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Abstract: We consider the one helper source coding problem posed and investigated by Ahlswede,
Körner and Wyner. Two correlated sources are separately encoded and are sent to a destination
where the decoder wishes to decode one of the two sources with an arbitrary small error probability
of decoding. In this system, the error probability of decoding goes to one as the source block length n
goes to infinity. This implies that we have a strong converse theorem for the one helper source coding
problem. In this paper, we provide the much stronger version of this strong converse theorem for
the one helper source coding problem. We prove that the error probability of decoding tends to one
exponentially and derive an explicit lower bound of this exponent function.

Keywords: one helper source coding problem; strong converse theorem; exponent of correct
probability of decoding

1. Introduction

For single or multi terminal source encoding systems, the converse coding theorems state that,
at any data compression rates below the fundamental theoretical limit of the system, the error
probability of decoding can not go to zero when the block length n of the codes tends to infinity.

In this paper, we study the one helper source coding problem posed and investigated by Ahlswede,
Körner [1] and Wyner [2]. We call the above source coding system (the AKW system). The AKW
system is shown in Figure 1.
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Figure 1. Source encoding with or without side information at the decoder.

In this figure, the AKW system corresponds to the case where the switch is closed. In Figure 1, the
sequence (Xn, Yn) represents independent copies of a pair of dependent random variables (X, Y) which
take values in the finite sets X ,Y , respectively. We assume that (X, Y) has a probability distribution
denoted by pXY. For each i = 1, 2, the encoder ϕ

(n)
i outputs a binary sequence which appears at a rate Ri

bits per input symbol. The decoder function ψ(n) observes ϕ
(n)
1 (Xn) and ϕ

(n)
2 (Yn) to output a sequence
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Ŷn := ψ(n)(ϕ
(n)
1 (Xn), ϕ

(n)
2 (Yn)), which is an estimation of Yn. When the switch is open, it is well

known that the minimum transmission rate R2 such that the error probability P(n)
e := Pr{Yn 6= Ŷn}

of decoding tends to zero as n tends to infinity is given by H(Y). Csiszár and Longo [3] proved that,
if R2 < H(Y), then the correct probability P(n)

c := Pr{Yn = Ŷn} of decoding decay exponentially and
derived the optimal exponent function. When the switch is open and R1 > H(X), Slepian and Wolf [4]
proved that H(Y|X) is the minimum transmission rate R2 such that the error probability Pr{Yn 6= Ŷn}
of decoding tends to zero as n tends to infinity. Oohama and Han [5] proved that, if R2 < H(Y|X),
then the correct probability P(n)

c := Pr{Yn = Ŷn} of decoding decay exponentially and derived the
optimal exponent function.

In this paper, we consider the strong converse theorem in the case where the switch is closed and
0 < R1 < H(X). Let RAKW(pXY) be the rate region of the AKW system. This region consists of the
rate pair (R1, R2) such that the error provability of decoding goes to zero as n tends to infinity. The rate
region was determined by Ahlswede, Körner [1] and Wyner [2]. On the converse coding theorem,
Ahlswede et al. [6] proved that, if (R1, R2) is outside the rate region, then, P(n)

c must tends to zero as n
tends to infinity. Gu and Effors [7] examined a speed of convergence for P(n)

c to tend to zero as n→ ∞
by carefully checking the proof of Ahlswede et al. [6]. However, they could not obtain a result on an
explicit form of the exponent function with respect to the code length n.

Our main results on the strong converse theorem for the AKW system are as follows. For the
AKW system, we prove that, if (R1, R2) is outside the rate region RAKW(pXY), P(n)

c must go to
zero exponentially and derive an explicit lower bound of this exponent. This result corresponds to
Theorem 3. As a corollary from this theorem, we obtain the strong converse result, which is stated
in Corollary 2. This result states that we have an outer bound with O(1/

√
n) gap from the rate

regionRAKW(pXY).
To derive our result, we use a new method called the recursive method. This method, which

is a new method introduced by the author, includes a certain recursive algorithm for a single
letterization of exponent functions. In a standard argument of proving converse coding theorems,
single letterization methods based on the chain rule of the entropy functions are used. In general,
the functions representing multi letter characterizations of exponent functions do not have the chain
rule property. In such cases, the recursive method is quite useful for deriving single letterized bounds.
The recursive method is a general powerful tool to prove strong converse theorems for several coding
problems in information theory. In fact, the recursive method plays important roles in deriving
exponential strong converse exponent for communication systems treated in [8–12].

On the strong converse theorem for the one helper source coding problem, we have two recent
other works [13,14]. The above two works proved the strong converse theorem using different
methods from our method. In [13], Watanabe found a relationship between the AKW system and the
Gray–Wyner network. Using this relationship and the second order rate region for the Gray–Wyner
network obtained by him [15], Watanabe established the strong converse theorem for the AKW system.
In [14], Liu et al. introduced a new method to derive sharp strong converse bounds via a reverse
hypercontractivity. Using this method, they obtained an outer bound of the rate region for the AKW
system with O(1/

√
n) gap from the rate region. Furthermore, in [14], an extension of the AKW system

to the case of Gaussian source and quadratic distortion is investigated, obtaining an outer bound with
O(1/

√
n) gap from the rate distortion region for the extended source coding system. In his resent

paper [16], Liu showed a lower bound (converse) on the dispersion of AWK as the variance of the
linear combination of information densities.

The strong converse theorems seem to be regarded just as a mathematical problem and have been
investigated mainly from theoretical interest. Recently, Watanabe and Oohama [17] have found an
interesting security problem, which has a close connection with the strong converse theorem for the
AKW system. Furthermore, Oohama and Santoso [18] and Santoso and Oohama [19] clarify that the
exponential strong converse theorem obtained by this paper plays an essential role in deriving a strong
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sufficient secure condition for the privacy amplification in their new theoritical model of side channel
attacks to the Shannon chipher systems. From the above two cases, we expect that exponential strong
converse theorems for multiterminal source networks will serve as a strong tool to several information
theoretical security problems.

2. Problem Formulation

Let X and Y be finite sets and {(Xt, Yt)}∞
t=1 be a stationary discrete memoryless source. For each

t = 1, 2, · · · , the random pair (Xt, Yt) takes values in X ×Y , and has a probability distribution

pXY = {pXY(x, y)}(x,y)∈X×Y .

We write n independent copies of {Xt}∞
t=1 and {Yt}∞

t=1, respectively as

Xn = X1, X2, · · · , Xn and Yn = Y1, Y2, · · · , Yn.

We consider a communication system depicted in Figure 2. This communication system corresponds
to the case where the switch is closed in Figure 1. Data sequences Xn and Yn are separately encoded
to ϕ

(n)
1 (Xn) and ϕ

(n)
2 (Yn) and those are sent to the information processing center. At the center, the

decoder function ψ(n) observes (ϕ
(n)
1 (Xn), ϕ

(n)
2 (Yn)) to output the estimation Ŷn of Yn. The encoder

functions ϕ
(n)
1 and ϕ

(n)
2 are defined by

ϕ
(n)
1 : X n →M1 = { 1, 2, · · · , M1 }

ϕ
(n)
2 : Yn →M2 = { 1, 2, · · · , M2 }

 , (1)

where for each i = 1, 2, ‖ϕ
(n)
i ‖ (= Mi) stands for the range of cardinality of ϕ

(n)
i . The decoder function

ψ(n) is defined by
ψ(n) :M1 ×M2 → Yn. (2)

The error probability of decoding is

P(n)
e (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) = Pr

{
Ŷn 6= Yn} , (3)

where Ŷn = ψ(n)(ϕ
(n)
1 (Xn), ϕ

(n)
2 (Yn)). A rate pair (R1, R2) is ε-achievable if, for any δ > 0, there exists a

positive integer n0 = n0(ε, δ) and a sequence of triples {(ϕ
(n)
1 , ϕ

(n)
2 , ψ(n))}n≥n0 such that, for n ≥ n0,

1
n

log ‖ϕ
(n)
i ‖ ≤ Ri + δ for i = 1, 2, P(n)

e (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ ε.

For ε ∈ (0, 1), the rate regionRAKW(ε|pXY) is defined by

RAKW(ε|pXY) := { (R1, R2) : (R1, R2) is ε-achievable for pXY } .

Furthermore, define
RAKW(pXY) :=

⋂
ε∈(0,1)

RAKW(ε|pXY).
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Figure 2. One helper source coding system [20].

We can show that the two rate regions RAKW(ε| pXY), ε ∈ (0, 1) and RAKW(pXY) satisfy the
following property.

Property 1.

(a) The regionsRAKW(ε|pXY), ε ∈ (0, 1), andRAKW( pXY) are closed convex sets of R2
+, where

R2
+ := {(R1, R2) : R1 ≥ 0, R2 ≥ 0}.

(b) RAKW(ε|pXY) has another form using (n, ε)-rate regionRAKW(n, ε|pXY), the definition of which is as
follows. We set

RAKW(n, ε|pXY) = {(R1, R2) : There exists (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) such that

1
n

log ||ϕ(n)
i || ≤ Ri, i = 1, 2, P(n)

e (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ ε}.

UsingRAKW(n, ε|pXY),RAKW(ε|pXY) can be expressed as

RAKW(ε|pXY) = cl

( ⋃
m≥1

⋂
n≥m
RAKW(n, ε|pXY)

)
.

Proof of this property is given in Appendix A. It is well known thatRAKW(pXY) was determined
by Ahlswede, Körner and Wyner. To describe their result, we introduce an auxiliary random variable
U taking values in a finite set U . We assume that the joint distribution of (U, X, Y) is

pUXY(u, x, y) = pU(u)pX|U(x|u)pY|X(y|x).

The above condition is equivalent to U ↔ X ↔ Y. Define the set of probability distribution
p = pUXY by

P(pXY) := {pUXY : |U | ≤ |X |+ 1, U ↔ X ↔ Y}.

Set

R(p) := {(R1, R2) : R1, R2 ≥ 0 R1 ≥ Ip(X; U), R2 ≥ Hp(Y|U)},
R(pXY) :=

⋃
p∈P(pXY)

R(p).

We can show that the regionR(pXY) satisfies the following property.

Property 2.

(a) The regionR(pXY) is a closed convex subset of R2
+.
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(b) For any pXY, we have
min

(R1,R2)∈R(pXY)
(R1 + R2) = Hp(Y). (4)

The minimum is attained by (R1, R2) = (0, Hp(Y)). This result implies that

R(pXY) ⊆ {(R1, R2) : R1 + R2 ≥ Hp(Y)} ∩R2
+.

Furthermore, the point (0, Hp(Y)) always belongs toR(pXY).

Property 2 part a is a well known property. Proof of Property 2 part b is easy. Proofs of Property 2
parts a and b are omitted. A typical shape of the rate regionR(pXY) is shown in Figure 3.

Figure 3. A typical shape ofR(pXY).

The rate regionRAKW(pXY) was determined by Ahlswede and Körner [1] and Wyner [2]. Their
results are the following.

Theorem 1 (Ahlswede, Körner [1] and Wyner [2]).

RAKW(pXY) = R(pXY).

On the converse coding theorem, Ahlswede et al. [6] obtained the following.

Theorem 2 (Ahlswede et al. [6]). For each fixed ε ∈ (0, 1), we have

RAKW(ε|pXY) = R(pXY).

Gu and Effors [7] examined a speed of convergence for P(n)
e to tend to 1 as n → ∞ by carefully

checking the proof of Ahlswede et al. [6]. However, they could not obtain a result on an explicit form
of the exponent function with respect to the code length n.

Our aim is to find an explicit form of the exponent function for the error probability of decoding to
tend to one as n→ ∞ when (R1, R2) /∈ RAKW(pXY). To examine this quantity, we define the following
quantity. Set

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) := 1− P(n)

e (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)),

G(n)(R1, R2|pXY) := min
(ϕ

(n)
1 ,ϕ(n)

2 ,ψ(n)):

(1/n) log ‖ϕ
(n)
i ‖≤Ri ,i=1,2

(
− 1

n

)
log P(n)

c (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)).

G(R1, R2|pXY) := lim
n→∞

G(n)(R1, R2|pXY),

G(pXY) := {(R1, R2, G) : G ≥ G(R1, R2|pXY)}.
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By time sharing, we have that

G(n+m)

(
nR1 + mR′1

n + m
,

nR2 + mR′2
n + m

∣∣∣∣ pXY

)
≤

nG(n)(R1, R2|pXY) + mG(m)(R′1, R′2|pXY)

n + m
. (5)

Choosing R = R′ in the inequality (5), we obtain the following subadditivity property on
{G(n)(R1, R2|pXY) }n≥1:

G(n+m)(R1, R2|pXY) ≤
nG(n)(R1, R2|pXY) + mG(m)(R1, R2|pXY)

n + m
,

from which this, and Fekete’s subadditive lemma, we have that G(n)(R1, R2|pXY) exists and satisfies
the following:

lim
n→∞

G(n)(R1, R2|pXY) = inf
n≥1

G(n)(R1, R2|pXY).

The exponent function G(R1, R2|pXY) is a convex function of (R1, R2). In fact, from the inequality (5),
we have that for any α ∈ [0, 1]

G(αR1 + ᾱR′1, αR2 + ᾱR′2|pXY) ≤ αG(R1, R2|pXY) + ᾱG(R′1, R′2|pXY).

The region G(pXY) is also a closed convex set. Our main aim is to find an explicit characterization of
G(pXY). In this paper, we derive an explicit outer bound of G (pXY) whose section by the plane G = 0
coincides withRAKW(pXY).

3. Main Results

In this section, we state our main result. We first explain that the regionR(pXY) can be expressed
with a family of supporting hyperplanes. To describe this result, we define a set of probability
distributions on U ×X ×Y by

Psh(pXY) := {p = pUXY : |U | ≤ |X |, U ↔ X ↔ Y}.

For µ ≥ 0, define

R(µ)(pXY) := min
p∈Psh(pXY)

{
µIp(X; U) + µ̄Hp(Y|U)

}
.

Furthermore, define

Rsh(pXY) :=
⋂

µ∈[0,1]

{(R1, R2) : µR1 + µ̄R2 ≥ R(µ)(pXY)}.

Then, we have the following property.

Property 3.

(a) The bound |U | ≤ |X | is sufficient to describe R(µ)( pXY).
(b) For every µ ∈ [0, 1], we have

min
(R1,R2)∈R(pXY)

{µR1 + µ̄R2} = R(µ)(pXY). (6)

(c) For any pXY, we have
Rsh(pXY) = R(pXY). (7)
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Property 3 part a is stated as Lemma A1 in Appendix B. Proof of this lemma is given in this
appendix. Proofs of Property 3 parts b and c are given in Appendix C. Set

Q(pY|X) := {q = qUXY : |U | ≤ |X |, U ↔ X ↔ Y, pY|X = qY|X}.

For (µ, α) ∈ [0, 1]2, and for q = qUXY ∈ Q(pY|X), define

ω
(µ,α)
q|pX

(x, y|u) := ᾱ log
qX(x)
pX(x)

+ α

[
µ log

qX|U(x|u)
pX(x)

+µ̄ log
1

qY|U(y|u)

]
,

f (µ,α)
q|pX

(x, y|u) := exp
{
−ω

(µ,α)
q|pX

(x, y|u)
}

,

Ω(µ,α)(q|pX) := − log Eq

[
exp

{
−ω

(µ,α)
q|pX

(X, Y|U)
}]

, Ω(µ,α)(pXY) := min
q∈Q(pY|X)

Ω(µ,α)(q|pX),

F(µ,α)(µR1 + µ̄R2|pXY) :=
Ω(µ,α)(pXY)− α(µR1 + µ̄R2)

2 + αµ̄
,

F(R1, R2|pXY) := sup
(µ,α)∈[0,1]2

F(µ,α)(µR1 + µ̄R2|pXY).

We next define a function serving as a lower bound of F(R1, R2|pXY). For λ ≥ 0 and for pUXY ∈
Psh(pXY), define

ω̃
(µ)
p (x, y|u) := µ log

pX|U(x|u)
pX(x)

+ µ̄ log
1

pY|U(y|u)
,

Ω̃(µ,λ)(p) := − log Ep

[
exp

{
−λω̃

(µ)
p (X, Y|U)

}]
, Ω̃(µ,λ)(pXY) := min

p∈Psh(pXY)
Ω̃(µ,λ)(p).

Furthermore, set

F(µ,λ)(µR1 + µ̄R2|pXY) :=
Ω̃(µ,λ)(pXY)− λ(µR1 + µ̄R2)

2 + λ(5− µ)
,

F(R1, R2|pXY) := sup
λ≥0,µ∈[0,1]

F(µ,λ)(µR1 + µ̄R2|pXY).

We can show that the above functions satisfy the following property.

Property 4.

(a) The cardinality bound |U | ≤ |X | in Q(pY|X) is sufficient to describe the quantity Ω(µ,α)(pXY).
Furthermore, the cardinality bound |U | ≤ |X | in Psh(pXY) is sufficient to describe the
quantity Ω̃(µ,λ)(pXY).

(b) For any R1, R2 ≥ 0, we have

F(R1, R2|pXY) ≥ F(R1, R2|pXY).

(c) For any p = pUXY ∈ Psh(pXY) and any (µ, λ ) ∈ [0, 1]2, we have

0 ≤ Ω̃(µ,λ)(p) ≤ µ log |X |+ µ̄ log |Y|. (8)

(d) Fix any p = pUXY ∈ Psh(pXY) and µ ∈ [0, 1]. For λ ∈ [0, 1], we define a probability distribution
p(λ) = p(λ)UXY by
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p(λ)(u, x, y) :=
p(u, x, y) exp

{
−λω̃

(µ)
p (x, y|u)

}
Ep

[
exp

{
−λω̃

(µ)
p (X, Y|U)

}] .

Then, for λ ∈ [0, 1/2], Ω̃(µ,λ)(p) is twice differentiable. Furthermore, for λ ∈ [0, 1/2], we have

d
dλ

Ω̃(µ,λ)(p) = Ep(λ)

[
ω̃
(µ)
p (X, Y|U)

]
,

d2

dλ2 Ω̃(µ,λ)(p) = −Varp(λ)

[
ω̃
(µ)
p (X, Y|U)

]
.

The second equality implies that Ω̃(µ,λ)(p|pXY) is a concave function of λ ∈ [0, 1/2].
(e) For every (µ, λ) ∈ [0, 1]× [0, 1/2], define

ρ(µ,λ)(pXY) := max
(ν,p)∈[0,λ]×Psh(pXY):
Ω̃(µ,λ)(p)=Ω̃(µ,λ)(pXY)

Varp(ν)

[
ω̃
(µ)
p (X, Y|U)

]
,

and set

ρ = ρ(pXY) := max
(µ,λ)∈[0,1]×[0,1/2]

ρ(µ,λ)(pXY).

Then, we have ρ(pXY) < ∞. Furthermore, for any (µ, λ) ∈ [0, 1]× [0, 1/2], we have

Ω̃(µ,λ)(pXY) ≥ λR(µ)(pXY)−
λ2

2
ρ(pXY). (9)

(f) For every τ ∈ (0, (1/2)ρ(pXY)), the condition (R1 + τ, R2 + τ) /∈ R(pXY) implies

F(R1, R2|pXY) >
ρ(pXY)

4
· g2

(
τ

ρ(pXY)

)
> 0,

where g is the inverse function of ϑ(a) := a + (5/4)a2, a ≥ 0.

Property 3 part a is stated as Lemma A2 in Appendix B. Proof of this lemma is given in this
appendix. Proof of Property 4 part b is given in Appendix D. Proofs of Property 4 parts c, d, e, and f
are given in Appendix E.

Our main result is the following.

Theorem 3. For any R1, R2 ≥ 0, any pXY, and for any (ϕ
(n)
1 , ϕ

(n)
1 , ψ(n)) satisfying (1/n) log ||ϕ(n)

i || ≤
Ri, i = 1, 2, we have

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ 5 exp {−nF(R1, R2|pXY)} . (10)

It can be seen from Property 4 parts b and f that F(R1, R2|pXY) is strictly positive if (R1, R2) is
outside the rate region R(pXY). Hence, by Theorem 3, we have that, if (R1, R2) is outside the rate
region, then the error probability of decoding goes to one exponentially and its exponent is not below
F(R1, R2|pXY). It immediately follows from Theorem 3 that we have the following corollary.

Corollary 1.

G(R1, R2|pXY) ≥ F(R1, R2|pXY),

G(pXY) ⊆ G(pXY) = {(R1, R2, G) : G ≥ F(R1, R2|pXY)} .
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Proof of Theorem 3 will be given in the next section. The exponent function at rates outside the
rate region was derived by Oohama and Han [5] for the separate source coding problem for correlated
sources [4]. The techniques used by them is a method of types [21], which is not useful to prove
Theorem 3. Some novel techniques based on the information spectrum method introduced by Han [22]
are necessary to prove this theorem.

From Theorem 3 and Property 4 part e, we can obtain an explicit outer bound ofRAKW(ε|pXY)

with an asymptotically vanishing deviation fromRAKW(pXY) = R(pXY). The strong converse theorem
established by Ahlswede et al. [6] immediately follows from this corollary. To describe this outer
bound, for κ > 0, we set

R(pXY)− κ(1, 1) := {(R1 − κ, R2 − κ) : (R1, R2) ∈ R(pXY)},

which serves as an outer bound ofR(pXY). For each fixed ε ∈ (0, 1), we define κn= κn(ε, ρ(pXY)) by

κn := ρ(pXY)ϑ

(√
4

nρ(pXY)
log
(

5
1− ε

))
(11)

(a)
= 2

√
ρ(pXY)

n
log
(

5
1− ε

)
+

5
n

log
(

5
1− ε

)
.

Step (a) follows from ϑ(a) = a + (5/4)a2. Since κn → 0 as n → ∞, we have the smallest positive
integer n0 = n0(ε, ρ(pXY)) such that κn ≤ (1/2)ρ(pXY) for n ≥ n0. From Theorem 3 and Property 4
part e, we have the following corollary.

Corollary 2. For each fixed ε ∈ (0, 1), we choose the above positive integer n0 =n0(ε, ρ(pXY)). Then, for any
n ≥ n0, we have

RAKW(n, ε|pXY) ⊆ R(pXY)− κn(1, 1).

The above result together with

RAKW(ε|pXY) = cl

( ⋃
m≥1

⋂
n≥m
RAKW(n, ε|pXY)

)

yields that, for each fixed ε ∈ (0, 1), we have

RAKW(ε|pXY) = RAKW(pXY) = R(pXY).

This recovers the strong converse theorem proved by Ahlswede et al. [6].

Proof of this corollary will be given in the next section.

4. Proof of the Main Result

Let (Xn, Yn) be a pair of random variables from the information source. We set S = ϕ
(n)
1 (Xn).

Joint distribution pSXnYn of (S, Xn, Yn) is given by

pSXnYn(s, xn, yn) = pS|Xn(s|xn)
n

∏
t=1

pXtYt(xt, yt).

It is obvious that S↔ Xn ↔ Yn. Then, we have the following lemma, which is well known as a single
shot infomation spectrum bound.
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Lemma 1. For any η > 0 and for any (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) satisfying (1/n) log ||ϕ(n)

i || ≤ Ri, i = 1, 2, we have

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ pSXnYn

{
0 ≥ 1

n
log

q̂SXnYn(S, Xn, Yn)

pSXnYn(S, Xn, Yn)
− η, (12)

0 ≥ 1
n

log
QXn(Xn)

pXn(Xn)
− η, (13)

R1 ≥
1
n

log
Q̃Xn |S(Xn|S)

pXn(Xn)
− η, (14)

R2 ≥
1
n

log
1

pYn |S(Yn|S) − η

}
+ 4e−nη . (15)

The probability distributions appearing in the three inequalities (12), (13), and (14) in the right members of (15)
have a property that we can select them as arbitrary. In (12), we can choose any probability distribution q̂SXnYn

on S×X n×Yn. In (13), we can choose any distribution QXn on X n. In (14), we can choose any stochastic
matrix Q̃Xn |Un : X n → Un.

This lemma can be proved by a standard argument in the information spectrum method [22].
The detail of the proof is given in Appendix F. Next, we single letterize the four information spectrum
quantities inside the first term in the right members of (15) in Lemma 1 to obtain the following lemma.

Lemma 2. For any η > 0 and for any (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) satisfying (1/n) log ||ϕ(n)

i || ≤ Ri, i = 1, 2, we have

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ pSXnYn

{
0 ≥ 1

n

n

∑
t=1

log
QXt(Xt)

pXt(Xt)
− η, (16)

R1 ≥
1
n

n

∑
t=1

log
Q̃Xt |SXt−1(Xt|S, Xt−1)

pXt(Xt)
− η, (17)

R2 ≥
1
n

n

∑
t=1

log
1

pYt |SXt−1Yt−1(Yt|S, Xt−1, Yt−1)
− 2η

}
+ 4e−nη ,

where for each t = 1, 2, · · · , n, the probability distribution QXt on X appearing in (16) and the stochastic matrix
Q̃Xt |SXt−1 :M1 ×X t−1 → X appearing in (17) have a property that we can choose their values arbitrary.

Proof. In (12) in Lemma 1, we choose q̂SXnYn having the form

q̂SXnYn(S, Xn, Yn) = pS(S)
n

∏
t=1

{
pXt |SXt−1Yt(Xt|S, Xt−1, Yt)pYt |SYt−1(Yt|S, Yt−1)

}
.

In (13) in Lemma 1, we choose QXn having the form

QXn(Xn) =
n

∏
t=1

QXt(Xt).

We further note that

Q̃Xn |S(Xn|S)
pXn(Xn)

=
n

∏
t=1

Q̃Xt |SXt−1(Xt|S, Xt−1)

pXt(Xt)
, pYn |S(Y

n|S) =
n

∏
t=1

pYt |SYt−1(Yt|S, Yt−1).

Then, the bound (15) in Lemma 1 becomes
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P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ pSXnYn

{
0 ≥ 1

n

n

∑
t=1

log
pYt |SYt−1(Yt|S, Yt−1)

pYt |SXt−1Yt−1(Yt|S, Xt−1, Yt−1)
− η,

0 ≥ 1
n

n

∑
t=1

log
QXt(Xt)

pXt(Xt)
− η,

R1 ≥
1
n

n

∑
t=1

log
Q̃Xt |SXt−1(Xt|S, Xt−1)

pXt(Xt)
− η,

R2 ≥
1
n

n

∑
t=1

1
pYt |SYt−1(Yt|S, Yt−1)

− η

}
+ 4e−nη

≤ pSXnYn

{
0 ≥ 1

n

n

∑
t=1

log
QXt(Xt)

pXt(Xt)
− η,

R1 ≥
1
n

n

∑
t=1

log
Q̃Xt |SXt−1(Xt|S, Xt−1)

pXt(Xt)
− η,

R2 ≥
1
n

n

∑
t=1

log
1

pYt |SXt−1Yt−1(Yt|S, Xt−1, Yt−1)
− 2η

}
+ 4e−nη ,

completing the proof.

As in the standard converse coding argument, we identify auxiliary random variables, based on
the bound in Lemma 2. The following lemma is necessary for such identification.

Lemma 3. Suppose that, for each t = 1, 2, · · · , n, the joint distribution pSXtYt of the random vector SXtYt is a
marginal distribution of pSXnYn . Then, we have the following Markov chain:

SXt−1 ↔ Xt ↔ Yt (18)

or equivalently that I(Yt; SXt−1|Xt) = 0. Furthermore, we have the following Markov chain:

Yt−1 ↔ SXt−1 ↔ (Xt, Yt) (19)

or equivalently that I(XtYt; Yt−1|SXt−1) = 0. The above two Markov chains are equivalent to the following
one long Markov chain:

Yt−1 ↔ SXt−1 ↔ Xt ↔ Yt. (20)

Proof of this lemma is given in Appendix G. For t = 1, 2, · · · , n, set Ut :=M1 ×X t−1. Define a
random variable Ut ∈ Ut by Ut := (S, Xt−1). From Lemmas 2 and 3, we identify auxiliary random
variables to obtain the following lemma.

Lemma 4. For any η > 0 and for any (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) satisfying (1/n) log ||ϕ(n)

i || ≤ Ri, i = 1, 2, we have

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ pSXnYn

{
0 ≥ 1

n

n

∑
t=1

log
QXt(Xt)

pXt(Xt)
− η, (21)

R1 ≥
1
n

n

∑
t=1

log
Q̃Xt |Ut

(Xt|Ut)

pXt(Xt)
− η, (22)

R2 ≥
1
n

n

∑
t=1

log
1

pYt |Ut
(Yt|Ut)

− 2η

}
+ 4e−nη , (23)
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where, for each t = 1, 2, · · · , n, the probability distribution QXt on X appearing in (21) and the stochastic
matrix Q̃Xt |Ut

: Ut → X appearing in (22) have a property that we can choose their values arbitrary.

Now, the challenge is that, although the quantities inside the first term in the right members
of (23) in Lemma 4 have n sum of information spectrum quantities, the measure pSXnYn does not have
an i.i.d. structure in general. To resolve this, we first use the large deviation theory to upper bound the
first quantity in the right members of (23). For each t = 1, 2, · · · , n, set Qt := (QXt , Q̃Xt |Ut

). Let Qt be a

set of all Qt. We define a quantity which serves as an exponential upper bound of P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)).

Let P (n)(pXY) be a set of all probability distributions pSXnYn onM1 ×X n ×Yn having a form:

pSXnYn(s, xn, yn) = pS|Xn(s|xn)
n

∏
t=1

pXY(xt, yt)

for (s, xn, yn) ∈ M1 ×X n ×Yn.

For simplicity of notation, we use the notation p(n) for pSXnYn ∈ P (n) (pXY). For each t = 1, 2, · · · , n,
pUtXtYt = pSXtYt

is a marginal distribution of p(n). For t = 1, 2, · · · , n, we simply write pt = pUtXtYt .
For µ ∈ [0, 1], α ∈ [0, 1), p(n) ∈ P (n)(pXY), and Qn ∈ Qn, we define

Ω(µ,α)(p(n), Qn|pXY) := − log Ep(n)

 n

∏
t=1

pᾱ
Xt
(Xt)

Qᾱ
Xt
(Xt)

pµα
Xt
(Xt)pµα

Yt |Ut
(Yt|Ut)

Q̃µα

Xt |Ut
(Xt|Ut)

 ,

where for each t = 1, 2, · · · , n, the probability distribution QXt and the conditional probability
distribution Q̃Xt |Ut

appearing in the definition of Ω(µ,θ)(p(n), Qn) can be chosen as arbitrary.
The following is well known as the Cramèr’s bound in the large deviation principle.

Lemma 5. For any real valued random variable Z and any α ≥ 0, we have

Pr{Z ≥ a} ≤ exp [− (αa− log E[exp(αZ)])] .

By Lemmas 4 and 5, we have the following proposition.

Proposition 1. For any (µ, α) ∈ [0, 1]2 any Qn ∈ Qn, and any (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) satisfying

(1/n) log ||ϕ(n)
i || ≤ Ri, i = 1, 2, there exists p(n) ∈ P (n)(W1, W2) such that

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ 5 exp

{
−n [2 + αµ̄]−1

[
1
n

Ω(µ,α)(p(n), Qn|pXY)− α(µR1 + µ̄R2)

]}
.

Proof. By Lemma 4, for (µ, α) ∈ [0, 1]2, we have the following chain of inequalities:
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P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ pSXnYn

{
0 ≥

[
1
n

n

∑
t=1

log
Qᾱ

Xt
(Xt)

pᾱ
Xt
(Xt)

− ᾱη

]
,

αµR1 ≥
1
n

n

∑
t=1

log
Q̃αµ

Xt |Ut
(Xt|Ut)

pαµ
Xt
(Xt)

− αµη,

αµ̄R2 ≥
1
n

n

∑
t=1

log
1

pαµ̄

Yt |Ut
(Yt|Ut)

− 2αµ̄η

+ 4e−nη

≤ pSXnYn

{
α(µR1 + µ̄R2) + (1 + αµ̄)η ≥ − 1

n

n

∑
t=1

log

 pᾱ
Xt
(Xt)

Qᾱ
Xt
(Xt)

pµα
Xt
(Xt)pµ̄α

Yt |Ut
(Yt|Ut)

Q̃µα

Xt |Ut
(Xt|Ut)

+ 4e−nη

= pSXnYn

 1
n

n

∑
t=1

log

 pᾱ
Xt
(Xt)

Qᾱ
Xt
(Xt)

pµα
Xt
(Xt)pα

Yt |Ut
(Yt|Ut)

Q̃µα

Xt |Ut
(Xt|Ut)

 ≥ − [α(µR1 + µ̄R2) + (1 + αµ̄)η]

+ 4e−nη

(a)
≤ exp

[
n
{

α(µR1 + µ̄R2) + (1 + αµ̄)η − 1
n

Ω(µ,α)(p(n), Qn|pXY)

}]
+ 4e−nη . (24)

Step (a) follows from Lemma 5. When Ω(µ,α)(p(n), Qn|pXY) ≤ nα(µR1 + µ̄R2), the bound we wish to
prove is obvious. In the following argument, we assume that Ω(µ,α)(p(n), Qn|pXY) > nα(µR1 + µ̄R2).
We choose η so that

−η = α(µR1 + µ̄R2) + (1 + αµ̄)η − 1
n

Ω(µ,α)(p(n), Qn|pXY). (25)

Solving (25) with respect to η, we have

η =
(1/n)Ω(µ,α)(p(n), Qn|pXY)− α(µR1 + µ̄R2)

2 + αµ̄
.

For this choice of η and (24), we have

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ 5e−nη = 5 exp

{
−n [2 + αµ̄]−1

[
1
n

Ω(µ,α)(p(n), Qn|pXY)− α(µR1 + µ̄R2)

]}
,

completing the proof.

Set

Ω(µ,α)(pXY) := inf
n≥1

min
p(n)∈P (n)

max
Qn∈Qn

1
n

Ω(µ,α)(p(n), Qn|pXY).

By Proposition 1, we have the following corollary.

Corollary 3. For any (µ, α) ∈ [0, 1]2 and any (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) satisfying (1/n) log ||ϕ(n)

i || ≤ Ri, i = 1, 2,
we have

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ 5 exp

{
−n

[
Ω(µ,α)(pXY)− α(µR1 + µ̄R2)

2 + αµ̄

]}
.

We shall call Ω(µ,α)(pXY) the communication potential. The above corollary implies that the
analysis of Ω(µ,α)( pXY) leads to an establishment of a strong converse theorem for the one helper source
coding problem. Note here that Ω(µ,α)(pXY) is still a multi letter quantity. However, we successfully
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single letterize this quantity. This result which will be stated later in Proposition 2 is a mathematical
core of our main result.

In the following argument, we drive an explicit lower bound of Ω(µ,α)(pXY). For each
t = 1, 2, · · · , n, set ut = (s, xt−1) ∈ Ut and

Ft := (pXt , pXtYt |Ut
, Qt), F t := {Fi}t

i=1.

For t = 1, 2, · · · , n, define a function of (ut, xt, yt) ∈ Ut ×X ×Y by

f (µ,α)
Ft

(xt, yt|ut) :=
pᾱ

Xt
(xt)

Qᾱ
Xt
(xt)

pµα
Xt
(xt)pα

Yt |Ut
(yt|ut)

Q̃µα

Xt |Ut
(xt|ut)

.

By definition, we have

exp
{
−Ω(µ,α)(p(n), Qn|pXY)

}
= ∑

s,xn ,yn
pSXnYn(s, xn, yn)

n

∏
t=1

f (µ,α)
Ft

(xt, yt|ut).

For each t = 1, 2, · · · , n, we define the probability distribution

p(µ,α)
SXtYt ;F t :=

{
p(µ,α)

SXtYt ;F t(s, xt, yt)
}
(s,xt ,yt)∈M1×X t×Y t

by

p(µ,α)
SXtYt ;F t(s, xt, yt) := C−1

t pSXtYt(s, xt, yt)
t

∏
i=1

f (µ,α)
Fi

(xi, yi|ui),

where

Ct := ∑
s,xt ,yt

pSXtYt(s, xt, yt)
t

∏
i=1

f (µ,α)
Fi

(xi, yi)

are constants for normalization. For t = 1, 2, · · · , n, define

Φ(µ,α)
t := CtC−1

t−1, (26)

where we define C0 = 1. Then, we have the following lemma.

Lemma 6. For each t = 1, 2, · · · , n, and for any (s, xt, yt) ∈ M1 ×X t ×Y t, we have

p(µ,α)
SXtYt ;F t(s, xt, yt)

= (Φ(µ,α)
t )−1 p(µ,α)

SXt−1Yt−1;F t−1(s, xt−1, yt−1)pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)
Ft

(xt, yt|ut). (27)

Furthermore, we have

Φ(µ,α)
t = ∑

s,xt ,yt

p(µ,α)
SXt−1Yt−1;F t−1(s, xt−1, yt−1)pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)

Ft
(xt, yt|ut). (28)

Proof of this lemma is given in Appendix H. Define

p(µ,α)
Ut ;F t−1(ut) = p(µ,α)

SXt−1;F t−1(s, xt−1) := ∑
yt−1

p(µ,α)
SXt−1Yt−1;F t−1(s, xt−1, yt−1).
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Then, we have the following lemma, which is a key result to derive a single letterized lower bound of
Ω(µ,α)(pXY).

Lemma 7. For any p(n) ∈ P (n)(pXY) and any Qn ∈ Qn, we have

Ω(µ,α)(p(n), Qn|pXY) = (−1)
n

∑
t=1

log Φ(µ,α)
t , (29)

Φ(µ,α)
t = ∑

ut ,xt ,yt

p(µ,α)
Ut ;F t−1(ut)pXt |Ut

(xt|ut)pYt |Xt
(yt|xt) f (µ,α)

Ft
(xt, yt|ut). (30)

Proof. We first prove (29). From (26), we have

log Φ(µ,α)
t = − log Ct + log Ct−1. (31)

Furthermore, by definition, we have

Ω(µ,α)(p(n), Qn|pXY) = − log Cn, C0 = 1. (32)

From (31) and (32), (29) is obvious. We next prove (30). We first observe that for (s, xt, yt) ∈ S ×X t×Y t

and for t = 1, 2, · · · , n,

pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) = pXt |SXt−1Yt−1(xt|s, xt−1, yt−1)pYt |SXtYt−1(yt|s, xt, yt−1)

(a)
= pXt |SXt−1(xt|s, xt−1)pYt |Xt

(yt|xt).

Step (a) follows from Lemma 3. Then, by Lemma 6, we have

Φ(µ,α)
t = ∑

s,xt ,yt

p(µ,α)
SXt−1Yt−1;F t−1(s, xt−1, yt−1)pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)

Ft
(xt, yt|ut)

= ∑
s,xt ,yt

∑
yt−1

p(µ,α)
SXt−1Yt−1;F t−1(s, xt−1, yt−1)

 pXt |SXt−1(xt|s, xt−1)pYt |Xt
(yt|xt) f (µ,α)

Ft
(xt, yt|ut)

= ∑
s,xt ,yt

p(µ,α)
SXt−1;F t−1(s, xt−1)pXt |SXt−1(xt|s, xt−1)pYt |Xt

(yt|xt) f (µ,α)
Ft

(xt, yt|ut),

completing the proof.

The following proposition is a mathematical core to prove our main result.

Proposition 2. For any µ ∈ [0, 1] and any α ≥ 0, we have

Ω(µ,α)(pXY) ≥ Ω(µ,α)(pXY).

Proof. Set

Qn(pY|X) :={q = qUXY : |U | ≤ |M1||X n−1||Yn−1|, qY|X = pY|X , U ↔ X ↔ Y},

Ω̂(µ,α)
n (pXY) := min

q∈Qn(pY|X)
Ω(µ,α)(q|pXY).

For each t = 1, 2, · · · , n, we define qt = qUtXtYtZt by

qUt(ut) = p(µ,α)
Ut ;F t−1(ut), qXtYt |Ut

(xt, yt|ut) = pXt |Ut
(xt|ut)pY|X(yt|xt). (33)
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Equation (33) implies that qt = qUtXtYt ∈ Qn(pY|X). Furthermore, for each t = 1, 2, · · · , n, we choose
Qt = (QXt , Q̃Xt |Ut

) appearing in

f (µ,α)
Ft

(xt, yt|ut) =
pᾱ

Xt
(xt)

Qᾱ
Xt
(xt)

pµα
Xt
(xt)pα

Yt |Ut
(yt|ut)

Q̃µα

Xt |Ut
(xt|ut)

such that Qt = (QXt , Q̃Xt |Ut
) = (qXt , qXt |Ut

). For this choice of Qt, we have the following chain of
inequalities:

Φ(µ,α)
t

(a)
= Eqt

[
f (µ,θ)
Ft

(Xt, Yt|Ut)
]
(b)
= Eqt

 pᾱ
Xt
(Xt)

qᾱ
Xt
(Xt)

pµα
Xt
(Xt)pα

Yt |Ut
(Yt|Ut)

qµα

Xt |Ut
(Xt|Ut)

 = Eqt

[
f (µ,α)
qt |pXt

(Xt, Yt|Ut)

]

= exp
{
−Ω(µ,α)(qt|pXt)

}
(c)
= exp

{
−Ω(µ,α)(qt|pX)

}
(d)
≤ exp

{
−Ω̂(µ,α)

n (pXY)
}

(e)
= exp

{
−Ω(µ,α)(pXY)

}
. (34)

Step (a) follows from Lemma 7 and (33). Step (b) follows from the choice (QXt , Q̃Xt |Ut
) = (qXt , qXt |Ut

)

of (QXt , Q̃Xt |Ut
) for t = 1, 2, · · · , n. Step (c) follows from pXt = pX for t = 1, 2, · · · , n. Step (d) follows

from qt ∈ Qn(pY|X) and the definition of Ω̂(µ,α)
n (pXY). Step (e) follows from Property 4 part a. Hence,

we have the following:

max
Qn∈Qn

1
n

Ω(µ,α)(p(n), Qn|pXY) ≥
1
n

Ω(µ,α)(p(n), Qn|pXY)
(a)
= − 1

n

n

∑
t=1

log Φ(µ,α)
t

(b)
≥ Ω(µ,α)(pXY). (35)

Step (a) follows from Lemma 7. Step (b) follows from (34). Since (35) holds fo any n ≥ 1 and any
pSXnYn satisfying S↔ Xn ↔ Yn, we have that, for any (µ, α) ∈ [0, 1]2,

Ω(µ,α)(pXY) ≥ Ω(µ,α)(pXY).

Thus, Proposition 2 is proved.

Proof of Theorem 3. For any (µ, α) ∈ [0, 1]2, for any R1, R2 ≥ 0 and for any (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) satisfying

(1/n) log ||ϕ(n)
i || ≤ Ri, i = 1, 2, we have the following:

1
n

log

{
5

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n))

}
(a)
≥ Ω(µ,α)(pXY)− α(µR1 + µ̄R2)

2 + αµ̄

(b)
≥ Ω(µ,α)(pXY)− α(µR1 + µ̄R2)

2 + αµ̄

= F(µ,α)(µR1 + µ̄R2|pXY).

Step (a) follows from Corollary 3. Step (b) follows from Proposition 2. Since the above bound holds for
any µ ∈ [0, 1] and any α ≥ 0, we have

1
n

log

{
5

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n))

}
≥ F(R1, R2|pXY).

Thus, (10) in Theorem 3 is proved.

Proof of Corollary 2. Since g is an inverse function of ϑ, the definition (11) of κn is equivalent to

g
(

κn

ρ(pXY)

)
=

√
4

nρ(pXY)
log
(

5
1− ε

)
. (36)
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By the definition of n0 = n0(ε, ρ(pXY)), we have that κn ≤ (1/2)ρ(pXY) for n ≥ n0. We assume that,
for n ≥ n0, (R1, R2) ∈ RAKW(n, ε|pXY). Then, there exists a sequence {(ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) }n≥n0 such

that, for n ≥ n0, we have

1
n

log ||ϕ(n)
i || ≤ Ri, i = 1, 2, 1− ε ≤ P(n)

c (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)). (37)

Then, by Theorem 3, we have

1− ε ≤ P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ 5 exp {−nF(R1, R2|pXY)} (38)

for any n ≥ n0(ε, ρ(pXY)). From (38), we have that for n ≥ n0(ε, ρ( pXY)),

F(R1, R2|pXY) ≤
1
n

log
(

5
1− ε

)
(a)
=

ρ(pXY)

4
· g2

(
κn

ρ(pXY)

)
. (39)

Step (a) follows from (36). Hence, by Property 4 part e, we have that, under κn ≤ (1/2)ρ(pXY), the
inequality (39) implies

(R1, R2) ∈ R(pXY) + κn(1, 1). (40)

Since (40) holds for any n ≥ n0 and (R1, R2) ∈ RAKW(n, ε|pXY), we have

RAKW(n, ε|pXY) ⊆ R(pXY) + κn(1, 1) for n ≥ n0,

completing the proof.

5. One Helper Problem Studied by Wyner

We consider a communication system depicted in Figure 4. Data sequences Xn, Yn, and Zn,
respectively are separately encoded to ϕ

(n)
1 (Xn), ϕ

(n)
2 (Yn), and ϕ

(n)
3 (Zn). The encoded data ϕ

(n)
1 (Xn)

and ϕ
(n)
2 (Yn) are sent to the information processing center 1. The encoded data ϕ

(n)
1 (Xn) and ϕ

(n)
3 (Zn)

are sent to the information processing center 2. At center 1, the decoder function ψ(n) observes
(ϕ

(n)
1 (Xn), ϕ

(n)
2 (Yn)) to output the estimation Ŷn of Yn. At center 2, the decoder function φ(n) observes

(ϕ
(n)
1 (Xn), ϕ

(n)
3 (Zn)) to output the estimation Ẑn of Zn. The error probability of decoding is

P(n)
e (ϕ

(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n)) = Pr

{
Ŷn 6= Yn or Ẑn 6= Zn} ,

where Ŷn = ψ(n)( ϕ
(n)
1 (Xn), ϕ

(n)
2 (Yn)) and Ẑn = ψ(n)( ϕ

(n)
1 (Xn), ϕ

(n)
3 (Zn)).

Z

X

Y

Zn
-

Xn
-

Yn
-

ϕ
(n)
3

ϕ
(n)
3 (Zn)

rate R3

ϕ
(n)
1

ϕ
(n)
1 (Xn)

rate R1

ϕ
(n)
2

ϕ
(n)
2 (Yn)

rate R2

�
�
�
���

@
@
@
@@R

-

-

φ(n)

ψ(n)

- Ẑn

- Ŷn

Figure 4. One helper source coding system investigated by Wyner.
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A rate triple (R1, R2, R3) is ε-achievable if, for any δ > 0, there exist a positive integer n0 = n0(ε, δ)

and a sequence of three encoders and two decoder functions {(ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n))}n≥n0 such

that, for n ≥ n0(ε, δ),

1
n

log ||ϕ(n)
i || ≤ Ri + δ for i = 1, 2, 3, P(n)

e (ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n)) ≤ ε.

The rate regionRW(ε|pXYZ) is defined by

RW(ε|pXYZ) := {(R1, R2, R3) : (R1, R2, R3) is ε-achievable for pXYZ}.

Furthermore, define
RW(pXYZ) :=

⋂
ε∈(0,1)

RW(ε|pXYZ).

We can show that the two rate regions RW(ε| pXYZ), ε ∈ (0, 1) and RW(pXYZ) satisfy the following
property.

Property 5.

(a) The regionsRW(ε|pXYZ), ε ∈ (0, 1), andRW( pXYZ) are closed convex sets of R3
+.

(b) We set

RW(n, ε|pXYZ) = {(R1, R2, R3) : There exists (ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n)) such that

1
n

log ||ϕ(n)
i || ≤ Ri, i = 1, 2, 3, P(n)

e (ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n)) ≤ ε},

which is called the (n, ε)-rate region. UsingRW(n, ε|pXYZ),RW(ε|pXYZ) can be expressed as

RW(ε|pXYZ) = cl

( ⋃
m≥1

⋂
n≥m
RW(n, ε|pXYZ)

)
.

It is well known thatRW(pXYZ) was determined by Wyner. To describe his result, we introduce
an auxiliary random variable U taking values in a finite set U . We assume that the joint distribution of
(U, X, Y, Z) is

pUXY(u, x, y, z) = pU(u)pX|U(x|u)pYZ|X(y, z|x).

The above condition is equivalent to U ↔ X ↔ YZ. Define the set of probability distribution on U
×X ×Y ×Z by

P(pXYZ) :={p = pUXYZ : |U | ≤ |X |+ 2, U ↔ X ↔ YZ}.

Set

R(p) := {(R1, R2, R3) : R1, R2, R3 ≥ 0,
R1 ≥ Ip(X; U), R2 ≥ Hp(Y|U), R3 ≥ Hp(Z|U)},

R(pXYZ) :=
⋃

p∈P(pXYZ)

R(p).

We can show that the regionR(pXYZ) satisfies the following property.

Property 6.

(a) The regionR(pXYZ) is a closed convex subset of R3
+.
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(b) For any pXYZ, and any γ ∈ [0, 1], we have

min
(R1,R2,R3)∈R(pXY)

(R1 + γ̄R2 + γR3) = γ̄Hp(Y) + γHp(Z). (41)

The minimun is attained by (R1, R2, R3) = (0, Hp(Y), Hp(Z)). This result implies that

R(pXYZ) ⊆
[ ⋂

γ∈[0,1]

{(R1, R2, R3) : R1 + γ̄R2 + γR3 ≥ γ̄Hp(Y) + γHp(Z)}
]
∩R3

+.

Furthermore, the point (0, Hp(Y), Hp(Z)) always belongs toR(pXYZ).

The rate regionRW(pXYZ) was determined by Wyner [2]. His result is the following.

Theorem 4 (Wyner [2]).

RW(pXYZ) = R(pXYZ).

On the strong converse theorem, Csiszár and Körner [21] obtained the following.

Theorem 5 (Csiszár and Körner [21]). For each fixed ε ∈ (0, 1), we have

RW(ε|pXYZ) = R(pXYZ).

To examine a rate of convergence for the error probability of decoding to tend to one as n→ ∞
for (R1, R2, R3) /∈ RW(pXYZ), we define the following quantity. Set

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n)) := 1− P(n)

e (ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n)),

G(n)(R1, R2, R3|pXYZ) := min
(ϕ

(n)
1 ,ϕ(n)

2 ,ϕ(n)
3 ,

ψ(n),φ(n)):

(1/n) log ‖ϕ
(n)
i ‖

≤Ri ,i=1,2,3

(
− 1

n

)
log P(n)

c (ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n)),

G(R1, R2, R3|pXYZ) := lim
n→∞

G(n)(R1, R2, R3|pXYZ),

G(pXYZ) := {(R1, R2, R3, G) : G ≥ G(R1, R2, R3|pXYZ)}.

By time sharing, we have that

G(n+m)

(
nR1 + mR′1

n + m
,

nR2 + mR′2
n + m

,
nR2 + mR′2

n + m

∣∣∣∣ pXYZ

)
≤

nG(n)(R1, R2, R3|pXYZ) + mG(m)(R′1, R′2, R′3|pXYZ)

n + m
. (42)

Choosing R = R′ in (42), we obtain the following subadditivity property on
{G(n)(R1, R2, R3|pXYZ) }n≥1:

G(n+m)(R1, R2, R3|pXYZ) ≤
nG(n)(R1, R2, R3|pXYZ) + mG(m)(R1, R2, R3|pXYZ)

n + m
,

from which we have that G(R1, R2, R3|pXYZ) exists and satisfies the following:

G(R1, R2, R3|pXYZ) = inf
n≥1

G(n)(R1, R2, R3|pXYZ).
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The exponent function G(R1, R2, R3|pXYZ) is a convex function of (R1, R2, R3). In fact, by time sharing,
we have that

G(n+m)

(
nR1 + mR′1

n + m
,

nR2 + mR′2
n + m

,
nR2 + mR′2

n + m

∣∣∣∣ pXYZ

)
≤

nG(n)(R1, R2, R3|pXYZ) + mG(m)(R′1, R′2, R′3|pXYZ)

n + m
,

from which we have that for any α ∈ [0, 1]

G(αR1 + ᾱR′1, αR2 + ᾱR′2, αR3 + ᾱR′3|pXYZ) ≤ αG(R1, R2, R3|pXYZ) + ᾱG(R′1, R′2, R′3|pXYZ).

The region G(pXYZ) is also a closed convex set. Our main aim is to find an explicit characterization
of G(pXYZ). In this paper, we derive an explicit outer bound of G (pXYZ) whose section by the plane
G = 0 coincides with RW(pXYZ). We first explain that the region R(pXYZ) has another expression
using the supporting hyperplane. We define two sets of probability distributions on U ×X ×Y ×Z by

Psh(pXYZ) := {p = pUXYZ : |U | ≤ |X |, U ↔ X ↔ YZ},
Q(pYZ|X) := {q = qUXYZ : |U | ≤ |X |, pYZ|X = qYZ|X , U ↔ X ↔ YZ}.

For (µ, γ) ∈ [0, 1]2, set

R(µ,γ)(pXYZ) := max
p∈Psh(pXYZ)

{
µIp(X; U) + µ̄(γ̄Hp(Y|U) + γHp(Z|U))

}
.

Furthermore, define

Rsh(pXYZ) =
⋂

(µ,γ)∈[0,1]2
{(R1, R2, R3) : µR1 + µ̄(γ̄R2 + γR3) ≥ R(µ,γ)(pXYZ)}.

Then, we have the following property.

Property 7.

(a) The bound |U | ≤ |X | is sufficient to describe R(µ)( pXYZ).
(b) For every (µ, γ) ∈ [0, 1]2, we have

min
(R1,R2,R3)∈R(pXYZ)

{µR1 + µ̄(γ̄R2 + γR3)} = R(µ,γ)(pXYZ).

(c) For any pXYZ, we have
Rsh(pXYZ) = R(pXYZ). (43)



Entropy 2019, 21, 567 21 of 36

For (µ, γ, α) ∈ [0, 1]3, and for q = qUXYZ ∈ Q(pYZ|X), define

ω
(µ,γ,α)
q|pX

(x, y, z|u) := ᾱ log
qX(x)
pX(x)

+ α

[
µ log

qX|U(x|u)
pX(x)

+ µ̄

(
γ̄ log

1
qY|U(y|u)

+ γ log
1

qZ|U(z|u)

)]
,

f (µ,γ,α)
q|pX

(x, y, z|u) := exp
{
−ω

(µ,γ,α)
q|pX

(x, y, z|u)
}

,

Ω(µ,γ,α)(q|pX) := − log Eq

[
f (µ,γ,α)
q|pX

(X, Y, Z|U)
]

, Ω(µ,γ,α)(pXYZ) := min
q∈Q(pYZ|X)

Ω(µ,γ,α)(q|pX),

F(µ,γ,α)(µR1 + γ̄R2 + γR3) :=
Ω(µ,γ,α)(pXYZ)− α[µR1 + µ̄(γ̄R2 + γR3)]

2 + αµ̄
,

F(R1, R2, R3|pXYZ) := sup
(µ,γ,α)∈[0,1]3,

F(µ,γ,α)(µR1 + µ̄(γ̄R2 + γR3)|pXYZ).

We next define a function serving as a lower bound of F(R1, R2, R3|pXYZ). For each p = pUXYZ ∈
Psh(pXYZ), define

ω̃
(µ,γ)
p (x, y, z|u) := µ log

pX|U(x|u)
pX(x)

+ µ̄

(
γ̄ log

1
pY|U(y|u)

+ γ log
1

pZ|U(z|u)

)
,

Ω̃(µ,γ,λ)(p) := − log Ep

[
exp

{
−λω

(µ,γ)
p (X, Y, Z|U)

}]
, Ω̃(µ,γ,λ)(pXYZ) := min

p∈Psh(pXYZ)
Ω̃(µ,γ,λ)(p).

Furthermore, set

F(µ,γ,λ)(µR1 + γ̄R2 + γR3|pXYZ) :=
Ω̃(µ,γ,λ)(pXYZ)− λ[µR1 + µ̄(γ̄R2 + γR3)]

2 + λ(5− µ)
,

F(R1, R2, R3|pXYZ) := sup
(µ,γ)∈[0,1]2,

λ≥0

F(µ,γ,λ)(µR1 + µ̄γ̄R2 + γR3|pXYZ).

We can show that the above functions and sets satisfy the following property.

Property 8.

(a) The cardinality bound |U | ≤ |X | in Q(pY|X) is sufficient to describe the quantity Ω(µ,α)(pXY).
Furthermore, the cardinality bound |U | ≤ |X | in Q(pYZ|X) is sufficient to describe the quantity
Ω̃(µ,γ,λ)(pXYZ).

(b) For any R1, R2, R3 ≥ 0, we have

F(R1, R2, R3|pXYZ) ≥ F(R1, R2, R3|pXYZ).

(c) For any p = pUXY ∈ Psh(pXY) and any (µ, γ, λ) ∈ [0, 1]3, we have

0 ≤ Ω̃(µ,γ,λ)(p) ≤ µ log |X |+ µ̄ log(|Y|γ̄|Z|γ). (44)

(d) Fix any p = pUXYZ ∈ Psh(pXYZ) and (µ, γ) ∈ [0, 1]2. We define a probability distribution
p(λ) = p(λ)UXYZ by

p(λ)(u, x, y, z) :=
p(u, x, y, z) exp

{
−λω

(µ,γ)
p (x, y, z|u)

}
Ep

[
exp

{
−λω

(µ,γ)
p (X, Y, Z|U)

}] .
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Then, for λ ∈ [0, 1/2], Ω̃(µ,γ,λ)(p) is twice differentiable. Furthermore, for λ ∈ [0, 1/2], we have

d
dλ

Ω̃(µ,γ,λ)(p) = Ep(λ)

[
ω
(µ,γ)
p (X, Y, Z|U)

]
,

d2

dλ2 Ω̃(µ,γ,λ)(p) = −Varp(λ)

[
ω
(µ,γ)
p (X, Y, Z|U)

]
.

The second equality implies that Ω̃(µ,γ,λ)(p) is a concave function of λ ∈ [0, 1/2].
(e) For (µ, γ, λ) ∈ [0, 1]2 × [0, 1/2], define

ρ(µ,γ,λ)(pXYZ) := max
(ν,p)∈[0,λ]×Psh(pXYZ):

Ω̃(µ,γ,λ)(p)=Ω̃(µ,γ,λ)(pXYZ)

Varp(ν)

[
ω̃
(µ,γ)
p (X, Y, Z|U)

]
,

and set

ρ = ρ(pXYZ) := max
(µ,γ,λ)∈[0,1]2×[0,1/2]

ρ(µ,γ,λ)(pXYZ).

Then, we have ρ(pXYZ) < ∞. Furthermore, for any (µ, γ, λ) ∈ [0, 1]2 × [0, 1/2], we have

Ω̃(µ,γ,λ)(pXYZ) ≥ λR(µ,γ)(pXYZ)−
λ2

2
ρ(pXYZ).

(f) For every τ ∈ (0, (1/2)ρ(pXYZ)), the condition (R1 + τ, R2 + τ, R3 + τ) /∈ R(pXYZ) implies

F(R1, R2, R3|pXYZ) >
ρ(pXYZ)

4
· g2

(
τ

ρ(pXYZ)

)
> 0.

Since proofs of the results stated in Property 8 are quite parallel with those of the results stated in
Property 4, we omit them. Our main result is the following.

Theorem 6. For any R1, R2, R3 ≥ 0, any pXYZ, and for any (ϕ
(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n)) satisfying

(1/n) log ||ϕ(n)
i || ≤ Ri, i = 1, 2, 3, we have

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ϕ

(n)
3 , ψ(n), φ(n)) ≤ 7 exp {−nF(R1, R2, R3|pXYZ)} .

It follows from Theorem 6 and Property 8 part d) that, if (R1, R2, R3) is outside the capacity
region, then the error probability of decoding goes to one exponentially and its exponent is not below
F(R1, R2, R3|pXYZ). It immediately follows from Theorem 3 that we have the following corollary.

Corollary 4.

G(R1, R2, R3|pXYZ) ≥ F(R1, R2, R3|pXYZ),

G(pXYZ) ⊆ G(pXYZ) = {(R1, R2, R3, G) : G ≥ F(R1, R2, R3|pXYZ)} .

Proof of Theorem 6 is quite parallel with that of Theorem 3. We omit the detail of the proof.
From Theorem 6 and Property 8 part e, we can obtain an explicit outer bound of RW(ε|pXYZ) with
an asymptotically vanishing deviation from RW(pXYZ) = R(pXYZ). The strong converse theorem
established by Csiszár and Körner [21] immediately follows from this corollary. To describe this outer
bound, for κ > 0, we set

R(pXYZ)− κ(1, 1, 1) := {(R1 − κ, R2 − κ, R3 − κ) : (R1, R2, R3) ∈ R(pXYZ)},

which serves as an outer bound ofR(pXYZ). For each fixed ε ∈ (0, 1), we define κ̃n= κ̃n(ε, ρ(pXYZ)) by
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κ̃n := ρ(pXY)ϑ

(√
4

nρ(pXY)
log
(

7
1− ε

))
(45)

(a)
= 2

√
ρ(pXY)

n
log
(

7
1− ε

)
+

5
n

log
(

7
1− ε

)
.

Step (a) follows from ϑ(a) = a + (5/4)a2. Since κ̃n → 0 as n → ∞, we have the smallest positive
integer n1 = n1(ε, ρ(pXYZ)) such that κ̃n ≤ (1/2)ρ(pXYZ) for n ≥ n1. From Theorem 6 and Property 8
part e, we have the following corollary.

Corollary 5. For each fixed ε ∈ (0, 1), we choose the above positive integer n1 =n1(ε, ρ(pXYZ)). Then, for
any n ≥ n1, we have

RW(ε|pXYZ) ⊆ R(pXYZ)− κ̃n(0, 1, 1).

The above result together with

RW(ε|pXYZ) = cl

( ⋃
m≥1

⋂
n≥m
RW(n, ε|pXYZ)

)

yields that for each fixed ε ∈ (0, 1), we have

RW(ε|pXYZ) = RW(pXYZ) = R(pXYZ).

This recovers the strong converse theorem proved by Csiszár and Körner [21].

Proof of this corollary is quite parallel with that of Corollary 2. We omit the detail.

6. Conclusions

For the AWZ system, the one helper source coding system posed by Ahlswede, Körner [1] and
Wyner [2], we have derived an explicit lower bound of the optimal exponent function G(R1, R2|pXY)

on the correct probability of decoding for (R1, R2) /∈ RWZ(pXY). We have described this result in
Theorem 3. Furthermore, for the source coding system posed and investigated Wyner [2], we have
obtained an explicit lower bound of the optimal exponent function G(R1, R2, R3|pXYZ) on the correct
probability of decoding for (R1, R2, R3) /∈ RW(pXYZ). We have described this result in Theorem 6.
The determination problems of G(R1, R2|pXY) and G(R1, R2, R3|pXYZ) still remain to be resolved.
Those problems are our future works.
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Appendix A. Properties of the Rate Regions

In this appendix, we prove Property 1. Property 1 part a can easily be proved by the definitions of
the rate distortion regions. We omit the proofs of this part. In the following argument, we prove the
part b.
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Proof of Property 1 part b: We set

RAKW(m, ε|pXY) =
⋂

n≥m
RAKW(n, ε|pXY).

By the definitions of RAKW(m, ε|pXY) and RAKW(ε|pXY), we have that RAKW(m, ε|pXY) ⊆
RAKW(ε|pXY) for m ≥ 1. Hence, we have that⋃

m≥1

RAKW(m, ε|pXY) ⊆ RAKW(ε|pXY). (A1)

We next assume that (R1, R2) ∈ RAKW(ε|pXY). Set

R(δ)
AKW(ε|pXY) := {(R1 + δ, R2 + δ) : (R1, R2) ∈ RAKW(ε|pXY)}.

Then, by the definitions of RAKW(n, ε |pXY) and RAKW( ε|pXY), we have that, for any δ > 0, there
exists n0(ε, δ) such that for any n ≥ n0(ε, δ), (R1 + δ, R2 + δ) ∈ RAKW(n, ε|pXY), which implies that

R(δ)
AKW(ε|pXY) ⊆

⋂
n≥n0(ε,δ)

RAKW(n, ε|pXY) = RAKW(n0(ε, δ), ε|pXY)

⊆ cl

( ⋃
m≥1

RAKW(m, ε|pXY)

)
. (A2)

Here, we assume that there exists a pair (R1, R2) belonging toRAKW(ε|pXY) such that

(R1, R2) /∈ cl

( ⋃
m≥1

RAKW(m, ε|pXY)

)
. (A3)

Since the set on the right-hand side of (A3) is a closed set, we have

(R1 + δ, R2 + δ) /∈ cl

( ⋃
m≥1

RAKW(m, ε|pXY)

)
(A4)

for some small δ > 0. On the other hand, we have (R1 + δ, R2 + δ) ∈ R(δ)
AKW(ε|pXY), which contradicts

(A2). Thus, we have

⋃
m≥1

RAKW(m, ε|pXY) ⊆ RAKW(ε|pXY) ⊆ cl

( ⋃
m≥1

RAKW(m, ε|pXY)

)
. (A5)

Note here thatRAKW(ε|pXY) is a closed set. Then, from (A5), we conclude that

RAKW(ε|W) = cl

( ⋃
m≥1

RAKW(m, ε|pXY)

)
= cl

( ⋃
m≥1

⋂
n≥m
RAKW(n, ε|pXY)

)
,

completing the proof.

Appendix B. Cardinality Bound on Auxiliary Random Variables

We first prove the following lemma.
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Lemma A1.

R(µ)(pXY) := min
p∈P(pXY)

{
µIp(X; U) + µ̄Hp(Y|U)

}
= R(µ)(pXY) := min

p∈Psh(pXY)

{
µIp(X; U) + µ̄Hp(Y|U)

}
.

Proof. We bound the cardinality |U | of U to show that the bound |U | ≤ |X | is sufficient to describe
R(µ)(pXY). Observe that

pX(x) = ∑
u∈U

pU(u)pX|U(x|u), (A6)

µIp(X; U) + µ̄Hp(Y|U) = ∑
u∈U

pU(u)π(pX|U(·|u)), (A7)

where

π(pX|U(·|u)) := ∑
(x,y)∈X×Y

pX|U(x|u)pY|X(y|x) log

 pµ

X|U(x|u)

pµ
X(x)

[
∑

x̃∈X
pY|X(y|x̃)pX|U(x̃|u)

]−µ̄
 .

For each u ∈ U , π(pX|U(·|u)) is a continuous function of pX|U(·|u). Then, by the support lemma,
|U | ≤ |X | − 1 + 1 = |X | is sufficient to express |X | − 1 values of (A6) and one value of (A7).

Next, we prove the following lemma.

Lemma A2. The cardinality bound |U | ≤ |X | in Q(pY|X) is sufficient to describe the quantity Ω(µ,α)(pXY).
The cardinality bound |U | ≤ |X | in Psh(pXY) is sufficient to describe the quantity Ω̃(µ,λ)(pXY).

Proof. We first bound the cardinality |U | of U in Q(pY|X) to show that the bound |U | ≤ |X | is
sufficient to describe Ω(µ,α) (pXY). Observe that

qX(x) = ∑
u∈U

qU(u)qX|U(x|u), (A8)

exp
{
−Ω(µ,α)(q|pX)

}
= ∑

u∈U
qU(u)Π(µ,α)(qX , qXY|U(·, ·|u)), (A9)

where

Π(µ,α)(qX , qXY|U(·, ·|u)) := ∑
(x,y)
∈X×Y

qXY|U(x, y|u) exp
{
−ω

(µ,α)
q|pX

(x, y|u)
}

.

The value of qX included in Π(µ,α)(qX, qXY|U(·, ·|u)) must be preserved under the reduction of U .
For each u ∈ U , Π(µ,α)(qX , qXY|U(·, ·|u)) is a continuous function of qXY|U( ·, ·|u). Then, by the support
lemma, |U | ≤ |X | − 1 + 1 = |X | is sufficient to express |X | − 1 values of (A8) and one value of (A9).
We next bound the cardinality |U | of U in Psh(pXY) to show that the bound |U | ≤ |X | is sufficient to
describe Ω̃(µ,λ) (pXY). Observe that

pX(x) = ∑
u∈U

pU(u)pX|U(x|u), (A10)

exp
{
−Ω̃(µ,λ)(p)

}
= ∑

u∈U
pU(u)Π̃(µ,λ)(pX , pXY|U(·, ·|u)), (A11)
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where

Π̃(µ,λ)(pX , pXY|U(·, ·|u)) := ∑
(x,y)
∈X×Y

pXY|U(x, y|u) exp
{
−λω̃

(µ)
p (x, y|u)

}
.

The value of pX included in Π̃(µ,λ)(pX, pXY|U(·, ·|u)) must be preserved under the reduction of U .
For each u ∈ U , Π̃(µ,λ)(pX , pXY|U(·, ·|u)) is a continuous function of pXY|U(·, ·|u). Then, by the support
lemma, |U | ≤ |X | − 1 + 1 = |X | is sufficient to express |X | − 1 values of (A10) and one value
of (A11).

Appendix C. Supporting Hyperplain Expressions ofR(pXY)

In this appendix we prove Property 3 parts (b), (c). We first prove the part (b).

Proof of Property 3 part b: For any µ ≥ 0, we have the following chain of inequalities:

min
(R1,R2)∈R(pXY)

{µR1 + µ̄R2}

= min
p∈P(pXY)

{µIp(X; U) + µ̄Hp(Y|U)} (a)
= min

p∈Psh(pXY)
{µIp(X; U) + µ̄Hp(Y|U)} = R(µ)(pXY).

Step (a) follows from Lemma A1 stating that the cardinality bound |U | ≤ |X |+ 1 in P(pXY) can be
reduced to that |U | ≤ |X | in Psh(pXY).

We next prove part c. We first prepare a lemma useful to prove this property. From the convex
property of the regionR(pXY), we have the following lemma.

Lemma A3. Suppose that (R̂1, R̂2) does not belong toR(pXY). Then, there exist ε > 0 and µ0 ≥ 0 such that
for any (R1, R2) ∈ R(pXY) we have

µ0(R1 − R̂1) + µ0(R2 − R̂2)− ε ≥ 0.

Proof of this lemma is omitted here. Lemma A3 is equivalent to the fact that if the regionR(pXY)

is a convex set; then, for any point (R̂1, R̂2) outside the region R(pXY), there exists a line which
separates the point (R̂1, R̂2) from the regionR(pXY).

Proof of Property 3 part c: We first prove Rsh(pXY) ⊆ R(pXY). We assume that (R̂1, R̂2) /∈ R(pXY).
Then, by Lemma A3, there exist ε > 0 and µ0 ≥ 0 such that for any (R1, R2) ∈ R(pXY), we have

µ0R̂1 + µ0R̂2 ≤ µ0R1 + µ0R2 − ε.

Then, we have

µ0R̂1 + µ0R̂2 ≤ min
(R1,R2)∈R(pXY)

{µ0R1 + µ0R2} − ε
(a)
= min

p∈P(pXY)

{
µ0 Ip(U; X) + µ0Hp(Y|U)

}
− ε

≤ min
p∈Psh(pXY)

{
µ0 Ip(U; X) + µ0Hp(Y|U)

}
− ε = R(µ0)(pXY)− ε. (A12)

Step (a) follows from the definition ofR(pXY). The inequality (A12) implies that (R̂1, R̂2) /∈ Rsh(pXY).
ThusRsh(pXY) ⊆ R(pXY) is concluded.
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Appendix D. Proof of Property 4 Part b

In this appendix, we prove Property 4 part b. Fix q = qUXY ∈ Q(pY|X) and p = pUXY =

(pU|X , pXY) ∈ Psh( pXY) arbitrary. For β ≥ 0, p ∈ Psh(pXY), and qY|U induced by q, define

ω̂
(µ)
p,qY|U (x, y|u) := µ log

pX|U(x|u)
pX(x)

+ µ̄ log
1

qY|U(y|u)
,

Ω̂(µ,β)(p, qY|U) := − log Ep

[
exp

{
−βω̂

(µ)
p,qY|U (X, Y|U)

}]
.

Then, we have the following two lemmas.

Lemma A4. For any µ ∈ [0, 1], α ∈ [0, 1), and any q = qUXY ∈ Q(pY|X), there exists p = pUXY ∈
Psh(pXY) such that

Ω(µ,α)(q|pX) ≥ ᾱΩ̂(µ, α
ᾱ )(p, qY|U). (A13)

Lemma A5. For any µ, α satisfying µ ∈ [0, 1], α ∈ [0, 1/2), any p = pUXY ∈ Psh(pXY), and any stochastic
matrix qY|U induced by qUXY ∈ Q(pY|X), we have

Ω̂(µ, α
ᾱ )(p, qY|U) ≥

1− 2α

ᾱ
Ω̃(µ, α

1−2α )(p). (A14)

From Lemmas A4 and A5, we have the following corollary.

Corollary A1. For any µ, α satisfying µ ∈ [0, 1], α ∈ [0, 1/2), and any q = qUXY ∈ Q(pY|X), there exists
p = pUXY ∈ Psh(pXY) such that

Ω(µ,α)(q|pX) ≥ (1− 2α)Ω̃(µ, α
1−2α )(p). (A15)

From (A15), we have that for any µ ∈ [0, 1], α ∈ [0, 1/2), we have

Ω(µ,α)(pXY) ≥ (1− 2α)Ω̃(µ, α
1−2α )(pXY). (A16)

Proof of Lemma A4: We fix (µ, α) ∈ [0, 1]2 arbitrary. For each q = qUXY ∈ Q(pY|X), we choose
p = pUXY ∈ Psh(pXY) so that pU|X = qU|X . Then, we have the following:

exp
{
−Ω(µ,α)(q|pX)

}
= Eq

 pᾱ
X(X)

qᾱ
X(X)

 pµα
X (X)qµ̄α

Y|U(Y|U)

qµα

X|U(X|U)




= Eq

{ pUX(U, X)

qUX(U, X)

}ᾱ
 pµ α

ᾱ
X (X)qµ̄ α

ᾱ

Y|U(Y|U)

pµ α
ᾱ

X|U(X|U)


ᾱ pµ

X|U(X|U)

qµ

X|U(X|U)


α


(a)
≤

Eq

 pUX(U, X)

qUX(U, X)

pµ α
ᾱ

X (X)qµ̄ α
ᾱ

Y|U(Y|U)

pµ α
ᾱ

X|U(X|U)

ᾱEq

 pµ

X|U(X|U)

qµ

X|U(X|U)

α

= exp
{
−ᾱΩ̂(µ, α

ᾱ )(p, qY|U)
}

Aα, (A17)

where we set

A := Eq

 pµ

X|U(X|U)

qµ

X|U(X|U)

 .
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Step (a) follows from Hölder’s inequality. From (A17), we can see that it suffices to show A ≤ 1 to
complete the proof. When µ = 1, we have A = 1. When µ ∈ [0, 1), we apply Hölder’s inequality to A
to obtain

A = Eq

 pµ

X|U(X|U)

qµ

X|U(X|U)

 ≤ (Eq

[
pX|U(X|U)

qX|U(X|U)

])µ

= 1.

Hence, we have (A13) in Lemma A4.

Proof of Lemma A5: We fix µ ∈ [0, 1], α ∈ [0, 1/2), arbitrary. For any p = pUXY ∈ Psh(pXY), and any
q = qUXY ∈ Q(pY|X), we have the following chain of inequalities:

exp
{
−Ω̂(µ, α

ᾱ )(p, qY|U)
}
= Ep




p
µ α

1−2α
X (X)p

µ̄ α
1−2α

Y|U (Y|U)

p
µ α

1−2α

X|U (X|U)


1−2α

ᾱ  qµ̄

Y|U(Y|U)

pµ̄

Y|U(Y|U)


α
ᾱ


(a)
≤ exp

{
−1− 2α

ᾱ
Ω̃(µ, α

1−2α )(p)
}Ep

 qµ̄

Y|U(Y|U)

pµ̄

Y|U(Y|U)

 α
ᾱ

= exp
{
−1− 2α

ᾱ
Ω̃(µ, α

1−2α )(p)
}

B
α
ᾱ , (A18)

where we set

B := Eq

 qµ̄

Y|U(Y|U)

pµ̄

Y|U(Y|U)

 .

Step (a) follows from Hölder’s inequality. From (A18), we can see that it suffices to show B ≤ 1 to
complete the proof. In a manner quite smilar to the proof of A ≤ 1 in the proof of (A13) in Lemma A4,
we can show that B ≤ 1. Thus, we have (A14) in Lemma A5.

Proof of Property 4 part b: We evaluate lower bounds of F(R1, R2|pXY) to obtain the following chain
of inequalities:

F(R1, R2|pXY)
(a)
≥ sup

µ∈[0,1],
α∈[0,1/2)

(1− 2α)Ω̃(µ, α
1−2α )(pXY)− α(µR1 + µ̄R2)

2 + αµ̄

= sup
µ∈[0,1],

α∈[0,1/2),
λ= α

1−2α

(1− 2α)Ω̃(µ,λ)(pXY)− α(µR1 + µ̄R2)

2 + αµ̄

(b)
= sup

µ∈[0,1],
α= λ

1+2λ ,λ≥0

(1− 2α)Ω̃(µ,λ)(pXY)− α(µR1 + µ̄R2)

2 + αµ̄

(c)
= sup

µ∈[0,1],λ≥0

Ω̃(µ,λ)(pXY)− λ(µR1 + µ̄R2)

2 + λ(5− µ)
= sup

µ∈[0,1],λ≥0
F(µ,α)(µR1 + µ̄R2|pXY). (A19)

Step (a) follows from the definition of F(R1, R2|pXY) and (A16) in Corollary A1. Steps (b) and (c)
follow from that

α ∈ [0, 1/2), λ =
α

1− 2α
⇔ λ ≥ 0, α =

λ

1 + 2λ
.
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From (A19), we have

F(R1, R2|pXY) ≥ sup
µ∈[0,1],λ≥0

F(µ,λ)(µR1 + µ̄R2|pXY) = F(R1, R2|pXY),

completing the proof.

Appendix E. Proof of Property 4 Parts c, d, e, and f

In this appendix, we prove Property 4 parts c, d, e, and f. We first prove part c and then prove
parts d and e. We finally prove part f.

Proof of Property 4 part c: We first prove the second inequality in (8) in part c. We first observe that

exp[−Ω̃(µ,λ)(p)] = Ep

 pµλ
X (X)pµ̄λ

Y|U(Y|U)

pµλ

X|U(X|U)

 . (A20)

Let p̄X be the uniform distribution on X and let p̄Y be the uniform distribution on Y . On lower bound
of exp[−Ω̃(µ,λ)(p)] for p ∈ Psh(pXY) and (µ, λ) ∈ [0, 1]2, we have the following chain of inequalities:

exp[−Ω̃(µ,λ)(p)] =
1

|X |µλ|Y|µ̄λ
Ep

p−µλ

X|U (X|U)

{
pX(X)

p̄X(X)

}µλ
{

pY|U(Y|U)

p̄Y(Y)

}µ̄λ


(a)
≥ 1
|X |µ|Y|µ̄ Ep

{ p̄X(X)

pX(X)

}−µλ
{

p̄Y(Y)
pY|U(Y|U)

}−µ̄λ


(b)
≥ 1
|X |µ|Y|µ̄

Ep

 p̄X(X)

pX(X)



−µλEp

 p̄Y(Y)
pY|U(Y|U)



−µ̄λ

=
1

|X |µ|Y|µ̄ . (A21)

Step (a) follows from that λ ∈ [0, 1] and pX|U(x|u) ≤ 1 for any (u, x) ∈ U ×X . Step (b) follows from
the reverse Hölder’s inequality. The bound (A21) implies the second inequality in (8). We next show
that Ω̃(µ,λ)(p) ≥ 0 for λ ∈ [0, 1]. On upper bounds of exp[−Ω̃(µ,λ)(p)] for p ∈ Psh(pXY) and λ ∈ [0, 1],
we have the following chain of inequalities:

exp[−Ω̃(µ,λ)(p)]
(a)
≤ Ep

{ pX(X)

pX|U(X|U)

}µλ
 (b)
≤

Ep

 pX(X)

pX|U(X|U)




µλ

= 1. (A22)

Step (a) follows from (A20) and pY|U(y|u) ≤ 1 for any (u, y) ∈ U ×Y . Step (b) follows from µλ ∈ [0, 1]
and Hölder’s inequality.

Proof of Property 4 parts d and e: We first prove that, for each p ∈ Psh(pXY) and µ ∈ [0, 1], Ω̃(µ,λ)(p)
is twice differentiable for λ ∈ [0, 1/2]. For simplicity of notations, set

a := (u, x, y), A := (U, X, Y),A := U ×X ×Y ,

ω̃
(µ)
p (x, y|u) := ς(a), Ω̃(µ,λ)(p) := ξ(λ).

Then, we have

Ω̃(µ,λ)(p) = ξ(λ) = − log

[
∑

a∈A
pA(a)e−λς(a)

]
. (A23)
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The quantity p(λ)(a) = p(λ)A (a), a ∈ A has the following form:

p(λ)(a) = eξ(λ)p(a)e−λς(a). (A24)

By simple computations, we have

ξ ′(λ) = eξ(λ)

[
∑

a∈A
p(a)ς(a)e−λς(a)

]
= ∑

a∈A
p(λ)(a)ς(a),

ξ ′′(λ) = −e2ξ(λ)

[
∑

a,b∈A
p(a)pA(b)

{ς(a)− ς(b)}2

2
e−λ{ς(a)+ς(b)}

]

= − ∑
a,b∈A

p(λ)(a)p(λ)(b)
{ς(a)− ς(b)}2

2
= − ∑

a∈A
p(λ)(a)ς2(a) +

[
∑

a∈A
p(λ)(a)ς(a)

]2

≤ 0. (A25)

On upper bound of −ξ ′′(λ) ≥ 0 for λ ∈ [0, 1/2], we have the following chain of inequalities:

− ξ ′′(λ)
(a)
≤ ∑

a∈A
p(λ)(a)ς2(a)

(b)
= ∑

a∈A
p(a)ς2(a)e−λς(a)+ξ(λ) = eξ(λ) ∑

a∈A
p(a)

√
e−2λς(a)

√
ς4(a)

(c)
≤
√

e2ξ(λ)−ξ(2λ)

√
∑

a∈A
p(a)ς4(a)

(d)
≤
√

e2ξ(λ)

√
∑

a∈A
p(a)ς4(a). (A26)

Step (a) follows from (A25). Step (b) follows from (A24). Step (c) follows from Cauchy–Schwarz
inequality and (A23). Step (d) follows from that ξ(2λ) ≥ 0 for 2λ ∈ [0, 1]. Note that ξ(λ) exists for
λ ∈ [0, 1/2]. Furthermore, we have the following:

∑
a∈A

p(a)ς4(a) < ∞.

Hence, by (A26), ξ ′′(λ) exists for λ ∈ [0, 1/2]. We next prove part e. We derive the lower bound (9)
of Ω̃(µ,λ)(pXY). Fix any (µ, λ) ∈ [0, 1] ×[0, 1/2] and any p ∈ Psh(pXY). By the Taylor expansion of
ξ(λ) = Ω̃(µ,λ)(p) with respect to λ around λ = 0, we have that for any p ∈ Psh(pXY) and for some
ν ∈ [0, λ]

Ω̃(µ,λ)(p) = ξ(0) + ξ ′(0)λ +
1
2

ξ ′′(ν)λ2 = λEp

[
ω̃
(µ)
p (X, Y|U)

]
− λ2

2
Varp(ν)

[
ω̃
(µ)
p (X, Y|U)

]
(a)
≥λR(µ)(pXY)−

λ2

2
Varp(ν)

[
ω̃
(µ)
p (X, Y, Z|U)

]
. (A27)

Step (a) follows from p ∈ Psh(pXY),

Ep

[
ω̃
(µ)
p (X, Y|U)

]
= µIp(X; U) + µ̄Hp(Y|U),

and the definition of R(µ)(pXY). Let (νopt, popt) ∈ [0, λ]× Psh(pXY) be a pair which attains ρ(µ,λ)(pXY).
By this definition, we have that

Ω̃(µ,λ)(popt) = Ω̃(µ,λ)(pXY) (A28)

and that, for any ν ∈ [0, λ],

Var
p(ν)opt

[
ω
(µ)
popt(X, Y|U)

]
≤ Var

p
(νopt)
opt

[
ω
(µ)
popt(X, Y|U)

]
= ρ(µ,λ)(pXY). (A29)
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On lower bounds of Ω(µ,λ)(pXY), we have the following chain of inequalities:

Ω̃(µ,λ)(pXY)
(a)
= Ω̃(µ,λ)(popt)

(b)
≥ λR(µ)(pXY)−

λ2

2
Var

p(ν)opt

[
ω̃
(µ)
popt(X, Y|U)

]
(c)
≥ λR(µ)(pXY)−

λ2

2
ρ(µ,λ)(pXY)

(d)
≥ λR(µ)(pXY)−

λ2

2
ρ(pXY).

Step (a) follows from (A28). Step (b) follows from (A27). Step (c) follows from (A29). Step (d) follows
from the definition of ρ(pXY).

To prove part f, we use the following lemma.

Lemma A6. When τ ∈ (0, (1/2)ρ], the maximum of

1
2 + 5λ

{
−ρ

2
λ2 + τλ

}
for λ ∈ (0, 1/2] is attained by the positive λ0 satisfying

ϑ(λ0) := λ0 +
5
4

λ2
0 =

τ

ρ
. (A30)

Let g(a) be the inverse function of ϑ(a) for a ≥ 0. Then, the condition of (A30) is equivalent to λ0 = g( τ
ρ ). The

maximum is given by
1

2 + 5λ0

{
−ρ

2
λ2

0 + τλ0

}
=

ρ

4
λ2

0 =
ρ

4
g2
(

τ

ρ

)
.

By an elementary computation, we can prove this lemma. We omit the detail.

Proof of Property 4 part f. By the hyperplane expressionRsh(pXY) ofR(pXY) stated Property 3 part
b, we have that, when (R1 + τ, R2 + τ) /∈ R(pXY), we have

R(µ0)(pXY)− (µ0R1 + µ0R2) > τ (A31)

for some µ0 ∈ [0, 1]. Then, for each positive τ, we have the following chain of inequalities:

F(R1, R2|pXY) ≥ sup
λ∈(0,1/2]

F(µ0,λ)(µ0R1 + µ0R2|pXY) = sup
λ∈(0,1/2]

Ω̃(µ0,λ)(pXY)− λ(µ0R1 + µ0R2)

2 + λ(5− µ0)

(a)
≥ sup

λ∈(0,1/2]

1
2 + 5λ

{
−ρ

2
λ2 + λR(µ0)(pXY)− λ(µ0R1 + µ0R2)

}
(b)
> sup

λ∈(0,1/2]

1
2 + 5λ

{
−ρ

2
λ2 + τλ

}
(c)
=

ρ

4
g2
(

τ

ρ

)
.

Step (a) follows from Property 4 part d. Step (b) follows from (A31). Step (c) follows from
Lemma A6.

Appendix F. Proof of Lemma 1

To prove Lemma 1, we prepare a lemma. Set

An :=
{
(s, xn, yn) :

1
n

log
pSXnYn(s, xn, yn)

q̂SXnYn(s, xn, yn)
≥ −η

}
.
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Furthermore, set

B̃n :=
{

xn :
1
n

log
pXn(xn)

QXn(xn)
≥ −η

}
,Bn := B̃n ×M1 ×Yn,Bc

n := B̃c
n ×M1 ×Yn,

C̃n := {(s, xn) : s = ϕ
(n)
1 (xn), Q̃Xn |S(xn|s) ≤ M1enη pXn(xn)},Cn := C̃n ×Yn, Cc

n := C̃c
n ×Yn,

Dn := {(s, xn, yn) : s = ϕ
(n)
1 (xn), pYn |S(yn|s) ≥ (1/M2)e−nη},

En := {(s, xn, yn) : s = ϕ
(n)
1 (xn), ψ(n)(ϕ

(n)
1 (xn), ϕ

(n)
2 (yn)) = yn}.

Then, we have the following lemma.

Lemma A7.

pSXnYn (Ac
n) ≤ e−nη , pSXnYn (Bc

n) ≤ e−nη , pSXnYn (Cc
n) ≤ e−nη , pSXnYn (Dc

n ∩ En) ≤ e−nη .

Proof. We first prove the first inequality.

pSXnYn(Ac
n) = ∑

(s,xn ,yn)∈Ac
n

pSXnYn(s, xn, yn)

(a)
≤ ∑

(s,xn ,yn)∈Ac
n

e−nη q̂SXnYn(s, xn, yn) = e−nη q̂SXnYn (Ac
n) ≤ e−nη .

Step (a) follows from the definition of An. In the second inequality, we have

pSXnYn(Bc
n) = pXn(B̃c

n) = ∑
xn∈B̃c

n

pXn(xn)
(a)
≤ ∑

xn∈B̃c
n

e−nηQXn(xn) = e−nηQXn
(
B̃c

n
)
≤ e−nη .

Step (a) follows from the definition of Bn. We next prove the third inequality:

pSXnYn(Cc
n) = pSXn(C̃c

n) = ∑
s∈M1

∑
xn :ϕ(n)

1 (xn)=s
pXn (xn)≤(1/M1)e−nη

×Q̃Xn |S(xn |s)

pXn(xn)

≤ 1
M1

e−nη ∑
s∈M1

∑
xn :ϕ(n)

1 (xn)=s
pXn (xn)≤(1/M1)e−nη

×Q̃Xn |S(xn |s)

Q̃Xn |S(xn|s) ≤ 1
M1

e−nη |M1| = e−nη .

Finally, we prove the fourth inequality. We first observe that

pS(s) = ∑
xn :ϕ(n)

1 (xn)=s

pXn(xn), pXn |S(xn|s) = pXn(xn)

pS(s)
.
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We have the following chain of inequalities:

pSXnYn (Dc
n ∩ En) = ∑

s∈M1

pS(s) ∑
xn :ϕ(n)

1 (xn)=s

pXn |S(xn|s) ∑
yn :ψ(n)(s,ϕ(n)

2 (yn))=yn

pYn |S(y
n |s)≤(1/M2)e−nη

pYn |Xn(yn|xn)

= ∑
s∈M1

pS(s) ∑
yn :ψ(n)(s,ϕ(n)

2 (yn))=yn

pYn |S(y
n |s)≤(1/M2)e−nη

pYn |S(y
n|s)

≤ ∑
s∈M1

pS(s)
1

M2
e−nη

∣∣∣{yn : ψ(n)(s, ϕ
(n)
2 (yn)) = yn

}∣∣∣ (a)≤ ∑
s∈M1

pS(s)
1

M2
e−nη M2 = e−nη .

Step (a) follows from that the number of yn correctly decoded does not exceed M2.

Proof of Lemma 1: By definition, we have

pSXnYn (An ∩ Bn ∩ Cn ∩Dn) = pSXnYn

{
1
n

log
pSXnYn(S, Xn, Yn)

q̂SXnYn(S, Xn, Yn)
≥ −η,

0 ≥ 1
n

log
QXn(Xn)

pXn(Xn)
− η,

1
n

log M1 ≥
1
n

log
Q̃Xn |S(Xn|S)

pXn(Xn)
− η,

1
n

log M2 ≥
1
n

log
1

pYn |S(Yn|S) − η

}
.

Then, for any (ϕ
(n)
1 , ϕ

(n)
2 , ψ(n)) satisfying (1/n) log ||ϕ(n)

i || ≤ Ri, i = 1, 2, we have

pSXnYn (An ∩ Bn ∩ Cn ∩Dn) ≤ pSXnYn

{
1
n

log
pSXnYn(S, Xn, Yn)

q̂SXnYn(S, Xn, Yn)
≥ −η,

0 ≥ 1
n

log
QXn(Xn)

pXn(Xn)
− η,

R1 ≥
1
n

log
Q̃Xn |S(Xn|S)

pXn(Xn)
− η,

R2 ≥
1
n

log
1

pYn |S(Yn|S) − η

}
.

Hence, it suffices to show

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) ≤ pSXnYn (An ∩ Bn ∩ Cn ∩Dn) + 4e−nη

to prove Lemma 1. By definition, we have P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) = pSXnYn (En) . Then, we have the

following.

P(n)
c (ϕ

(n)
1 , ϕ

(n)
2 , ψ(n)) = pSXnYn (En)

= pSXnYn (An ∩ Bn ∩ Cn ∩Dn ∩ En) + pSXnYn
(
[An ∩ Bn ∩ Cn ∩Dn]

c ∩ En
)

≤ pSXnYn (An ∩ Bn ∩ Cn ∩Dn) + pSXnYn (Ac
n) + pSXnYn (Bc

n) + pSXnYn (Cc
n) + pSXnYn (Dc

n ∩ En)

(a)
≤ pSXnYn (An ∩ Bn ∩ Cn ∩Dn) + 4e−nη .

Step (a) follows from Lemma A7.

Appendix G. Proof of Lemma 3

In this appendix, we prove Lemma 3.
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Proof of Lemma 3: We first prove the Markov chain SXt−1 ↔ Xt ↔ Yt in (18) in Lemma 3. We have
the following chain of inequalities:

I(Yt; SXt−1|Xt) = H(Yt|Xt)− H(Yt|SXt−1Xt) ≤ H(Yt|Xt)− H(Yt|SXn)

(a)
= H(Yt|Xt)− H(Yt|Xn)

(b)
= H(Yt|Xt)− H(Yt|Xt) = 0.

Step (a) follows from that S = ϕ
(n)
1 (Xn) is a function of Xn. Step (b) follows from the memoryless

property of the information source {(Xt, Yt)}∞
t=1. Next, we prove the Markov chain Yt−1 ↔ SXt−1 ↔

(Xt, Yt) in (19) in Lemma 3. We have the following chain of inequalities:

I(XtYt; Yt−1|SXt−1) = H(Yt−1|SXt−1)− H(Yt−1|SXt−1XtYt) ≤ H(Yt−1|Xt−1)− H(Yt−1|XnSYt)

(a)
= H(Yt−1|Xt−1)− H(Yt−1|XnYt)

(b)
= H(Yt−1|Xt−1)− H(Yt−1|Xt−1Yt) = 0.

Step (a) follows from that S = ϕ
(n)
1 (Xn) is a function of Xn. Step (b) follows from the memoryless

property of the information source {(Xt, Yt)}∞
t=1.

Appendix H. Proof of Lemma 6

In this appendix, we prove Lemma 6.

Proof of Lemma 6. By the definition of p(µ,α)
SXtYt ;F t(s, xt, yt), for t = 1, 2, · · · , n, we have

p(µ,α)
SXtYt ;F t(s, xt, yt) = C−1

t pSXtYt(s, xt, yt)
t

∏
i=1

f (µ,α)
Fi

(xi, yi|ui). (A32)

Then, we have the following chain of equalities:

p(µ,α)
SXtYt ;F t(s, xt, yt)

(a)
= C−1

t pSXtYt(s, xt, yt)
t

∏
i=1

f (µ,α)
Fi

(xi, yi|ui)

= C−1
t pSXt−1Yt−1(s, xt−1, yt−1)

t−1

∏
i=1

f (µ,α)
Fi

(xi, yi|ui)

× pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)
Ft

(xt, yt|ut)

(b)
= C−1

t Ct−1 p(µ,α)
SXt−1Yt−1(s, xt−1, yt−1)pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)

Ft
(xt, yt|ut)

= (Φ(µ,α)
t )−1 p(µ,α)

SXt−1Yt−1;F t−1(s, xt−1, yt−1)pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)
Ft

(xt, yt|ut). (A33)

Steps (a) and (b) follow from (A32). From (A33), we have

Φ(µ,α)
t p(µ,α)

SXtYt ;F t(s, xt, yt) (A34)

= p(µ,α)
SXt−1Yt−1;F t−1(s, xt−1, yt−1)pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)

Ft
(xt, yt|ut). (A35)

Taking summations of (A34) and (A35) with respect to s, xt, yt, we obtain

Φ(µ,α)
t = ∑

s,xt ,yt

p(µ,α)
SXt−1Yt−1;F t−1(s, xt−1, yt−1)pXtYt |SXt−1Yt−1(xt, yt|s, xt−1, yt−1) f (µ,α)

Ft
(xt, yt|ut),

completing the proof.
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