > I2

π∗( p̄2) and I1
π∗( p̄1) < I2

π∗( p̄1), then either limt→∞ w2
t (σ) = 1 or limt→∞ w1

t (σ) = 1
depending on the realization of the Bernoulli process σ.

Proof. Define the (conditional) increment g(p, s) = zt+1 − zt when pt = p and st+1 = s. From (2),
remembering that, by hypothesis, b1(p) and b2(p) cannot be both zero for the same p and are
continuous, it is immediate to see that:

log
1− B2

1 + B1 p̄2/(1− p̄2)
< g(p, 0) < 0 < g(p, 1) < log

1 + B2(1− p̄1)/ p̄1

1− B1 ,

where Bi = max{bi(x)| p̄1 ≤ x ≤ p̄2}. Thus, the increments g are finite and bounded, and Theorems 2.2,
3.1, and 3.2 of [17] can be applied to the process {zt}. Notice that limz→−∞ E[zt+1− zt|zt = z] = µz( p̄1)

and limz→+∞ E[zt+1 − zt|zt = z] = µz( p̄2). Thus, if µz( p̄1), µz( p̄2) > 0, then limt→∞ zt = +∞,
whence (i). If µz( p̄1), µz( p̄2) < 0, then limt→∞ zt = −∞, whence (ii). If µz( p̄1) > 0 and µz( p̄2) < 0,
then there exists a finite interval A such that zt ∈ A almost surely for any t, whence (iii). If µz( p̄1) <

0 and µz( p̄2) > 0, then on any Bernoulli sequence, either limt→∞ zt = +∞ or limt→∞ zt = −∞,
whence (iv).

In order to decide the survival or dominance of agents, it is not generically necessary to know
all the details of the investment strategies, but simply the Bernoulli probability π∗, the inverse odds
considered fair by the two agents, p̄1 and p̄2, and two positive numbers, b1( p̄2) and b2( p̄1), representing
the fraction of wealth one agent bets if the odds are equal to those the other agent would consider fair.
These quantities are sufficient to compute the relative entropy Ii

π∗( p̄j) with i, j ∈ {1, 2} that appears in
Proposition 1. An informationally-constrained external observer, who knows the true probabilities
driving the occurrence of events, but does not have perfect knowledge of individual behaviors, can
thoroughly infer long-run selection outcomes exploiting only a very limited amount of information
about the agents’ strategies [14,15]. A similar result, based on similar techniques, can be obtained
in a general equilibrium model with complete markets, provided agent preferences satisfy certain
assumptions [13].

It is immediate to see that if π∗ > p̄2, we are in Case (i), while if π∗ < p̄1, we are in Case (ii),
recovering a result in [10]. The definitions of survival and dominance in [10] are weaker than the
ones adopted here. Given the relative simplicity of the considered process, however, their conclusions
are still valid. Notice that the dominance of any agent in Case (iv) is not only realized on peculiar
zero-measure sequences, like the sequence of all ones or the sequence of all zeros, but on sets of
sequences with finite probability. This is where luck enters into the picture: both agents might
dominate and accrue all wealth, but only Fortuna will decide who.

4. Example with CRRA Bettors

The betting strategies introduced in Section 2 are flexible enough to accommodate several
behavioral prescriptions. As an illustrative example, in this section, we consider the case in
which agents bet to maximize the expected utility of wealth using a power utility function with
Constant Relative Risk Aversion (CRRA). Call γi > 0 the relative risk aversion coefficient of
agent i and πi the subjective probability (belief) that agent i assigns to the realization of the
event, which is precisely the inverse odds that agent i would consider fair. Assuming π1 < π2,
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for pt ∈ [π1, π2], Agent 1 bets against the occurrence of the event a fraction of wealth b1 that maximizes
π1(1− b1)1−γ1

+ (1− π1)(1− b1 pt/(1− pt))1−γ1
to obtain:

b1(pt) =

(
pt(1− π1)

) 1
γ1 −

(
π1(1− pt)

) 1
γ1

(pt(1− π1))
1

γ1 + pt (π1)
1

γ1 (1− pt)
1−γ1

γ1

. (5)

Conversely, Agent 2 bets in favor of the realization of the event a fraction of wealth b2 that
maximizes π2(1 + b2(1− pt)/pt)1−γ2

+ (1− π2)(1− b2)1−γ2
to obtain:

b2(pt) =

(
π2(1− pt)

) 1
γ2 −

(
pt(1− π2) 1

γ2

(π2(1− pt))
1

γ2 + (1− pt) (1− π2)
1

γ2 (pt)
1−γ2

γ2

. (6)

The positive risk aversion implies that agents never bet the totality of their wealth. Figure 1
provides two examples of how agents’ betting strategies vary depending on the inverse odds ratio.
In the effective price support, betting strategies are always continuous and strictly concave, so that
the equilibrium market odds always exist and are unique. If we set γi = 1 for i = 1, 2, we recover
the case of Kelly betting: agents maximize the expected log-growth rate of their wealth. In this case,
previous contributions [3–5,10] showed that the agent whose beliefs had a lower relative entropy with
respect to the truth dominates in the long-run. In the other cases, instead, the selection dynamics
are richer. Figure 2 reports the long-run selection outcomes inferred using the conditions from
Proposition 1. Depending on agents’ risk aversion and beliefs, any case of Proposition 1 may generically
occur. Notice how low risk aversion and asymmetric beliefs enhance the role of luck in deciding
the ultimate winner. This is in line with previous findings about path-dependent, long-run selection
outcomes [11,13].

(a) (b)

Figure 1. Constant Relative Risk Averse (CRRA) agents’ betting strategies. In both panels, we set
p̄1 = 0.3 and p̄2 = 0.75; (a) γ1 = γ2 = 2; (b) γ1 = γ2 = 0.5.
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(a) (b)

(c) (d)

Figure 2. Dominance, survival, and vanishing of CRRA agents for different combinations of fair inverse
odd ratios p̄i. 1D: Agent 1 dominates; 2D: Agent 2 dominates; 1,2S: both agents survive; 1D2D: either
Agent 1 or Agent 2 dominates. (a) π∗ = 0.45, γ1 = γ2 = 2; (b) π∗ = 0.45, γ1 = γ2 = 0.5; (c) π∗ = 0.45,
γ1 = 2, γ2 = 0.5; (d) π∗ = 0.75, γ1 = 0.5, γ2 = 2.

5. Example with Logit Quantal Response Bettors

In this section, we use our criteria to assess long-run selection outcomes of a repeated betting
market where agents’ behavior is described by a quantal response function [14,15]. Suppose that
agent i wants to bet a fraction of wealth xi

0 against the realization of the event and a fraction xi
1 on the

realization of the event. As in the previous example, the agent assigns a subjective probability πi to
the realization of the event. Her/his expected payoff for round t is:

Ui(xi
0, xi

1) = πi
(
(1− xi

0) + 1 + xi
1

1− pt

pt

)
+ (1− πi)

(
1 + xi

0
pt

1− pt
+ (1− xi

1)

)
.

The agent maximizes the expected payoff under the constraints xi
0 + xi

1 = 1 and I(xi
0, xi

1) ≥ Hi,
where I(xi

0, xi
1) is the entropy of the portfolio (xi

0, xi
1) and Hi is the minimum level of portfolio entropy,

that is the maximum level of information attainable by the agent. Notice that if Hi = 0, full information,
the solution is either xi

0 = 1, xi
1 = 0 or xi

0 = 0, xi
1 = 1 depending on πi and pt, that is a boundary

solution. The problem becomes:

max
xi

0,xi
1

L = Ui(xi
0, xi

1) + λi(−Hi − xi
0 log xi

0 − xi
1 log xi

1) + ηi(1− xi
0 − xi

1)
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and given the constraints, we obtain the solutions:

xi
0 =

eβi pt−πi
1−pt

eβi pt−πi
1−pt + eβi πi−pt

pt

, xi
1 =

eβi πi−pt
pt

eβi pt−πi
1−pt + eβi πi−pt

pt

,

where βi > 0 is a monotonic decreasing function of Hi and βi → +∞ when Hi → 0. The more the
agent is informationally constrained, the smaller the β. Notice that agent investment shares (xi

0, xi
1)

are equivalent to those derived under a multinomial random utility model [18]. If pt > πi, then the
agent takes a net position against the event, hence σi

t = 0 and bi(pt) = xi
0(pt)− xi

1(pt) > 0. If pt < πi,
then the agent takes a net position in favor of the event, hence σi

t = 1 and bi(pt) = xi
1(pt)− xi

0(pt) > 0.
If pt = πi, then the agent takes a risk-less position and bi(pt) = 0. It follows that p̄i = πi, as in
the previous example. Moreover, it can be easily shown that the betting functions as defined above
are monotonic.

Figure 3 shows how two examples of logit quantal response betting functions vary with respect
to p. Figure 4 reports the long-run selection outcomes inferred using the conditions of Proposition 1.
As one can notice, low values of β1 and β2, associated with agents with strong informational constraints,
allow cases to emerge in which both agents survive, while the occurrence of path-dependent scenarios
becomes very likely when the β’s are large.

(a) (b)

Figure 3. Logit quantal response agents’ betting strategies. In both panels, we set p̄1 = 0.3 and
p̄2 = 0.75; (a) β1 = β2 = 2; (b) β1 = β2 = 0.5.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Dominance, survival, and vanishing of logit quantal response agents for different
combinations of fair inverse odds ratios p̄i. 1D: Agent 1 dominates; 2D: Agent 2 dominates; 1,2S:
both agents survive; 1D2D: either Agent 1 or Agent 2 dominates. (a) π∗ = 0.45, β1 = β2 = 2; (b)
π∗ = 0.45, β1 = β2 = 0.5; (c) π∗ = 0.45, β1 = 2, β2 = 0.5; (d) π∗ = 0.75, β1 = 0.5, β2 = 2.

6. Conclusions

In this paper, we considered a market for bets where two agents repeatedly wage on an uncertain
event with two possible outcomes using generic betting strategies. We proposed simple criteria,
based on the difference of relative entropies, to decide the asymptotic amount of wealth of the two
bettors. Little information about agents’ behavior was needed to apply the criteria: it was sufficient
to know traders’ fair odds and the amount they were willing to bet at the fair odds of the opponent.
Thus, systemic behavior can be inferred also when the model is underdetermined. When generic
betting strategies are considered, three outcomes are possible in the long-run: (1) one bettor accrues all
the wealth with probability one; (2) both bettors survive with a positive and fluctuating amount of
wealth; or (3) one of the two bettors eventually accrues all the wealth with finite probability. In the
third case, luck recovers the role of ultimate arbiter, traditionally attributed to it in games of chance.
Notice that if one confines the analysis to specific families of strategies, like Kelly or fractional Kelly
strategies, the third outcome becomes non-generic or disappears [8,9]. This explains why it was largely
unobserved in several previous studies.
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