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Abstract: In this paper, we determine the capacity of the Gaussian arbitrarily-varying channel with a
(possibly stochastic) encoder and a deterministic list-decoder under the average probability of error
criterion. We assume that both the legitimate and the adversarial signals are restricted by their power
constraints. We also assume that there is no path between the adversary and the legitimate user
but the adversary knows the legitimate user’s code. We show that for any list size L, the capacity
is equivalent to the capacity of a point-to-point Gaussian channel with noise variance increased by
the adversary power, if the adversary has less power than L times the transmitter power; otherwise,
the capacity is zero. In the converse proof, we show that if the adversary has enough power, then the
decoder can be confounded by the adversarial superposition of several codewords while satisfying
its power constraint with positive probability. The achievability proof benefits from a novel variant
of the Csiszár-Narayan method for the arbitrarily-varying channel.

Keywords: gaussian arbitrarily-varying channel; list-decoding; stochastic encoder; capacity

1. Introduction

An arbitrarily-varying channel (AVC) represents a memoryless channel including unknown
parameters that are changing arbitrarily from channel use to channel use. Because these parameters
(state) can change arbitrarily, we consider this to be a model for an active adversarial jammer.
This adversary sends its signal to restrain the legitimate transmitter and receiver from maintaining
reliable communication. In wireless channels, these unpleasant adversaries can easily enter channels,
so it is of great importance to study the adversary’s effect on the channel capacity. The capacity
of the AVC depends on the coding method (such as randomized coding, stochastic encoder or
deterministic coding), the performance criterion (such as average or maximum error probability) and
the amount of adversary’s knowledge about the transmitted signal (omniscient, myopic or oblivious
adversary). Table 1 provides a summary of various models appearing in the literature, including the
one considered here.

Blackwell et al. introduced AVC in Reference [1] and under the average error probability criterion
they found the capacity of the discrete memoryless AVC to be given by a min-max expression over
the mutual information of input and output. They employed randomized coding that is, common
randomness between the encoder and the decoder and assumed the jammer to be oblivious that is, the
jammer does not have any information about the transmitted signal except the code. In Reference [2],
it is shown that the min-max expression is equivalent to the corresponding max-min one. Further,
in Reference [3], the authors examined that this capacity remains the same even for the maximum
error probability criterion, again provided access to common randomness. The case without common
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randomness between the transmitter and the receiver is referred to as the deterministic code setting.
Ahlswede in a notable paper [4] characterized the deterministic capacity of a discrete AVC under
the average probability of error through a dichotomy theorem. He proved that the capacity either
corresponds to the AVC randomized code capacity or else it equals zero but he did not state any
necessary or sufficient condition for which of the two cases prevails. Ericson, in Reference [5], found
the necessary condition for the positive alternative by defining symmetrizability. A symmetrizable AVC
is an AVC in which the adversary can mimic the transmitted signal in order to prevent the decoder
from distinguishing between the true message and an adversarial imitation. Thus, he showed that if
the deterministic code capacity of an AVC is positive then the channel should be nonsymmetrizable.
Later, in Reference [6], a sufficient condition was provided by Csiszár and Narayen stating that if the
AVC is nonsymmetrizable then the deterministic code capacity is not zero. Therefore, considering
both conditions, the deterministic code capacity of an AVC is positive if and only if the channel is
nonsymmetrizable.

The capacity of discrete AVC is also investigated under input and state (or adversarial signal)
constraints. Restricted by peak or average input and state cost constraints, the random code capacity
of discrete AVC is studied in Reference [7] using the average probability of error as the performance
criterion. Furthermore, the second part of Csiszár and Narayan work in Reference [6] focuses on
the deterministic code capacity of AVC under input and state constraints for the same performance
criterion. They proved that in this case if the capacity is positive then it is less than or equal to the
corresponding random code capacity. In particular, with input and state constraints, the capacity can
be positive but strictly less than the random code capacity. Note that this does not occur without cost
constraints. Csiszár, in Reference [8], extended this result to general input and output alphabets and
state sets rather than only finite alphabets and state sets.

There is a wide variety of research on different versions of AVCs under various adversaries
model, including References [9–11]. Sarwate, in [9], considered a myopic adversary in which there is
a discrete memoryless channel (DMC) between the legitimate user and the jammer and the jammer
chooses its signal based on this noisy version of the user’s codeword. He found the capacity by
minimizing over all DMCs that the jammer can applied by its worst strategies. In Reference [10],
single letter characterizations of capacity is obtained in the presence of a delayed adversary which can
observe the transmitted signal after a delay. By assuming randomization at the encoder, the capacity is
corresponding to the randomized code capacity. B. K. Dey et al., in Reference [11], obtained upper
bounds on the capacity of binary channel in the presence of a causal adversary for both maximal and
average error probabilities.

On the other hand, AVCs are also studied in network settings throughout [12–18], such as
multiple-access and broadcast channels. The authors in Reference [12–14] investigated the capacity
of arbitrarily varying multiple-access channels (AVMACs). In Reference [13], it is proved that
symmetrizability, which is defined for the two-user AVC, is a sufficient condition for an AVMAC to
have empty interior for its deterministic code capacity region. Moreover, throughout [15–18], the
capacity of arbitrarily varying wiretap channels (AVWCs) are determined.
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Table 1. References’ Summary.

Reference Discrete/Gaussian Shared Randomness Cost Constraints Max/Avg List Decoding Adversarial Model Capacity or Notes

[1] Discrete 3 7 Avg 7 Oblivious Blackwell et al. introduced AVC.
[3] Discrete 3 7 Max and Avg 7 Oblivious Capacity remains the same for Max. error Probability.
[4] Discrete 7 7 Max and Avg 7 Oblivious Studied deterministic capacity in a dichotomy theorem.

[5] Discrete 3 7 Avg 7 Oblivious
Found the necessary condition for the positive

deterministic capacity by defining symmetrizability.

[6] Discrete 7 3 Avg 7 Oblivious


max

P:g(P)≤Γ
Λ0(P)≥Λ

min
Y:PYXS∈C0 for

some S, with P(X)=P

I(X; Y), max
P:g(P)≤Γ

Λ0(P) > Λ

0, max
P:g(P)≤Γ

Λ0(P) < Λ.

[6] Discrete 7 7 Avg 7 Oblivious max
P

min
Y:PYXS∈C0 for

some S, with P(X)=P

I(X; Y) if and only if C > 0

[7] Discrete 3 3 Avg 7 Oblivious max
X:Eg(X)≤Γ

min
S:ES≤Λ

I(X; YX,S)

[8] Discrete 7 3 Avg 7 Oblivious Capacity with general alphabets and states.

[9] Discrete 3 7 Max 7 Myopic
max
P(x)

min
V∈W

I(P, V)

W is a set of transition matrices from X to Y

[10] Discrete 3 3 Max 7 Delay
max
P(x)

min
Q∈Q

I(P, WQ)

Q is a set of transition matrices from X to Y
[11] Discrete 7 3 Max and Avg 7 Causal Upper bounds on the capacity

[19] Discrete 7 7 Avg 3 Oblivious


max

P
min

PYXS :PYXS∈C0 for
some S, with P(X)=P

I(X; Y), L > M

0, L ≤ M.
[20] Discrete 3 3 Max 3 Oblivious max

P∈P(X )
min

U∈U (P,Λ)
I(P, ∑ W(y, x, s)U(s|x))

[20] Discrete 7 3 Avg 3 Oblivious Upper and lower bounds on the capacity
[21] Gaussian 3 3 Max 7 Oblivious C

(
P

Λ+σ2

)
[22] Gaussian 7 3 Avg 7 Oblivious

{
C
(

P
Λ+σ2

)
, P > Λ

0, P ≤ Λ.

This
Paper Gaussian 7 3 Avg 3 Oblivious

{
C
(

P
Λ+σ2

)
, L > Λ

P

0, L < Λ
P .
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This paper focuses on the Gaussian AVC (GAVC), wherein all alphabets are continuous rather than
discrete. Initially, Ahlswede, in Reference [23], studied the capacity of a GAVC in which the adversary
chooses the noise variance rather than an additive signal. Hughes and Narayan in Reference [21]
determined the randomized code capacity of GAVC under the peak power input and state constraints.
They further extended their result in Reference [24] for a vector GAVC. The deterministic code
capacity of the GAVC, for the average probability of error, was found in Reference [22]. The
authors showed that if the adversary’s power is greater than the legitimate transmitter’s power,
then symmetrizability occurs causing the capacity to drop to zero. Note that for a discrete AVC with
no cost constraint non-symmetrizability makes the deterministic capacity positive and equal to the
randomized capacity [6] (Theorem 1). It is further proved in [6] (Theorem 3) that under input and
state cost constraints, non-symmetrizability only results in positive deterministic capacity but it is
sometimes strictly less than the randomized capacity. In the Gaussian case, even though there are
input and state cost constraints, the behavior is like that of a discrete AVC with no cost constraint, in
that if the channel is non-symmetrizable, then its deterministic capacity is positive and equal to the
randomized capacity [22].

For the first time, in Reference [19], Hughes showed that using list-decoding, in which the decoder
can decode to a small (and bounded) list rather than a unique message estimate, causes positive
capacity for most symmetrizable discrete-memoryless AVCs. Intuitively, list-decoding combats the
symmetrizing attack by allowing the list to contain the true message as well as the counterfeit(s)
generated by the adversary; thus, the receiver can successfully decode even if it cannot specify the
correct message. Furthermore, the authors in Reference [20] extended the list-decoding result to the
discrete-memoryless AVCs with state constraints. They determined upper and lower bounds on the
capacity by introducing two notions of symmetrizability for this channel.

The capacity of AVMAC was also studied with list-decoding in References [25,26]. Sirin
Nitinawarat in Reference [25] introduced symmetrizability of an AVMAC and showed that the
capacity region for deterministic codes with fixed list-size is empty if the list size is less than the
symmetrizability Ω. He obtained that the capacity corresponds to the random code capacity if the list
size is greater than (1 + Ω)2. H. Boche and R.F. Schaefer in Reference [26] obtained the list capacity
region of AVMAC with conferencing encoders which is proved for large list size to be equal to the
common randomness assisted capacity region. Moreover, in Reference [27], the authors found the
deterministic code and random code capacity regions of arbitrarily varying broadcast channel with
receiver side information. By defining a concept of symmetrizability for the channel, they characterized
deterministic list codes capacity region as either identical to the random code capacity region or empty.

In this paper, we characterize the capacity of GAVC in Reference [22], using list-decoding for any
list size and almost all power values of the transmitter and adversary, a similar result to that of Hughes
in Reference [19] which obtained the list capacity for the discrete-memoryless AVC, for which the
capacity was determined in Reference [6]. We assume that the encoder may be stochastic—that is, the
encoder has access to private randomness—and a deterministic list decoder with constant list size L.
Under the average probability of error criterion and without common randomness, we obtain the
capacity of GAVC with list decoding to be equal to the corresponding randomized code capacity if the
list size is greater than the power ratio of the jammer to the legitimate user; otherwise, the capacity is
zero. Generally, our problem is a generalized version of the multiple packing of spherical caps problem
in Reference [28] with Gaussian noise; although, they assumed maximal probability of error as the
performance criterion. Their upper bound, which is only calculated for the noiseless case, depends on
the list size L even in the asymptotic case. However, we only have list size in our symmetrizability
conditions rather than the capacity itself.

In our converse proof (in Section 4), the adversary focuses on two possible strategies, one of which
is simply sending Gaussian noise which causes the channel to act as a standard Gaussian channel with
increased noise variance. The second strategy for the adversary is to transmit the superposition of
some random (counterfeit) codewords, which is shown to be possible with positive probability if its
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power is large enough. In our achievability proof (in Section 5), we employ Gaussian codewords with
a particular version of minimum distance list-decoding based on typicality. We extend the scheme of
Reference [22] to show that with high probability a random Gaussian codebook has desirable properties
to make the probability of error zero. However, our achievability proof originates from the idea of
Reference Reference [6] based on typical sets, rather than the geometric approach of Reference [22].
This scheme allows us for simpler characterizations of codebook constraints. It is worth mentioning
that we prove the achievability for the deterministic encoder since it suffices to achieve a rate even
by a deterministic code, that is any deterministic code is a realistic value of a stochastic code. Our
converse and achievability proofs apply for any list size; our previous work [29] provided proofs only
for list size L = 2.

Notations: Upper case letters denote random variables while lower case letters specify a
deterministic value or the realization of a random variable. Bold letters denotes n-length vectors. We
indicate inner product and 2-norm by 〈·, ·〉 and ‖ · ‖, respectively. We use | · |+ and E[·] to denote
the positive-part function and the expectation, respectively. Also, for an integer N, notation [N]

represents the set {1, 2, 3, . . . , N}. Notation In and 1n stand for the identity matrix of size n and a
vector of size n with n ones elements, respectively. For a vector v, we use superscript vT to denote its
transpose. Both log(·) and exp(·) functions has base 2, so we define the Gaussian channel capacity
function C(x) = 1

2 log(1 + x).

2. Problem Statement

A GAVC is a modified standard point-to-point Gaussian channel in the presence of an additive
arbitrarily chosen adversary signal. Both transmitter and receiver do not know anything about the
adversary signal and the adversary do not have any information about the transmitted signal except
the codebooks. The received signal is given by

Y = x + s + V (1)

where the n-length vector x is the legitimate transmitter’s signal, s represents the independent
adversary signal and noise V is a sequence of n-length i.i.d. zero mean Gaussian random variables
with variance σ2, independent of x and s.

We have the assumption of peak power constraints for the transmitter and adversary signals
respectively as ‖x‖2 ≤ nP and ‖s‖2 ≤ nΛ. In addition, the transmitter and receiver are assumed to
know the three parameters P, Λ and σ2.

An (n, N, Nr, L) stochastic list code for the GAVC is given by:

• Message setM = [N] and encoder private randomness set K = [Nr],
• Stochastic encoding function x(M, K) :M×K → Rn,
• List decoding function φ(y) : Rn → DL = {L :L⊂ [N], |L|≤L},

where the rate of the code is R = 1
n log(N/L). The transmitter encodes the message M and its private

randomness K to x(M, K) where M and K are chosen uniformly respectively from setsM and K. At
the receiver, signal Y is decoded by a deterministic function φ to the set DL which is the set of all
subsets of [N] with cardinality at most L. In other words, L is the size of the list decoder.

First, define the probability of error e(s, i) for a specific message i ∈ [N] in the presence of a
specific adversary signal s ∈ Rn as the probability that i /∈ φ(y). Therefore, the average probability of
error for s is given by

ē(s) =
1
N

N

∑
i=1

e(s, i). (2)

Finally, the overall probability of error P(n)
e is obtained by maximizing over all possible choices of

jammers’ sequences s satisfying peak power constraint ‖s‖2 ≤ nΛ. Suppose r is rate of private
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randomness. Given L and r, rate R is achievable if there exists a sequence of
(
n, L2nR, 2nr, L

)
codes such

that lim
n→∞

P(n)
e = 0. The list-code capacity C (L, r) is the supremum of all achievable rates given L and r.

3. Main Results

Theorem 1. The list-code capacity of GAVC is given by

C (L, r) =

C
(

P
Λ+σ2

)
, L > Λ

P

0, L < Λ
P .

(3)

Note that the capacity for Λ = LP is unsolved.

Remark 1. Note that this result holds for all r, including r = 0 which corresponds to a deterministic encoder.
That is, the capacity does not depend on the amount of private randomness.

Remark 2. The condition on the ratio Λ
P determines whether it is possible for the adversary to launch a

symmetrizing attack, wherein it transmits a superposition of codewords. Since each codeword has power P, the
most codewords that the adversary can superpose while obeying its power constraint of Λ is the bΛ

P c. Thus, if
the allowable list size is greater than Λ

P , then even under this attack the decoder can output a list made up of
the true message and the superposed codewords selected by the adversary. Of course, the decoder does not know
which is which but it can still guarantee that the true message is in the list. Thus, the worst the adversary can
do is to act as an extra additive Gaussian noise with variance Λ, so the capacity is equal to the capacity of a
standard Gaussian channel with increased noise variance as in C( P

Λ+σ2 ) . However, if the allowable list size is
less than Λ

P , then there are too many possibilities for the decoder to decode correctly, so the capacity is zero. Note
that none of this depends on the channel noise, so σ2 does not come into play in the condition on L.

Remark 3. For the achievability proof, we make no assumptions about what the adversary does. However, for
the converse proof, it is allowable to weaken the adversary by making certain assumptions about its behavior,
because doing so can only increase the achievable rates. Since the converse is an upper bound on achievable rates,
weakening the adversary in this manner still yields a valid upper bound.

In our proofs in Sections 4 and 5, without loss of generality we restrict ourselves to the transmitter’s
power P = 1 which can be done by scaling the output signal.

4. Converse Proof

Without loss of generality, suppose P = 1. For the first case where Λ < L, we assume that we
have a code (n, L2nR, 2nr, L) with vanishing probability of error. Since these codes must function
for arbitrary jamming signals, we may derive an outer bound by assuming the adversary transmits
Gaussian noise with variance Λ − γ for any γ > 0 or 0 if Gaussian realization has power greater
than Λ. By the law of large numbers, with high probability the resulting channel is equivalent to a
standard Gaussian channel with noise variance σ2 + Λ− γ. Thus, since γ can be chosen arbitrarily
small, from the capacity of a non-adversarial Gaussian channel,

C (L, r) ≤ C
(

1
σ2 + Λ

)
. (4)

Now, assume the symmetrizable case where Λ > L. In order to show C (L, r) = 0, first consider
a sequence of stochastic codebooks and probability of error P(n)

e . We claim that if R > 0 and the
jammer has the following strategy, then P(n)

e is bounded away from zero for sufficiently large n: The
jammer randomly and uniformly chooses L messages M1, . . . , ML from [L2nR] and also L private keys
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K1, . . . , KL from [2nr] where Mi and Ki are independent. Note that the jammer knows the transmitted
codebook. The jammer then constructs

Z = x(M1, K1) + . . . + x(ML, KL)− Lµ (5)

where µ ∈ Rn is a constant vector that we will choose later. The jammer transmits S = Z if ‖Z‖2 ≤ nΛ
or else transmits S = 0. In the former case, the received signal is

Y = x(M0, K0) + x(M1, K1) + . . . + x(ML, KL)− Lµ + V (6)

= µ +
L

∑
i=0

(x(Mi, Ki)− µ) + V (7)

where M0 is the true message. If M0, M1, . . . , ML are all different and for all sets D ⊂ {0, 1, . . . , L}
with |D| = L, ∥∥∥∥∥∑

i∈D
x(Mi, Ki)− Lµ

∥∥∥∥∥
2

≤ nΛ, (8)

then from the decoder’s perspective, any L of the L + 1 messages might have been forged by the
adversary. Therefore, the list decoder with list size at most L has a probability of error at least 1

L+1 ;
that is, the probability that the decoder chooses L from the L + 1 messages that does not contain the
true message M0. That is,

P(n)
e ≥ 1

L + 1
P

∥∥∥∥∥∑
i∈D

x(Mi, Ki)− Lµ

∥∥∥∥∥
2

≤nΛ

for all D ⊂ {0, 1, . . . , L} with |D| = L, and M0, M1, . . . , ML are distinct

 (9)

≥ 1
L + 1

P
∥∥∥∥∥∑

i∈D
Xi −Lµ

∥∥∥∥∥
2

≤ nΛ for all D ⊂ {0, 1, . . . , L} with |D| = L


−
(

1− L2nR − 1
L2nR · L2nR − 2

L2nR · · · L2nR − L
L2nR

) (10)

where Xi = x(Mi, Ki) and the second term in (10) shows the probability of messages M0, . . . , ML not
being distinct which tends to zero as n → ∞. Note that X0, X1, . . . , XL are independent and each
distributed as a transmitted sequence from the code. We proceed to show that there exists a choice of µ

based only on the codebook such that (10) is bounded away from zero for sufficiently large n if R > 0.
Let

α?= inf
{

α : lim inf
n→∞

max
µ∈Rn

P(‖X0 − µ‖2 ≤ nα) > 0
}

. (11)

Note that α? ≤ 1, since by the power constraint we always have P(‖X0‖2 ≤ n) = 1. Fix any δ > 0
and let α = α? + δ/2. Let

γ = lim inf
n→∞

max
µ∈Rn

P(‖X0 − µ‖2 ≤ nα). (12)

Since α > α? we have γ > 0. Thus for n sufficiently large, there exists µ ∈ Rn such that

P(‖X0 − µ‖2 ≤ nα) ≥ γ− δ. (13)
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This µ is the one to be used by the jammer in (5). Let Bn be the set of all x that satisfy ‖x− µ‖2 ≤ nα.
Note that P(X0 ∈ Bn) ≥ γ− δ.

Since α− δ < α?, by the definition of α?,

lim inf
n→∞

max
µ′∈R

P(‖X0 − µ′‖2 ≤ n(α− δ)) = 0. (14)

Specifically, there exists n sufficiently large so that for all µ′ ∈ Rn,

P(‖X0 − µ′‖2 ≤ n(α− δ)) ≤ δ. (15)

Fix any x1 ∈ Bn and consider those x ∈ Bn such that

〈x− µ, x1 − µ〉 > n
√

δα (16)

which implies∥∥∥µ +
√

δα−1(x1 − µ)− x
∥∥∥2

=‖x−µ‖2+δα−1‖x1−µ‖2−2
√

δα−1〈x−µ, x1−µ〉 (17)

< nα + nδ− n2δ (18)

= n(α− δ). (19)

Thus, we obtain the following by applying (15) with µ′ = µ +
√

δα−1(x1 − µ) as

P(〈X0− µ, X1− µ〉 > n
√

δα, X0, X1 ∈ Bn) ≤ max
x1∈Bn

P(〈X0− µ, x1− µ〉 > n
√

δα, X0 ∈ Bn) ≤ δ. (20)

Moreover, if x1, . . . , xL∈Bn satisfy 〈xi − µ, xj − µ〉≤n
√

δα for all i 6= j∈{1, . . . , L }, then

‖x1 + . . . + xL − Lµ‖2 =
L−1

∑
i=0
‖xi − µ‖2 + 2

L−2

∑
i=0

L−1

∑
j=i+1

〈xi − µ, xj − µ〉 (21)

≤ n
(

Lα + L(L− 1)
√

δα
)

(22)

≤ n
(

L + Lδ + L(L− 1)
√

δα
)

(23)

< nΛ (24)

where (23) holds since α < α? + δ ≤ 1 + δ and (24) holds for sufficiently small δ and by assumption
Λ > L. Now we have

P

∥∥∥∥∥∑
i∈D

Xi −Lµ

∥∥∥∥∥
2

≤ nΛ for all distinct set D ⊂ {0, 1, . . . , L} with |D| = L


≥ P

(
〈Xi − µ, Xj − µ〉 ≤ n

√
δα for all i, j ∈ {0, 1, . . . , L}, i 6= j, X0, X1, . . . , XL ∈ Bn

)
(25)

≥ P(X0 ∈ Bn)
(L+1) − L(L + 1)

2
P(〈X0 − µ, X1 − µ〉 > n

√
δα, X0, X1 ∈ Bn) (26)

≥ (γ− δ)(L+1) − L(L + 1)δ
2

(27)

where (25) follows from the analysis leading to (24), (26) follows from the union bound and the fact
that X0, X1, . . . , XL are independent and (27) follows from the lower bound on the probability of Bn

and (20). For sufficiently small δ, (27) is bounded away from zero, so by (10), P(n)
e is also bounded

away from zero for sufficiently large n if R > 0.
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5. Achievability Proof

Before proceeding to the proof, let define the typical set for Gaussian random variables
X1, . . . , Xk as:

T (n)
ε (X1, . . . , Xk) =

{
(x1, . . . , xk) : E(XiXj) − ε ≤ 1

n
〈xi, xj〉 ≤ E(XiXj) + ε for all i, j ∈ [1 : k]

}
. (28)

Without loss of generality, assume P = 1, r = 0 and

Λ < L, (29)

R < C
(

1
Λ + σ2

)
. (30)

Note that assuming r = 0 makes the code deterministic. Thus, it suffices to achieve the list-code
capacity by a (n, L2nR, L) deterministic code construction as follows:

Codebook generation: Fix ε > ε′ > γ > 0. We generate L2nR i.i.d zero mean Gaussian sequences
X(m) with variance (1− γ) for each m ∈ [L2nR].

Encoding: The transmitter sends X = X(m) if its power is less than 1, otherwise it sends zero.
Decoding: First, given y, for 1 ≤ ` ≤ L let set S` be the set of `-tuple messages (m1, . . . , m`) that

(x(m1), . . . , x(m`), y) ∈ T (n)
ε (X1, . . . , X`, Y) for any set of zero-mean Gaussian variables (X1, . . . , X`, Y)

such that

Cov(X1, . . . , X`, Y) =

[
I` 1T

`

1` A

]
(`+1)×(`+1)

(31)

and 1 ≤ A ≤ 1 + σ2 + Λ.
Now we define the decoding function as

φ(y) = arg min
L∈⋃L

`=1 S`

∥∥∥∥∥y− ∑
m∈L

x(m)

∥∥∥∥∥ . (32)

where we choose between multiple minimizing L arbitrarily.
Analysis of the probability of error: To prove that the constructed code is achievable meaning that

the probability of error tends to zero as n→ ∞, we utilize several lemmas including the following. We
provide some necessary codebook properties that hold with high probability in Lemma 1, the proof for
which is in the Appendix A.

Lemma 1. Let X(m) for m ∈ [N], N = L2nR, be the Gaussian codebook described above. With probability
approaching 1 as n→ ∞, the codebook satisfies the following, for any x, s where ‖s‖2 ≤ nΛ and any zero-mean
jointly Gaussian random vector (X, X1, . . . , X`, S) with positive definite covariance matrices with diagonals at
most (1, 1, . . . , 1, Λ) for all 1 ≤ ` ≤ L:

1
N

∣∣∣∣∣∣∣∣∣

m : (x(m), s) /∈
⋃

(X,S) independent:
EX2=1,ES2≤Λ

T (n)
ε′ (X, S)


∣∣∣∣∣∣∣∣∣≤exp(−nδ(ε)), (33)

∣∣{m1 : (x, x(m1), s) ∈ T (n)
ε (X, X1, S)

}∣∣ ≤ exp
{

n
[
|R− I(X1; XS)|+ + δ(ε)

]}
, (34)

1
N
∣∣{m : (x(m), x(m1), s)∈T (n)

ε (X, X1, S) for some m1 6=m
}∣∣ ≤2 exp{−nδ(ε)/2},

if I(X; X1S)≥|R− I(X1; S)|++δ(ε), (35)∣∣∣{(m1, . . . , m`) : (x, x(m1), . . . , x(m`), s) ∈ T (n)
ε (X, X1, . . . , X`, S)

}∣∣∣ ≤ exp
{

nδ(ε)
}
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if R < min
k∈{1,...,`}

I(Xk; S), (36)

1
N
∣∣{m : (x(m), x(m1), . . . , x(m`), s) ∈ T (n)

ε (X, X1, . . . , X`, S) for some m1, . . . , m` 6= m
}∣∣

≤ exp{−nδ(ε)/2}, if I(X; X1 . . . X`S)≥δ(ε) and R< min
k∈{1,...,`}

I(Xk; S). (37)

The following lemmas can be easily generalized for Gaussian random variables by following the
corresponding lemmas in Reference [30] for discrete memoryless random variables.

Conditional Typicality Lemma: Let (X, Y) ∼ f (x, y) be jointly Gaussian random variables. Suppose
that x ∈ T (n)

ε (X) and Y ∼ f (y|x) = ∏n
i=1 fY|X(yi|xi). Then, for every ε > ε′,

lim
n→∞

P{(x, Y) ∈ T (n)
ε (X, Y)} = 1. (38)

Joint Typicality Lemma: Let (X, Y, Z) ∼ f (x, y, z) be jointly Gaussian random variables. If (x̃, ỹ) is
a pair of arbitrary sequences and Z̃ ∼ ∏n

i=1 fZ|X(z̃i|x̃i) then there exists δ(ε) > 0 that tends to zero as
ε→ 0 such that

P{(x̃, ỹ, Z̃)∈T (n)
ε (X, Y, Z)} ≤ exp(−n(I(Y; Z|X)−δ(ε))). (39)

Assume that the legitimate user transmits message M. Then, the probability of error is upper
bounded by the sum of the following L error events probabilities:

P` =P

‖Y−x(m1)− . . .−x(m`)‖2≤ min
m̂1,...,m̂` :

(M,m̂1,...,m̂`)∈S`+1

‖Y−x(M)−x(m̂1)− . . .−x(m̂`)‖2

for some (m1, . . . , m`) ∈ S`, mi 6= M for all i ∈ [`]

 for 1 ≤ ` < L, (40)

PL =P {∃(m1, . . . , mL) ∈ SL : m` 6= M, for all ` ∈ [L]} . (41)

By Lemma 1, we may assume we have a deterministic codebook that satisfies (33)–(37). Consider
any state sequence s. By (33), with high probability (x(M), s) ∈ T (n)

ε′ (X, S) where (X, S) are
independent and EX2 = 1,ES2 ≤ Λ (33). Thus, by the conditional typicality lemma, for every
ε > ε′ with high probability (xi, s, V) ∈ T (n)

ε (X, S, V) where (X, S, V) are mutually independent
and EV2 = σ2.

We first bound probability event P` for 1 ≤ ` < L. Define the shorthand ~X` = (XX1 . . . X`SV).
Let V` denote a finite set of Gaussian distributions of ~X` that is ε-dense in the set of all Gaussian
distributions of ~X` with variances at most (1, 1, . . . , 1, Λ, σ2). Note that the cardinality of V` does not
depend on n. We may upper bound P` by

∑
~X`∈V`

1
N

N

∑
m=1

e~X`
(m, s) (42)

where

e~X`
(m, s) = P

{
(x(m), x(m1), . . . , x(m`), s, V) ∈ T (n)

ε (~X`),

‖x(m) + s+V−x(m1)− . . .−x(m`)‖2 ≤ min
m̂1,...,m̂` :

(m,m̂1,...,m̂`)∈S`+1

‖s + V− x(m̂1)− . . .− x(m̂`)‖2
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for some (m1, . . . , m`) ∈ S` and mi 6= m for all i ∈ [`]

}
. (43)

We will show that 1
N ∑N

m=1 e~X`
(m, s)→ 0 for all Gaussian vectors ~X` (whether or not they are in V`).

We may restrict ourselves to ~X` where

(X, S, V) are mutually independent, (44)

EX2 = EX2
1 = . . . = EX2

` = 1, EV2 = σ2, ES2 ≤ Λ (45)

(Xi, X + S + V − Xi) are independent for all i ∈ [`], (46)

E(X + S + V − Xi)
2 ≤ Λ + σ2 for all i ∈ [`], (47)

where (44) holds since the legitimate transmitter, the jammer and the noise are independently
generated, (45) follows from the assumptions for ~X`, (46) corresponds to EXi(Y− Xi) = 0 following
from (31) and the assumption that (m1, . . . , m`) ∈ S` and (47) is obtained by (31) as follows:

E(X + S + V − Xi)
2 = E(Y− Xi)

2 (48)

= EY2 +EX2
i − 2EYXi (49)

≤ 1 + σ2 + Λ + 1− 2 (50)

= Λ + σ2. (51)

Now, suppose
I(XV; SX1 . . . X`) = 0. (52)

Then we would have EXXi = 0 for all i ∈ [`]. Thus, (X, X1, . . . , X`, S + V − X1 − . . .− X`) are
mutually independent since

EX(S + V − X1 − . . .− X`) = EX(S + V) = 0, (53)

and

EXi(S + V − X1 − . . .− X`) = EXi(Y− X− X1 − . . .− X`) (54)

= EXi(Y− Xi) (55)

= 0, for all i ∈ [`], (56)

where (53) follows from (44), (55) and (56) follow from (31) and EXXi = 0. Hence, if the message
(m1, . . . , m`) satisfies the conditions in the probability in (43), then (m, m1, . . . , m`) ∈ S`+1.
This implies that (m̂1, . . . , m̂`) takes on the value (m1, . . . , m`) in the minimum, so
‖Y− x(m1)− . . .− x(m`)‖2 ≤ ‖Y− x(m1)− . . .− x(m`)− x(M)‖2 and so we must have

E(X + S + V − X1 − . . .− X`)
2 ≤ E(S + V − X1 − . . .− X`)

2. (57)

However, this contradicts the assumptions that X is independent from S, X1, . . . , X`, V, since

E(X + S + V − X1 − . . . , X`)
2 = EX2 +E(S + V − X1 − . . . , X`)

2 (58)

= 1 +E(S + V − X1 − . . . , X`)
2. (59)

Therefore, the assumption in (52) is false and there exists η > 0 such that

η ≤ I(XV; SX1 . . . X`) = I(XV; X1 . . . X`|S). (60)

Now, consider the following two cases.
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Case (a): R < min{I(X1; S), . . . , I(X`; S)}. By (37), we only need to consider distributions where

I(X; X1 . . . X`S) < δ(ε). (61)

Then for any m, s

e~X`
(m, s) ≤ ∑

m1,...,m`

P
{
(x(m), x(m1), . . . , x(m`), s, V)∈T (n)

ε (X, X1, . . . , X`, S, V)
}

(62)

≤ exp {−n (I(V; X1 . . . X`|XS)− δ(ε))} (63)

= exp{−n(I(XV; X1 . . . X`|S)− I(X; X1 . . . X`|S)− δ(ε))} (64)

≤ exp{−n(η − 2δ(ε))}. (65)

where in (62) the sum is over all m1, . . . , m` : (x(m), x(m1), . . . , x(m`), s) ∈ T (n)
ε (X, X1, . . . , X`, S),

in (63) we use (36), the joint typicality lemma and I(V; XS) = 0 and (65) follows from (60) and (61).
Thus, (65) tends to zero exponentially fast for sufficiently small δ(ε).

Case (b): R ≥ min{I(X1; S), . . . , I(X`; S)}. We may assume without loss of generality that
R ≥ I(X1; S). Now, we upper bound (43) by

e ~X`
(m, s) ≤ ∑

m̂:(x(m),x(m̂),s)∈T (n)
ε (X,X1,S)

P
{
(x(m), x(m̂), s, V)∈T (n)

ε (X, X1, S, V)
}

. (66)

Note that by (35), we may narrow the distributions to those with

I(X; X1S) < R− I(X1; S) + δ(ε). (67)

Therefore,

e~X`
(m, s) ≤ exp

{
n
[
|R− I(X1; XS)|+− I(V; X1|XS)+2δ(ε)

]
(68)

≤exp (n [R− I(X1; XS)− I(V; X1|XS)+2δ(ε)]) (69)

=exp(n[R− I(X1; XSV) + 2δ(ε)]) (70)

where (68) follows from (34) and the joint typicality lemma, (69) follows since by R ≥ I(X1; S) and (67)
we have

R > I(X; X1S) + I(X1; S)− δ(ε) (71)

= I(X; X1|S) + I(X1; S)− δ(ε) (72)

= I(X1; XS)− δ(ε). (73)

Let Z = X + S + V − X1. From (46)–(47), we get

I(X1; XSV) ≥ I(X1; X1 + Z) (74)

= C
(

1
EZ2

)
(75)

≥ C
(

1
Λ + σ2

)
(76)

Using this result in (70), we obtain

e~X`
(m, s) ≤ exp

{
n
[

R− C
(

1
Λ + σ2

)
+ 2δ(ε)

]}
(77)
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meaning that e~X`
(m, s) is exponentially vanishing if δ(ε) is sufficiently small and the rate condition

in (30) holds.
Now, we consider error probability PL. Define ~XL = (XX1X2 . . . XLSV). Let VL denote a finite

ε-dense subset of Gaussian vectors ~XL with variances at most 1, 1, 1, . . . , 1, Λ, σ2. Thus, PL can be upper
bounded by

∑
~XL∈VL

1
N

N

∑
m=1

e~XL
(m, s) (78)

where

e~XL
(m, s) = P

{
(x(m), x(m1), . . . , x(mL), s, V)∈T (n)

ε (~XL),

for some (m1, . . . , mL) ∈ SL and m` 6=m for all ` ∈ [L]
}

. (79)

Thus, we need to show that 1
N ∑N

m=1 e~XL
(m, s) vanishes as n→ ∞ for all Gaussian vectors ~XL that

satisfy (44)–(47) for all ` ∈ [L] and

EX2
L = 1, (X1, . . . , XL) are independent, (80)

where (80) follows from (31) in which Cov(XiXj) = 0 for all i 6= j ∈ [L].
Observe that if I(XV; SX1 . . . XL) = 0, then we would have for all ` ∈ [L]

0 = EX`(X + S + V − X`) (81)

= EX`(S− X`) (82)

= EX`S− 1, (83)

where (83) follows from (31).
Since EXiXj = 0 for all i, j ∈ [L] and i 6= j, the covariance matrix of (S, X1, . . . , XL) is equal to[

ES2 1T
L

1L IL

]
(84)

which has the determinant of ES2 − L. This determinant should be positive since the covariance
matrix Cov(S, X1, . . . , XL) is positive definite. However, since ES2 ≤ Λ, this assumption contradicts
the assumption that Λ < L in (29). Thus, there exists η > 0 such that

η ≤ I(XV; SX1 . . . XL) = I(XV; X1 . . . XL|S) (85)

where we have used the fact that I(XV; S) = 0.
Now, we may consider two cases R < min{I(X1; S), . . . , I(XL; S)} and

R ≥ min{I(X1; S), . . . , I(XL; S)}. Therefore, using an identical argument as in the cases (a) and
(b) for P̀ , it follows that e~XL

is also exponentially vanishing.
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Appendix A. Proof of Lemma 1

In order to prove (33), we use our proof in Reference [31] (Lemma 6) for one codebook. Moreover,
to obtain (34)–(37), we apply the corresponding proof of these four equations in Reference [19]
(Lemma 1) for Gaussian distributions. Note that Reference [19] focuses on discrete alphabets but
the same proofs can be extended to Gaussian distributions by quantization of the set of continuous
random variables in the following way.

Let Xi be Gaussian i.i.d. n-length random vector (codebook) independent from each other with
Var(X) = 1. Fix x ∈ T (n)

ε (X), s ∈ S n and a covariance matrix Cov(X, X1, . . . , X`, S) ∈ V (`+2)×(`+2)

such that S n is a ν-dense subset of Rn for s such that ||s||2 ≤ nΛ and V (`+2)×(`+2) is a ν-dense subset
of R(`+2)×(`+2) for positive definite covariance matrices with diagonals at most (1, 1, . . . , 1, Λ).

Using the similar proof in Reference [19] (Lemma 1), we obtain for given x, s and covariance
matrix Cov(X, X1, . . . , X`, S) that the complement of each event in (34)–(37) happens with decreasingly
doubly exponential probability for sufficiently large n meaning that

P
{∣∣{m1 : (x, x(m1), s) ∈ T (n)

ε (X, X1, S)
}∣∣ ≤ exp

{
n
[
|R− I(X1; XS)|+ + δ(ε)

]}}
< exp(− exp(nσ(ε))), (A1)

P
{ 1

N
∣∣{m : (x(m), x(m1), s)∈T (n)

ε (X, X1, S) for some m1 6=m
}∣∣ ≤2 exp{−nδ(ε)/2}

}
< exp(− exp(nσ(ε))), if I(X; X1S)≥|R− I(X1; S)|++δ(ε), (A2)

P
{ ∣∣∣{(m1, . . . , m`) : (x, x(m1), . . . , x(m`), s) ∈ T (n)

ε (X, X1, . . . , X`, S)
}∣∣∣ ≤ exp

{
nδ(ε)

}}
< exp(− exp(nσ(ε))) if R < min

k∈{1,...,`}
I(Xk; S), (A3)

P
{ 1

N
∣∣{m : (x(m), x(m1), . . . , x(m`), s) ∈ T (n)

ε (X, X1, . . . , X`, S) for some m1, . . . , m` 6= m
}∣∣

≤ exp{−nδ(ε)/2}
}
< exp(− exp(nσ(ε)))if I(X; X1 . . . X`S)≥δ(ε) and R< min

k∈{1,...,`}
I(Xk; S). (A4)

Then, in order to complete the proof, since for any fixed ν the cardinality of finite set S n is only
increasingly exponentially in n and the set V (`+2)×(`+2) is finite along with the doubly decreasing
exponential probabilities in (A1)–(A4), we derive that with probability approaching to 1, all inequalities
in (34)–(37) hold simultaneously for sufficiently large n. Since these inequalities hold for every element
in the finite sets S n and V (`+2)×(`+2), then for any vector s, x and any given covariance matrix
Cov(X, X1, . . . , X`, S) (with ‖x‖2 = n, ‖s‖2 ≤ nΛ) which is not in its corresponding ν-dense subset,
there exists a point in the corresponding ν-dense subset that is close enough to it (in its ν distance
neighborhood). Now, by using the continuity properties of all sets, we may conclude that (34)–(37)
hold also for any point which is not in the ν-dense subset.
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