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Abstract: The well-known Hölder’s inequality has been recently utilized as an essential tool for
solving several optimization problems. However, such an essential role of Hölder’s inequality does
not seem to have been reported in the context of generalized entropy, including Rényi–Tsallis entropy.
Here, we identify a direct link between Rényi–Tsallis entropy and Hölder’s inequality. Specifically, we
demonstrate yet another elegant proof of the Rényi–Tsallis entropy maximization problem. Especially
for the Tsallis entropy maximization problem, only with the equality condition of Hölder’s inequality
is the q-Gaussian distribution uniquely specified and also proved to be optimal.
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1. Introduction

Tsallis entropy [1,2] has been recently utilized as a versatile framework for expanding the realm
of Shannon–Boltzmann entropy for nonlinear processes, in particular, those that exhibit power–law
behavior. It shares a structure in common with Rényi entropy [3], Daróczy entropy [4], and probability
moment presented in Moriguti [5], since the essential part of all these functionals is

∫
pq(x)dx (or ∑ pq

i )
for certain constrained probability density functions p(x) (or pi). This naturally has been of interest
for a variety of issues in information theory and related areas. For instance, in his pioneering work,
Campbell [6] stated that “Implicit in the use of average code length as a criterion of performance is the
assumption that cost varies linearly with code length. This is not always the case.” Then, Campbell [6]
introduced a nonlinear average length measure defined as

L(t) =
1
t

logD

N

∑
i=1

piDtli ,

being an extension of the one by Shannon,

L0 =
N

∑
i=1

pili,

in which D is the size of the alphabet, pi is the probability for a source to produce symbols xi, li is
the length of a codeword ci mapped from symbol xi (using D letters of the alphabet) in the context of
source coding, and t is an arbitrary parameter (0 < t < ∞). One of the surprising facts proved in [6] is
that the lower bound to the moment-generating function of code lengths, namely, L(t), is given by
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H 1
1+t

(p), namely, Rényi entropy of order (1 + t)−1 of the source p = {pi}N
i=1. Moreover, Ref. [6] also

realizes that, if

li =
1

1 + t
logD

1
pi

+
t

1 + t
H 1

1+t
(p),

which is a mixture of the Shannon code length logD
1
pi

and Rényi entropy of order (1 + t)−1, we
have the lower bound L(t) = H 1

1+t
(p). So far, Baer [7] has further generalized this result and

constructed an algorithm for finding optimal binary codes under quasiarithmetic penalties. In addition,
new extensions of [6] were obtained by Bercher [8] and by Bunte and Lapidoth [9].

Such an instance, where “a nonlinear measure” (i.e., generalized entropy) naturally arises, is also
known for channel capacities. Daróczy [4] first analyzed a generalized channel capacity, which is
a natural consequence of his extension of Shannon entropy (i.e., Daróczy entropy). This result has
initiated extensive work in this direction. For instance, Landsberg and Vedral [10] first introduced
Rényi entropy and Tsallis entropy for a binary symmetric channel, and they suggested the possibility
of “super-Shannon channel capacities.” More recently, Ilić, Djordjević, and Küeppers [11] obtained
new expressions for generalized channel capacities by introducing Daróczy–Tsallis entropy even for
a weakly symmetric channel, binary erasure channel, and z-channel. Similar extensions have been
explored for rate distortion theory. For instance, Venkatesan and Plastino [12] developed nonextensive
rate distortion theory by introducing Tsallis entropy and constructed a minimization algorithm for
generalized mutual information. More recently, Girardin and Lhote [13] covered the setting in [12] in a
general framework of generalized entropy rates, which includes Rènyi–Tsallis entropy.

In the context of generalized entropy just described, the q-Gaussian distribution [1,2] often
emerges as a maximizer of Rényi–Tsallis entropy under certain constraints, and, hence, it has been
extensively studied. Since the q-Gaussian effectively models power–law behavior with a one-parameter
q, its utility is widespread in various areas, including new random number generators proposed by
Thistleton, Marsh, Nelson, and Tsallis [14] and by Umeno and Sato [15]. In addition to such an
important application in communication systems, queuing theory has recently incorporated the
q-Gaussian, reflecting the heavy-tailed traffic characteristics observed in broadband networks [16–19].
For instance, Karmeshu and Sharma [16] introduced Tsallis entropy maximization, and, there, the
q-Gaussian emerges as the queue length distributions, which suggests that Jaynes’ maximum entropy
principle [20–22] can be generalized to a framework of Tsallis entropy.

Some of the above issues are formulated as nonlinear optimizations with “a nonlinear measure”
under certain constraints (which depend on each issue). As mentioned above, Rényi–Tsallis entropy
and q-Gaussian is one such instance. In other words, the q-Gaussian maximizes Tsallis entropy
under certain constraints. Therefore, it is useful to obtain a deeper understanding of such nonlinear
optimization problems. In this study, we find a direct link between Rényi–Tsallis entropy and Hölder’s
inequality that leads to yet another elegant proof of Rényi–Tsallis entropy maximization. The idea
of the proof is different from those offered in previous studies (for instance, [23–27]) as explained
below. Interestingly, the technique developed in this study might possibly be useful for tackling more
complicated problems regarding optimization issues in information theory and other research areas,
such as the conditional Rényi entropy (as in [28–30]), for instance.

Previous studies [23–27] are based on a common standpoint, the generalization of the
moment–entropy inequality (cf. [25,26]). Namely, they intend to generalize the situation that a
continuous random variable with a given second moment and maximal Shannon entropy is a Gaussian
distribution (cf. [3], Theorem 8.6.5). In doing so, a generalized relative entropy is devised, which takes
a different form (and has a different name) depending on the problem. First of all, Tsukada and
Suyari’s beautiful work [23] has given proofs for Rényi entropy maximization, which is also known as
a bound of Moriguti’s probability moment [5] (as posed in R1 in Section 2). Namely, they prove that the
q-Gaussian distribution [1,2] is a unique optimal solution by utilizing the fact that all feasible solutions
constitute a convex set. Although [23] does not explicitly construct a generalized relative entropy, the
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essential structure of the proofs inherits the one in the proof of the moment-entropy inequality ([3],
Theorem 8.6.5)).

Moreover, they have identified an explicit one-to-one correspondence between feasible solutions
to the problems of Rényi entropy maximization and Tsallis entropy maximization, which is also shown
in ([31], p. 754). This implies that an ‘indirect’ proof to Tsallis entropy maximization (as posed in T1 in
Section 2) has been first obtained in [23]. In contrast to this proof, the first ‘direct’ proof to Tsallis entropy
maximization is obtained in Furuichi’s elegant work [24]. The proof in [24] utilizes nonnegativity of
the Tsallis relative entropy defined between the q-Gaussian distribution (i.e., a possible maximizer) and
any other feasible solution. On the other hand, the remarkable work of Lutwak, Yang, and Zhang
first clarified that generalized Gaussians maximize λ-Rényi entropy power under a constraint on the p-th
moment of the distribution, for univariate distributions [25] and for the associated n-dimensional
extensions [26].The essential point in the proofs in [25,26] is construction of relative λ-Rényi entropy
power, which is nonnegative and takes a quite different form compared to the Tsallis relative entropy in
[24]. (More precisely, in [25], they prove nonnegativity of the relative λ−Rényi entropy log Nλ[ f , g] ([25],
Lemma 1). Starting from this nonnegativity:log Nλ[ f , Gt] ≥ 1, they construct a series of inequalities
that saturate at the generalized Gaussian ([25], Lemma 2). Note, however, that, as observed in this
Nλ[ f , Gt], they start by giving a candidate of the maximizer ab initio, which is the generalized Gaussian
Gt.) Furthermore, Vignat, Hero, and Costa [32] obtained a general, sharp result using the Bregman
information divergence for an n-dimensional extension of Tsallis entropy. In addition to [25,26,32],
Eguchi, Komori, and Kato’s interesting results [27] include the same n-dimensional extension to Tsallis
entropy. (Ref. [32] has also identified an elegant structure regarding the projective divergence and the
γ-loss functions in maximum likelihood estimation.)Similar to [24–26,32], the key component of the
proof in [27] is the projective power divergence, which again takes a quite different form compared to
the ones in [24–26,32]. To prove nonnegativity of the generalized relative entropy, Refs. [25–27] utilize
Hölder’s inequality, but Refs. [23,24,32] do not. Namely, Hölder’s inequality has been an auxiliary
useful tool, and it has never played an essential role in these previous studies. In addition to the
construction of generalized relative entropies, the optimal q-Gaussian distribution needs to be ‘given
ab initio’ [23–27,32], inheriting the framework showing that the Gaussian distribution maximizes
Shannon entropy ([3], Theorem 8.6.5).

Now natural questions arise: is it possible to systematically solve the problems of Rényi–Tsallis
entropy maximization in a different (and hopefully simpler) way than the previous study? In addition,
is it possible to ‘construct’ the q-Gaussian distribution? These questions are positively answered from a
new viewpoint as follows. First, only by the equality (i.e., saturation) condition of Hölder’s inequality,
the q-Gaussian distribution is specified, and, at the same time, its optimality is proved by Hölder’s
inequality for a Tsallis entropy maximization of 1 < q < 3 (Theorem 1) and of 0 ≤ q < 1 (Theorems 2
and 3). This clarifies how and why the q-Gaussian distribution emerges as the maximizer in an explicit
way for the first time in the literature. (To the authors’ knowledge, such a characterization of the
q-Gaussian distribution has never been reported.)However, for a Rényi entropy maximization of q > 1
(Theorem 4) and of 1

3 < q < 1 (Theorem 5), the q-Gaussian distribution is specified with the aid of the
equality condition of Hölder’s inequality. In addition, the proof of its optimality requires a simple
inequality inspired from Moriguti [5]. Note that we do not intend to provide an explicit characterization
of the q-Gaussian distribution in terms of the parameter q, since numerous previous studies (including
[23–27]) have already clarified this. Nevertheless, regarding Tsallis entropy maximization when q = 0,
which has previously been studied in [2], a rigorous result (as in Theorem 3) is now obtained for the
first time thanks to Hölder’s inequality. (For instance, in the framework of [24], the case for q = 0
cannot be incorporated because the Tsallis relative entropy is not defined adequately. )

We note that Hölder’s inequality has been recently utilized as an essential tool for optimization
in Campbell [6], Bercher [8], and Bunte and Lapidoth [9]; on source coding, in Bercher [33,34];
on generalized Cramér–Rao inequalities; and in Tanaka [35,36] on a physical limit of injection locking.
However, such an essential role of Hölder’s inequality does not seem to be reported in the context
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of generalized entropy, including Rényi entropy (cf. [37]), except for the use as a means for proving
nonnegativity of a generalized relative entropy, as mentioned above.

In what follows, Section 2 introduces basic definitions required for the analysis. Section 3 includes
the main results regarding Rényi–Tsallis entropy maximization problems, and it also contains an
explanation on the link to Moriguti’s argument in [5]. Section 4 lists the proofs to the results presented
in Section 3. Finally, one Appendix at the end provides further supplementary information.

2. Basic Definitions and Problem Formulation

In this section, we first define Tsallis entropy [1,24] and Rényi entropy ([3], pp. 676–679). Next,
we reformulate Rényi–Tsallis entropy maximization problems in a unified way. Finally, we introduce
Hölder’s inequality in relation to the problems in this study.

2.1. Tsallis Entropy and Rényi Entropy

Tsallis entropy is beautifully presented in the context of q-analysis (cf. [1], p. 41) as follows.
First, the q-exponential function expq, whose domain and range satisfies

expq :


[
−1

1−q , ∞
)
→ R+ ∪ {0} if q < 1,(

−∞, 1
q−1

]
→ R+ if q > 1,

is defined by

expq x = [1 + (1− q)x]
1

1−q .

While, the inverse of the q-exponential function, namely q-logarithmic function, is defined by

lnq x =
x1−q − 1

1− q
.

Note that, as q→ 1, we have expq x → ex and lnq x → ln x. We also note that the above definition
of expqx and lnqx has been recently revised by Oikonomou and Bagci [38]. (In [38], they have further

developed ‘complete’ q-exponentials and q-logarithms.)Then, the Tsallis entropy HTsallis
q is defined by

HTsallis
q [p] = −

∫ ∞

−∞
pq(x)lnq p(x) dx = −

〈〈
pq(x)lnq p(x)

〉〉
, (1)

for univariate probability density functions (PDFs) p on R, which is a natural generalization of
Boltzmann–Gibbs entropy and Shannon entropy. Hereafter, 〈〈·〉〉 =

∫ ∞
−∞ · dx in (1) is used for notational

simplicity. The reason why 〈〈·〉〉 is used, instead of 〈·〉, is due to the fact that 〈·〉 is generally used for the
expectation value. On the other hand, Rényi entropy is well-known and can be found in textbooks of
information theory (cf. [3], pp. 676–679), which is defined simply by

HRényi
q [p] =

ln 〈〈pq(x)〉〉
1− q

(0 < q < ∞ (q 6= 1)).

Finally, we note that only differential entropies (i.e., continuous probability distributions)
are considered in this study, although our technique with Hölder’s inequality can be applied to
discrete probability distributions.
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2.2. Problem Formulation

Let D be the set of all PDFs on R. We then define the set, as introduced in [24],

Cq =

{
p

∣∣∣∣∣ p ∈ D and

〈〈
x2 pq(x)

〉〉
〈〈pq(x)〉〉 < ∞

}
(⊂ D).

Following the problem formulation in [1,2,23,24,31], we first introduce the Tsallis entropy
maximization problem for univariate PDFs p on R:

T1: maximize
p∈ Cq

HTsallis
q [p] = −

〈〈
pq(x) lnq p(x)

〉〉
=

1− 〈〈pq(x)〉〉
q− 1

(for q ≥ 0 (q 6= 1)) (2a)

subject to 〈〈p(x)〉〉 = 1, (2b)〈〈
x2 pq(x)

〉〉
〈〈pq(x)〉〉 =

〈〈
x2P̃q(x)

〉〉
= σ2, (2c)

in which q and σ2 have fixed values, and P̃q(x) = pq(x)/〈〈pq(x)〉〉. Note that 〈〈pq(x)〉〉 < ∞ and〈〈
x2 pq(x)

〉〉
< ∞ are assumed in T1. P̃q(x) is often called the escort probability [27,31]. This somewhat

unusual form of expectation
〈〈

x2P̃q(x)
〉〉
= σ2 is called the q-normalized expectation [31], which has

been usually assumed in Tsallis statistics. In contrast to the q-normalized expectation, as [31] pointed
out, the usual expectation

〈〈
x2 p(x)

〉〉
= σ2 is also valid in Tsallis statistics. We note the Tsallis entropy

maximization problem under the constraint of this usual expectation is considered later in problem R2.
For problem T1, using Tsallis relative entropy, Furuichi [24] first proved that for 0 < q < 3 the

q-Gaussian distribution p(x) = 1
Zq

expq(−βqx2) maximizes the Tsallis entropy among any univariate
PDFs in Cq, where Zq and βq are constants determined by q and σ.

Here, we formulate a slightly generalized optimization problem T2, as follows. First, replace
(2c) with 〈〈

x2 pq(x)
〉〉
− σ2〈〈pq(x)〉〉 =

〈〈
(x2 − σ2)pq(x)

〉〉
= 0.

Note that now, as opposed to T1, it is not necessarily required that both
〈〈

x2 pq(x)
〉〉

and 〈〈pq(x)〉〉
are finite, and hence, Cq is not required, and it is replaced with D. Next, notice that Tsallis entropy is
maximal at p(x), such that 〈〈pq(x)〉〉 is minimal (or correspondingly, maximal at p(x), such that 〈〈pq(x)〉〉
is maximal) for q > 1 (correspondingly, for 0 ≤ q < 1). Then, by introducing an additional arbitrary
parameter λq, T1 is reformulated as

T2: minimize
p∈D

(or maximize) Tq[p; λq] = σ2〈〈pq(x)〉〉+ λq
〈〈
(x2 − σ2)pq(x)

〉〉
=
〈〈

pq(x)[λqx2 + (1− λq)σ2]
〉〉

(λq ∈ R, for q > 1 (correspondingly, for 0 ≤ q < 1)) (3a)

subject to 〈〈p(x)〉〉 = 1, (3b)〈〈
(x2 − σ2)pq(x)

〉〉
= 0, (3c)

where the constant σ2 is multiplied with 〈〈pq(x)〉〉 in the first term of (3a) simply due to notational
convenience for later analysis in Section 4.

As opposed to the Tsallis entropy maximization problem T1, the Rényi entropy maximization
problem is usually considered under the constraint of the usual expectation

〈〈
x2 p(x)

〉〉
= σ2,

in other words,

R1: maximize HRényi
q [p] =

ln 〈〈pq(x)〉〉
1− q

(for 0 < q < ∞ (q 6= 1)) (4a)

subject to 〈〈p(x)〉〉 = 1, (4b)〈〈
x2 p(x)

〉〉
= σ2, (4c)
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which is equivalent to :

minimize
p∈D

(or maximize) 〈〈pq(x)〉〉 (q > 1 (correspondingly, 0 ≤ q < 1)) (5a)

subject to 〈〈p(x)〉〉 = 1, (5b)〈〈
x2 p(x)

〉〉
= σ2. (5c)

We note this very problem for q > 1 was first posed and solved by Moriguti in 1952 [5].
(Later in [39], cases q > 1 and 0 < q < 1 are both analyzed in an n-dimensional spherical symmetric
extension of [5] with the same approach as [5].)Similar to T1, by introducing an additional parameter
λq and the constraint 〈〈

x2 p(x)
〉〉
− σ2〈〈p(x)〉〉 =

〈〈
(x2 − σ2)p(x)

〉〉
= 0, (6)

which is obtained from (5b) and (5c), R1 is now reformulated as

R2: minimize
p∈D

(or maximize) Rq[p; λq] = 〈〈pq(x)〉〉+ λq
〈〈
(x2 − σ2)p(x)

〉〉
=
〈〈

pq(x)[1 + λq(x2 − σ2)p1−q(x)]
〉〉

(for q > 1 (correspondingly, for 0 ≤ q < 1), λq ∈ R) (7a)

subject to 〈〈p(x)〉〉 = 1, (7b)〈〈
(x2 − σ2)p(x)

〉〉
= 0. (7c)

As we observe (3a) in T2 and (7a) in R2, both become the inner products of two functions; pq(x)
and λqx2 + (1− λq)σ2 and pq(x) and 1 + λq(x2 − σ2)p1−q(x), respectively. This suggests a direct link
to Hölder’s inequality.

2.3. Hölder’s Inequality for Later Analysis

Here, we provide minimum information about Hölder’s inequality for later analysis in Section 3
and Section 4. The standard Hölder’s inequality is given by

‖ f g‖1 ≤ ‖ f ‖α‖g‖β, (8)

with 1 ≤ α, β ≤ ∞ and α−1 + β−1 = 1 (cf. [40] for the one-demensional case and [41] for general
measurable functions). In general, f and g are measurable functions defined on a subset S ⊆ Rn and
µ(S) > 0, and we employ a compact notation as

‖ f ‖α =

(∫
S
| f |α dµ

) 1
α

,

‖g‖β =

(∫
S
|g|β dµ

) 1
β

.

Although ‖ · ‖α and ‖ · ‖β are no longer norms for α, β < 1, now in the context of this study, we
set α = q−1 and β = (1− q)−1. Then, Hölder’s inequality (8) is given in the following form:

‖ f g‖1 ≤ ‖ f ‖ 1
q
‖g‖ 1

1−q
(0 ≤ q ≤ 1). (9)

For the case 0 < q < 1, the equality in (9) holds if and only if there exists constants A and B,
not both 0 (cf. [40], p. 140), ( More specifically, if f is null (i.e., f (s) = 0 (a.e. s ∈ S)), then B = 0.
In addition, if g is null, A = 0. ) such that

A | f (s)|
1
q = B |g(s)|

1
1−q (a.e. s ∈ S). (10)
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In addition, for the exceptional case q = 0 (as well as q = 1), we can argue a condition for the equality
in (9) separately, as shown in Section 4.3, although the expression of (10) is no more valid for this case.

In contrast to (9), reverse Hölder’s inequality is given by

‖ f g‖1 ≥ ‖ f ‖ 1
q
‖g‖ −1

q−1
(q > 1), (11)

which is directly obtained from Hölder’s inequality [40]. We note that f can be 0 over any subset
U ⊆ S. As for g, on the other hand, we assume g(s) 6= 0 for almost everywhere (a.e.) s ∈ S, taking care
that −1

q−1 < 0 in (11) (cf. [40], p. 140). Then, for the case q > 1, the equality in (11) holds if and only if
there exists A ≥ 0, such that

| f (s)| = A |g(s)|
−q
q−1 (a.e. s ∈ S ⊆ Rn). (12)

3. Main Results

In this study, we focus on the univariate PDFs on R, and we consider f (x) and g(x) defined on
R as a special case of general f (s) and g(s) in Section 2.3. Hereafter, we refer to (10) and (12), as the
equality condition of Hölder’s inequality and reverse Hölder’s inequality, respectively. Thanks to
these equality conditions, we obtained our results systematically.

Let p(x) be a univariate PDF defined on R. Assume that p(x) is a measurable function which
is integrable with respect to x. In addition, let B(·, ·) denote the Beta function (cf. [42], p. 253).
Then, we can form the following statements.

Theorem 1. (Tsallis entropy maximization for 1 < q < 3): Suppose 1 < q < 3. popt(x), defined by

popt(x) =
1

Zq
expq

(
−βqx2

)
with Zq =

√
3− q
q− 1

σB
(

1
q− 1

− 1
2

,
1
2

)
and βq =

1
(3− q)σ2 ,

is the unique maximizer of the Tsallis entropy HTsallis
q [p] in (2a) under the constraints 〈〈p(x)〉〉 = 1 of (3b) and〈〈

(x2 − σ2)pq(x)
〉〉
= 0 of (3c) in T2.

Corollary 1. For q ≥ 3, Tsallis entropy HTsallis
q [p] is bounded, but has no maximizer. Namely, there exist PDFs

p(x), such that HTsallis
q [p]→ 1

q−1 ≤
1
2 , in other words, 〈〈pq(x)〉〉 → 0. (The idea for constructing such PDFs is

from Tsukada and Suyari [23], where they proved that R1 for q ≤ 1
3 becomes unbounded, i.e., 〈〈pq(x)〉〉 → +∞.)

The proof of this theorem (and corollary) is given in Section 4.1. As mentioned in Section 1,
the above statement itself has already appeared in [24]. However, our proof is quite different to
the one in [24], in the sense that it does not require generalized relative entropy, and the maximizer is
explicitly ‘specified’ (not ‘given ab initio’). Namely, reverse Hölder’s inequality aids in finding the
optimal solution.

The outline of the proof is as follows. First, for 1 < q < 3, the maximization of the Tsallis entropy
HTsallis

q [p], in other words, the minimization of Tq[p; λq] in (3a), is related to reverse Hölder’s inequality
in (11). Second, we observe that Tq[p; λq] has the lower bound through reverse Hölder’s inequality.
Third, the minimizer popt(x) achieving this bound is explicitly and uniquely constructed from the
equality condition (12) :

popt(x) = A
1
q
[
λq,optx2 + (1− λq,opt)σ

2
] −1

q−1 , (13)

where A =
[

3−q
2 σ2

] q
q−1
[√

3−q
q−1 σB

(
1

q−1 −
1
2 , 1

2

)]−q
and λq,opt =

1
2 (q− 1).
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Remark 1. Even if we assume the additional constraint: p ∈ Cq (⊂ D) in T2, the proof of this theorem (as well
as of Theorems 2 and 3) remains the same, since we do not require the finiteness of

〈〈
x2 pq(x)

〉〉
and 〈〈pq(x)〉〉 (i.e.,

p ∈ Cq) in the proof.

Remark 2. Another simple proof for optimality of popt is given as follows. The idea is due to Moriguti’s
argument (cf. [5], p. 288), where pq

opt(x) and any pq(x) are directly related by the Taylor expansion for each
x ∈ R :

pq(x) = pq
opt(x) + qpq−1

opt (x)[p(x)− popt(x)] +
q(q− 1)

2
pq−2

int (x)[p(x)− popt(x)]2, (14)

where pint(x) (≥ 0) has a value between p(x) and popt(x). Substituting (13) into the second term of the
right-hand side of (14), we have

[λq,optx2 + (1− λq,opt)σ
2][pq(x)− pq

opt(x)]

= qA
q−1

q [p(x)− popt(x)] + [λq,optx2 + (1− λq,opt)σ
2]

q(q− 1)
2

pq−2
int (x)[p(x)− popt(x)]2. (15)

With the constraints (3b) and (3c) :
〈〈

x2 pq
opt(x)

〉〉
= σ2

〈〈
pq

opt(x)
〉〉

,
〈〈

x2 pq(x)
〉〉

= σ2〈〈pq(x)〉〉, and

〈〈p(x)〉〉 =
〈〈

popt(x)
〉〉
= 1, integrating (15) over R, for any p(x), we find

σ2[〈〈pq(x)〉〉 −
〈〈

pq
opt(x)

〉〉
] =

q(q− 1)
2

〈〈
[λq,optx2 + (1− λq,opt)σ

2]pq−2
int (x)[p(x)− popt(x)]2

〉〉
≥ 0, (16)

since λq,optx2 + (1− λq,opt)σ2 > 0 follows from 0 < λq,opt(=
1
2 (q− 1)) < 1 . Therefore, popt in (13) is a

unique optimal solution to T2, as the equality holds only if p = popt.

Theorem 2. (Tsallis entropy maximization for 0 < q < 1): Suppose 0 < q < 1. popt(x), as defined by

popt(x) =


1

Zq
expq

(
−βqx2

)
(x ∈ S̄q,opt)

0 (x ∈ R \ S̄q,opt),

with S̄q,opt =

[
−
√

3− q
1− q

σ,

√
3− q
1− q

σ

]
, Zq =

√
3− q
1− q

σB
(

1
1− q

+ 1,
1
2

)
, and βq =

1
(3− q)σ2 ,

is the unique maximizer of the Tsallis entropy HTsallis
q [p] in (2a) under the constraints 〈〈p(x)〉〉 = 1 of (3b) and〈〈

(x2 − σ2)pq(x)
〉〉
= 0 of (3c) in T2.

The proof of this theorem is given in Section 4.2. In the case for 0 < q < 1, the maximization of
Tq[p; λq] is recast as Hölder’s inequality in (9), where, similar to the argument in the proof of Theorem 1,
construction of popt and λq,opt and verification of its optimality are carried out simultaneously. The
maximizer popt for 0 < q < 1 is uniquely determined from the equality condition (10):

popt(x) =


A
B
[λq,optx2 + (1− λq,opt)σ

2]
1

1−q (x ∈ S̄q,opt)

0 (x ∈ R \ S̄q,opt),
(17)

where A/B =
[

3−q
2 σ2

] 1
q−1
[√

3−q
1−q σB

(
1

1−q + 1, 1
2

)]−1
and λq,opt=

1
2 (q− 1) (< 0) are uniquely

determined, and the associated S̄q,opt is uniquely determined as S̄q,opt =

[
−
√

λq,opt−1
λq,opt

σ,
√

λq,opt−1
λq,opt

σ

]
.
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Remark 3. Another simple proof for optimality of popt is given by following Moriguti’s argument ([5], p. 288).
Similar to the case for 1 < q < 3 in Remark 2, (14) holds for x ∈ S̄q,opt ⊂ R. As for x ∈ R \ S̄q,opt, popt(x) = 0
from (17). We then have[

λq,optx2 + (1− λq,opt)σ
2
] [

pq(x)− pq
opt(x)

]

=


qA

q−1
q
[
p(x)− popt(x)

]
+
[
λq,optx2 + (1− λq,opt)σ

2
] q(q− 1)

2
pq−2

int (x)
[
p(x)− popt(x)

]2
(x ∈ S̄q,opt)〈〈[

λq,optx2 + (1− λq,opt)σ
2
]

pq(x)
〉〉

R\S̄q,opt
(x ∈ R \ S̄q,opt), (18)

where 〈〈·〉〉R\S̄q,opt
=
∫
R\S̄q,opt

· dx is used for notational simplicity. Integrating (18) over R, for any p satisfying
the constraints (3b) and (3c), we find

σ2
[
〈〈pq(x)〉〉 −

〈〈
pq

opt(x)
〉〉]

= qA
q−1

q
〈〈

p(x)− popt(x)
〉〉

S̄q,opt
+

q(q− 1)
2

〈〈[
λq,optx2 + (1− λq,opt)σ

2
]

pq−2
int (x)

[
p(x)− popt(x)

]2〉〉
S̄q,opt

+
〈〈[

λq,optx2 + (1− λq,opt)σ
2
]

pq(x)
〉〉

R\S̄q,opt
≤ 0, (19)

since the first term on the right-hand side ≤ 0 as 〈〈p(x)〉〉S̄q,opt
≤ 1, the second term ≤ 0 from the definition of

S̄q,opt and the fact that 0 < q < 1, and the third term ≤ 0 because of the definition of S̄q,opt. Since the equality
in (19) holds only if p = popt, this implies that popt in (17) is a unique optimal solution to T2.

Theorem 3. (Tsallis entropy maximization for q = 0): Suppose q = 0. popt(x), defined by

popt(x) =

{
arbitrary positive value (x ∈ S̄q,opt =

[
−
√

3σ,
√

3σ
]
)

0 (x ∈ R \ S̄q,opt),
(20)

with
〈〈

popt(x)
〉〉

S̄q,opt
= 1,

is the unique representation of the maximizer of the Tsallis entropy HTsallis
q [p] in (2a) under the constraints

〈〈p(x)〉〉 = 1 of (3b) and
〈〈
(x2 − σ2)p0(x)

〉〉
= 0 of (3c) in T2.

The proof of this theorem is given in Section 4.3, where the associated Hölder’s inequality is
given as ‖ f g‖1 ≤ ‖ f ‖∞‖g‖1, and we follow the arguments in the proof of Theorem 2 for 0 < q < 1.
(This exceptional case (q = 0) is also considered in T1, where the same result is obtained through a
more direct graphical argument, after proving that any candidate p∗(x) for the maximizer popt(x)
is defined only on a simply connected interval S∗ that is symmetric about the origin O.The proof is
straightforward but lengthy, so we omit it here.) However, as opposed to the case for 0 < q < 1,
the equality condition is not available in the form of (10) for q = 0, and we directly verify that

f∗(x) =

{
sgn[g(x)] (a.e. x ∈ S̄q,opt)

0 (x ∈ R \ S̄q,opt)

is the unique solution satisfying the equality in (9), as shown in Lemma 1. Namely, for any feasible
solutions p(x) satisfying the constraints (3b) and (3c), we find that f∗(x) is associated with the unique
maximizer popt(x) of Tq[p; λq] from (52), and hence, popt(x) for q = 0 is obtained as in (20).

Remark 4. We note that the optimal solution shown in ([2], p. 2399, Figure 1) for q = 0, which is obtained by
setting q→ 0 in (17), is a special case of (20).
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Theorem 4. (Rényi entropy maximization for q > 1): Suppose q > 1. popt(x), as defined by

popt(x) =


1

Z∗q
expq∗

(
−β∗q x2

)
(x ∈

¯
Sopt)

0 (x ∈ R \
¯
Sopt),

with q∗ = 2− q,
¯
Sopt =

[
−
√

3q− 1
q− 1

σ,

√
3q− 1
q− 1

σ

]
, Z∗q =

√
3q− 1
q− 1

σB
(

q
q− 1

,
1
2

)
, and β∗q =

1
(3q− 1)σ2 ,

is the unique maximizer of Rényi entropy in (4a) under the constraints 〈〈p(x)〉〉 = 1 of (5b) (or (7b)) and〈〈
x2 p(x)

〉〉
= σ2 of (5c) (or (7c)).

The proof of this theorem is given in Section 4.4. The minimization of Rq[p; λq] in (7b) for q > 1 is
related to reverse Hölder’s inequality in (11). In contrast to those of Theorems 1–3, the proof of Theorem
4, which can be found in Section 4.4, follows from two steps. In the first step, we construct a candidate
for the minimizer (i.e., popt(x), see (61) below), whose support becomes

¯
Sopt, and we determine the

associated λq,opt and
¯
Sopt through the equality condition of reverse Hölder’s inequality. In doing so, as

shown in Figure 1, we introduce a subset of feasible solutions p(x), in other words, Q, which satisfies
the constraints (5b) and (5c), and an additional constraint: pq(x) + λq(x2− σ2)p(x) > 0 (x ∈ R). In the
second step, after obtaining a candidate popt(x) ∈ Q, we verify that this popt(x) is indeed the unique

minimizer of Rq[p; λq] by directly comparing
〈〈

pq
opt(x)

〉〉
and 〈〈pq(x)〉〉 for any feasible solutions p(x)

satisfying the constraints (5b) and (5c).

Figure 1. This figure illustrates how our approach for Theorem 4 works in a possible structure of
our optimization problem. The whole curve represents all feasible solutions, and the dotted points
represent the subset Q in all feasible solutions.

Remark 5. We note that the first proof for this optimality of popt has been given in Moriguti [5], in which the
essential idea is the Taylor expansion shown in the argument below (18).

Theorem 5. (Rényi entropy maximization for 1
3 < q < 1): Suppose 1

3 < q < 1. popt(x), defined by

popt(x) =
1

Z∗q
expq∗

(
−β∗q x2

)
with q∗ = 2− q, Z∗q =

√
3q− 1
1− q

σB
(

1
1− q

− 1
2

,
1
2

)
and β∗q =

1
(3q− 1)σ2 ,

is the unique maximizer of Rényi entropy (4a) under the constraints (5b) and (5c) (or (7b) and (7c)).

The proof of this theorem is given in Section 4.5. Maximization of Rq[p; λq] is related to Hölder’s
inequality in (9) and the proof follows two steps, similar to the proof for Theorem 4. In the first step, we
construct a candidate for the maximizer (i.e., popt(x), given below by (72)) and determine λq,opt through
the equality condition of Hölder’s inequality. In the second step, after obtaining a candidate popt, we

verify that this popt is indeed the unique maximizer of Rq[p; λq] by directly comparing
〈〈

pq
opt(x)

〉〉
and
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〈〈pq(x)〉〉 for any feasible solutions p(x) satisfying the constraints (5b) and (5c). This verification is done
as in the proofs for Theorem 4. Although omitted here, using essentially the same argument as in
Remark 1, another simple proof based on Moriguti [5] is possible.

Remark 6. Tsukada and Suyari [23] have proved that R1 for 0 < q ≤ 1
3 becomes unbounded. As for the

exceptional case of q = 0, the upper and lower bounds of 〈〈pq(x)〉〉(=
〈〈

p0(x)
〉〉
) are argued as follows. First, if we

consider the Gaussian distribution that satisfies (5b) and (5c), this gives us
〈〈

p0(x)
〉〉
= 〈〈1〉〉R = ∞, and it

implies there is no maximizer. Next, consider a particular distribution given by

∆(x) =

{
δ−1 (x ∈ [σ̄, σ̄ + δ])

0 (otherwise),
(21)

with δ > 0. This ∆(x) satisfies 〈〈∆(x)〉〉 = δ−1δ = 1 in (5b), and it also satisfies
〈〈

x2∆(x)
〉〉
= σ2 in (5c) when

δ is arbitrary small, in other words,

∀σ, δ (� σ) ∃σ̄
〈〈

x2∆(x)
〉〉

= σ̄2 + δσ̄ +
δ2

3
= σ2, (22)

and, this particular distribution gives
〈〈

∆0(x)
〉〉
= 〈〈1〉〉[σ̄,σ̄+δ] = δ → 0 (δ → 0), which implies there is no

minimizer. Therefore, problem R1 (and R2) has no maximizer nor minimizer for q = 0.

4. Proof of Main Results

Following the outlines leading to Theorems 1–5 in Section 3, here we give their proofs.

4.1. Proof of Theorem 1

Proof. Let p be arbitrary feasible solutions to T2 for 1 < q < 3, and let popt be its optimal solution,
which is eventually constructed in (25). Let λq,opt be a particular value of the additional parameter
λq in T2, which is associated with popt and is eventually constructed in (29). Then, for any p and a
particular λq,opt (= 1

2 (q− 1) in (29)), we define f and g as

f (x) = pq(x) (≥ 0), (23a)

g(x) = λq,optx2 + (1− λq,opt)σ
2 (> 0). (23b)

First, we show Tq[p; λq] is minimized in the following way :

Tq[p; λq] = Tq[p; λq,opt] = 〈〈 f g〉〉 (24a)

= ‖ f g‖1 ≥ ‖pq‖ 1
q
‖g‖ −1

q−1
(24b)

= ‖g‖ −1
q−1

(the lower bound). (24c)

The first “=” in (24a) follows from the fact that Tq[p; λq] = σ2〈〈pq(x)〉〉+ λq
〈〈
(x2 − σ2)pq(x)

〉〉
in

(3a) is independent from the value of λq, since any feasible solution p satisfies
〈〈
(x2 − σ2)pq(x)

〉〉
= 0

in (3c), and the second “=” in (24a) is immediate from (23). The “=” in (24b) follows from pq(x) ≥ 0
and g(x) > 0 in (23b), since in (29) λq,opt =

1
2 (q− 1), and it satisfies 0 < λq,opt < 1. The “≥” in (24b)

follows from reverse Hölder’s inequality (11). The “=” in (24c) follows from ‖pq‖ 1
q
= 〈〈|p(x)|〉〉q = 1.

(24c) implies that Tq[p; λq] has the lower bound (i.e., the Tsallis entropy HTsallis
q [p] in (1) has the

upper bound).
Next, we construct a maximizer popt achieving this bound and show its uniqueness, which is

done by checking the conditions where the “≥” in (24) become “=”; the only “≥” in (24b) becomes
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“=” if and only if the equality condition (12) is satisfied. Now, we rewrite the equality condition (12)
(after assuming S = R in (12)) by using (23), which constructs (a candidate of) popt:

popt(x) = A
1
q [λq,optx2 + (1− λq,opt)σ

2]
−1
q−1 =

1
Zq

expq

(
−βqx2

)
, (25)

where A and λq,opt (=
1
2 (q− 1)) are uniquely determined, and hence, Zq and βq are also uniquely

determined, as shown in the following calculations. We note the formula ([42], p. 253):

∫ ∞

0

dx
xα(1 + xγ)β

=
1
γ

B
(

β− 1− α

γ
,

1− α

γ

)
is repeatedly used for the integrations below. (More precisely, for (26), we set α = 0 (< 1), β = 1

q−1 (>

0), γ = 2 (> 0), and βγ > 1− α is satisfied. For (27b), we set α = −2, 0 (< 1), β = q
q−1 (> 0),

γ = 2 (> 0), and βγ > 1− α is satisfied.)First, by substituting popt in (25) into the constraint (3b),
and for 1 < q < 3 (finiteness of the left-hand side of (3b) requires the condition q < 3), we have

〈〈
popt(x)

〉〉
= A

1
q [(1− λq,opt)σ

2]
1

1−q

√
1− λq,opt

λq,opt
σB
(

1
q− 1

− 1
2

,
1
2

)
= 1. (26)

On the other hand, substituting (25) into n〈〈pq(x)〉〉 and
〈〈

x2 pq(x)
〉〉

in the constraint (3c), we have

〈〈
pq

opt(x)
〉〉

= A[(1− λq,opt)σ
2]

q
1−q σ

[√
1− λq,opt

λq,opt
B
( 1

q− 1
+

1
2

,
1
2

)]
, (27a)

〈〈
x2 pq

opt(x)
〉〉

= A[(1− λq,opt)σ
2]

q
1−q σ3

[(1− λq,opt

λq,opt

) 3
2

B
( 1

q− 1
− 1

2
,

3
2

)]
, (27b)

and substitution of (27a) and (27b) into (3c) yields

A[(1− λq,opt)σ
2]

q
1−q σ3

[(
1− λq,opt

λq,opt

) 3
2

B
(

1
q− 1

− 1
2

,
3
2

)
−
√

1− λq,opt

λq,opt
B
(

1
q− 1

+
1
2

,
1
2

)]
= 0. (28)

Then, using the formula B(x, y + 1) = y
x B(x + 1, y) ([42], p. 254) in (28), λq,opt is uniquely

determined as

λq,opt

1− λq,opt
=

q− 1
3− q

, i.e., λq,opt =
1
2
(q− 1), (29)

and from (26) and (29) A is uniquely determined as

A =

[
3− q

2
σ2
] q

q−1
[√

3− q
q− 1

σB
(

1
q− 1

− 1
2

,
1
2

)]−q

. (30)

In (25), equating the second term to the third term, βq is uniquely determined as

βq =
λq,opt

1− λq,opt
(q− 1)−1σ−2 =

1
(3− q)σ2 ,

and from (29) and (30), Zq is uniquely determined as

Zq =

{
A

1
q
[
(1− λq,opt)σ

2
] 1

1−q
}
−1 =

√
3− q
q− 1

σB
(

1
q− 1

− 1
2

,
1
2

)
.
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This proves that popt in (25) is a unique minimizer to T2 for 1 < q < 3.
Finally, we prove the Corollary to Theorem 1 in Section 3. For q ≥ 3, let p∗ be the distribution

satisfying (3b) and (3c), defined as

p∗(x) = Z−1(|x|+ α)−(1+ε),

where a normalization factor Z =
∫
(|x|+ α)−(1+ε)dx and α, ε > 0. What we are going to prove is〈〈

pq
∗(x)

〉〉
→ 0 (ε→ 0), which is done as follows. First, straightforward integrations yield:

Z = 2α−εε−1, (31a)〈〈
pq
∗(x)

〉〉
= 2α1−q̄(q̄− 1)−1Z−q, (31b)〈〈

x2 pq
∗(x)

〉〉
= 4α3−q̄(q̄− 1)−1(q̄− 2)−1(q̄− 3)−1Z−q, (31c)

where q̄ = (1 + ε)q > 3. Second, from the constraint in (3c), 2(q̄− 2)−1(q̄− 3)−1α2 = σ2 is obtained,
and this shows that α becomes finite and is determined by ε, q, and σ. Finally, substituting (31a) into
(31b), we obtain 〈〈

pq
∗(x)

〉〉
= 21−q(q̄− 1)−1εq, (32)

and hence
〈〈

pq
∗(x)

〉〉
→ 0 (ε→ 0), since for q ≥ 3 in (32) (q̄− 1)−1 → (q− 1)−1 and εq → 0 (ε→ 0)

in (32).

4.2. Proof of Theorem 2

Proof. Let p be arbitrary feasible solutions to T2 for 0 < q < 1, and let popt be its optimal solution,
which is eventually constructed in (38). Let λq,opt be a particular value of the additional parameter
λq in T2, which is associated with popt and is eventually constructed in (42). Then, for any p and a
particular λq,opt (= 1

2 (q− 1) in (42)), we define f and g as

f (x) = pq(x), (33a)

g(x) = λq,optx2 + (1− λq,opt)σ
2, (33b)

and we define an interval

S̄q,opt =

[
−
√

λq,opt−1
λq,opt

σ,
√

λq,opt−1
λq,opt

σ

]
.

First, we show that Tq[p; λq] is maximized in the following way:

Tq[p; λq] = Tq[p; λq,opt] = 〈〈 f g〉〉 (34a)

≤ 〈〈 f g〉〉S̄q,opt
= 〈〈| f g|〉〉S̄q,opt

(34b)

= ‖ f g‖1,S̄q,opt
≤ ‖ f ‖ 1

q ,S̄q,opt
‖g‖ 1

1−q ,S̄q,opt
(34c)

≤ ‖g‖ 1
1−q ,S̄q,opt

(the upper bound), (34d)

where 〈〈·〉〉 =
∫ ∞
−∞ · dx, 〈〈·〉〉S̄q,opt

=
∫

S̄q,opt
· dx, and ‖ · ‖α,S̄q,opt

=
(∫

S̄q,opt
| · |αdx

) 1
α . The first “=” in (34a)

follows from the fact that Tq[p; λq] = σ2〈〈pq(x)〉〉+ λq
〈〈
(x2 − σ2)pq(x)

〉〉
in (3a) is independent from the

value of λq, since any feasible solution p satisfies
〈〈
(x2 − σ2)pq(x)

〉〉
= 0 in (3c), and the second “=” in

(34a) is immediate from (33). The “≤” in (34b) is obtained from the following observation. By plotting
the graph of g(x) for (any negative) λq,opt, we observe that S̄q,opt is the set of x on which g(x) becomes
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positive. For any f and g in (34a), we also observe from this graph that 〈〈 f g〉〉S̄q,opt
> 〈〈 f g〉〉S∗ for any set

S∗ (⊂ R) but S̄q,opt, since

f (x) ≥ 0 (∀x ∈ R), g(x) ≥ 0 (x ∈ S̄q,opt), and g(x) < 0 (x ∈ R \ S̄q,opt). (35)

On the other hand, the “=” in (34b) is immediate from f (x)g(x) ≥ 0 (∀x ∈ S̄q,opt). The first “=”
in (34c) follows from the definition of ‖ · ‖1,S̄q,opt

, and the inequality in (34c) follows from Hölder’s
inequality (9). In view of (33a), the final “≤” in (34d) follows from

‖ f ‖ 1
q ,S̄q,opt

=

(∫
S̄q,opt
|p(x)| dx

)q
≤
(∫ ∞

−∞
|p(x)| dx

)q
= 1,

and the resulting ‖g‖ 1
1−q ,S̄q,opt

implies the upper bound of Tq[p; λq] if λq,opt exists for a given q and σ.

Next, we construct a maximizer popt achieving this bound and show its uniqueness, which is
done by checking the conditions where all three “≤” in (34) become “=”. As for the “≤” in (34b),
it becomes “=” if and only if p(x) becomes positive only in S̄q,opt. Namely,

f (x) = pq(x) ≥ 0 (x ∈ S̄q,opt) and f (x) = 0 (a.e. x ∈ R \ S̄q,opt). (36)

In other words, the “≤” in (34b) becomes “<” if the above condition (36) is violated, which is
easily verified from the graph of g(x) and the above argument for the “≤” in (34b). On the other
hand, in (34c), the “≤” becomes “=” if and only if the equality condition (10) is satisfied for x ∈ S̄q,opt,
in other words,

Ap(x) = B
∣∣∣λq,optx2 + (1− λq,opt)σ

2
∣∣∣ 1

1−q . (37)

If p satisfies (36), it is immediate that A 6= 0 and B 6= 0 in (37), since[
λq,optx2 + (1− λq,opt)σ2] 1

1−q ≥ 0 (x ∈ S̄q,opt), and A and B are not both 0 (cf. [40], p. 140).
The conclusion is that, if these two conditions (36) and (37) are satisfied, a maximizer popt achieving
the upper bound of Tq[p; λ] is uniquely determined:

popt(x) =


A
B
[λq,optx2 + (1− λq,opt)σ

2]
1

1−q =
1

Zq
expq

(
−βqx2

)
(x ∈ S̄q,opt)

0 (x ∈ R \ S̄q,opt),
(38)

in which A/B, λq,opt, Zq =
√

3−q
1−q σB

(
1

1−q + 1, 1
2

)
, βq = 1

(3−q)σ2 , and S̄q,opt =
[
−
√

3−q
1−q σ,

√
3−q
1−q σ

]
are

uniquely determined, as shown in the following calculations. We note the formula ([42], p. 253):

∫ 1

0
xα(1− xγ)βdx =

1
γ

B
(

1 + β,
1 + α

γ

)
is repeatedly used for the integrations below. (More precisely, for (39), we set α = 0 (> −1), β =

1
1−q (> −1), and γ = 2 (> 0). For (40b), we set α = 2, 0 (> −1), β = q

1−q (> −1), and γ = 2 (> 0).)By
substituting popt(x) in (38) into the constraint (3b), we have

〈〈
popt(x)

〉〉
=

A
B

[
(1− λq,opt)σ

2
] 1

1−q

√
λq,opt − 1

λq,opt
σB
( 1

1− q
+ 1,

1
2

)
= 1. (39)



Entropy 2019, 21, 549 15 of 26

On the other hand, by substituting (38) into 〈〈pq(x)〉〉 and
〈〈

x2 pq(x)
〉〉

in the constraint (3c), we have

〈〈
pq

opt(x)
〉〉

=

(
A
B

)q [
(1− λq,opt)σ

2
] q

1−q
σ

[√
λq,opt − 1

λq,opt
B
( 1

1− q
,

1
2

)]
, (40a)

〈〈
x2 pq

opt(x)
〉〉

=

(
A
B

)q [
(1− λq,opt)σ

2
] q

1−q
σ3

[(
λq,opt − 1

λq,opt

) 3
2

B
( 1

1− q
,

3
2

)]
, (40b)

and substitution of (40a) and (40b) into (3c) yields

(
A
B

)q [
(1− λq,opt)σ

2
] 1

1−q
σ3

[(
λq,opt − 1

λq,opt

) 3
2

B
(

1
1− q

,
3
2

)
−
√

λq,opt − 1
λq,opt

B
(

1
1− q

,
1
2

)]
= 0. (41)

Then, using the formula B(x, y + 1) = y
x+y B(x, y) ([42], p. 254) in (41), λq,opt is uniquely

determined as

λq,opt

λq,opt − 1
=

1− q
3− q

, i.e., λq,opt =
1
2
(q− 1) (42)

and from (39) and (42) A/B is uniquely determined as

A
B

=

[
3− q

2
σ2
] 1

q−1
[√

3− q
1− q

σB
(

1
1− q

+ 1,
1
2

)]−1

.

In (38), equating the second term to the third term, βq is uniquely determined as

βq =
λq,opt

1− λq,opt
(q− 1)−1σ−2 =

1
(3− q)σ2 , (43)

and from (29) and (30), Zq is uniquely determined as

Zq =
{A

B

[
(1− λq,opt)σ

2
] 1

1−q
}−1

=

√
3− q
1− q

σB
(

1
1− q

+ 1,
1
2

)
. (44)

Thus, from (43), and (44), popt is uniquely obtained as in (38).
To see that popt makes all “≤” in (34) “=”, finally, we check the last “≤” in (34d) becomes “=”,

which is immediate since in (34c) ‖ f ‖ 1
q ,S̄q,opt

=
∫

S̄q,opt
popt(x)dx = 1. Therefore, it is concluded that

Tq[p; λq] is uniquely maximized by popt in (38) for 0 < q < 1.

4.3. Proof of Lemma 1 and Theorem 3

Let p be arbitrary feasible solutions to T2 for q = 0, and let popt be its optimal solution,which is
eventually constructed in (53). Let λq,opt be a particular value of the additional parameter λq in T2,
which is associated with popt and is eventually constructed in (54). Then, for any p and a particular
λq,opt (= − 1

2 in (54)) , we define f and g as

f (x) = p0(x) =

{
1 if 0 < p(x) < ∞
0 if p(x) = 0,

(45a)

g(x) = λq,optx2 + (1− λq,opt)σ
2, (45b)

and we define an interval
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S̄q,opt =

[
−
√

λq,opt−1
λq,opt

σ,
√

λq,opt−1
λq,opt

σ

]
. (46)

In (45a), as a convention, we take 00 = 0, and p(x) < ∞ (a.e. x ∈ S̄q,opt). Then, ‖ f ‖∞ = 1 follows
from (45a). Now, we define f∗ as

f∗(x) =

{
sgn[g(x)] (a.e. x ∈ S̄q,opt)

0 (x ∈ R \ S̄q,opt).
(47)

We note this particular f∗(x) = sgn[g(x)] is proved to be the unique maximizer of ‖ f g‖1,S̄q,opt
in

the following Lemma 1 (as a minor modification of Lemma 4 in [35]).

Lemma 1. (cf. Lemma 4 in [35]). Let S be an arbitrary subset in R, with µ(S) > 0. For f ∈ L∞(S) and
g ∈ L1(S), assume g(x) 6= 0, a.e. on S. Then, f∗(x) = sgn[g(x)] (a.e. x ∈ S) is the unique maximizer of the
functional ‖ f g‖1,S in (9).

Proof of Lemma 1. First, thanks to Hölder’s inequality, see (9), ‖ f g‖1,S is maximized by f∗, since

‖ f∗ g‖1,S = 〈〈sgn[g(x)] g(x)〉〉S = 〈〈|g(x)|t〉〉S = ‖g‖1,S.

Second, the unique representation of this maximizer f∗ is shown by proof by contradiction,
as follows. Suppose another maximizer f̄∗ exists and it maximizes ‖ f g‖1,S, in other words, ‖ f̄∗ g‖1,S =

‖g‖1,S. Then, for any given g ∈ L1(S), the following is satisfied:

‖ f∗ g‖1,S − ‖ f̄∗ g‖1,S = 0. (48)

Now, using the identities f∗(x)g(x) = sgn[g(x)] · g(x) ≥ 0 and |g(x)| = f∗(x)g(x), we obtain
| f∗(x)g(x)| − | f̄∗(x)g(x)| = f∗(x)g(x) − | f̄∗(x)||g(x)| and f∗(x)g(x) − | f̄∗(x)||g(x)| = f∗(x)g(x) −
| f̄∗(x| f∗(x)g(x), respectively, resulting in the equality

| f∗(x)g(x)| − | f̄∗(x)g(x)| = f∗(x)g(x)− | f̄∗(x)| f∗(x)g(x). (49)

Substituting (49) into the left-hand side of (48) and using |g(x)| = f∗(x)g(x), (48) is rewritten as〈〈(
1− | f̄∗(x)|

)
f∗(x) g(x)

〉〉
S =

〈〈
(1− | f̄∗(x)|)|g(x)|

〉〉
S = 0. (50)

Now, keeping 0 ≤ f̄∗(x) ≤ 1 and the assumption that g(x) 6= 0, a.e. on S in mind, (50) implies

| f̄∗(x)| = 1, or equivalently

f̄∗(x) = σ(x), a.e. on S,

where σ takes either −1 or 1. However, among such functions f̄∗ having either −1 or 1 values, it is
clear that sgn[g(x)] (= f∗) is the only one that makes 〈〈 f g〉〉S maximal. Thus, no f̄∗ can exist except for
f∗, and the uniqueness of the maximizer f∗ is verified.

Proof of Theorem 3. First, we show that Tq[p; λq] is maximized in the following way:

Tq[p; λq] = Tq[p; λq,opt] = 〈〈 f g〉〉 (51a)

≤ 〈〈 f g〉〉S̄q,opt
= 〈〈| f g|〉〉S̄q,opt

(51b)

= ‖ f g‖1,S̄q,opt
≤ ‖ f ‖∞,S̄q,opt

‖g‖1,S̄q,opt
(51c)

≤ ‖g‖1,S̄q,opt
(the upper bound), (51d)
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where 〈〈·〉〉 =
∫ ∞
−∞ · dx, 〈〈·〉〉S̄q,opt

=
∫

S̄q,opt
· dx, and ‖ · ‖1,S̄q,opt

=
∫

S̄q,opt
| · |dx, and ‖ f ‖∞,S̄q,opt

is the infinity

norm of f (x) (x ∈ S̄q,opt), in other words, the essential supremum of | f (x)| (x ∈ S̄q,opt). The first “=”
in (51a) follows from the fact that Tq[p; λq] = σ2〈〈pq(x)〉〉+ λq

〈〈
(x2 − σ2)pq(x)

〉〉
in (3a) is independent

from the value of λq, since any feasible solution p(x) satisfies
〈〈
(x2 − σ2)pq(x)

〉〉
= 0 in (3c), and the

second “=” in (51a) is immediate from (45). The “≤” in (51b) is obtained from the same argument
of the inequality (34b) and (35) in the proof of Theorem 2. On the other hand, the equality in (51b)
is immediate from f (x)g(x) ≥ 0 (∀x ∈ S̄q,opt). The first “=” in (51c) follows from the definition of
‖ · ‖1,S̄q,opt

, and the “≤” in (51c) follows from the Hölder’s inequality (9). The final “≤” in (51d) follows
from the definition of f (x) in (45a), in other words, ‖ f ‖∞,S̄q,opt

≤ 1, and the resulting ‖g‖1,S̄q,opt
implies

the upper bound of Tq[p; λq] if λq,opt exists for given q and σ.
Next, we construct a maximizer popt(x) achieving this bound and show its uniqueness, which is

done by checking the conditions where all three “≤” in (51) become “=”. As for the first “≤” in (51b),
it becomes “=” if and only if p(x) becomes positive only in S̄q,opt. Namely,

f (x) = p0(x) = 0 or 1 (x ∈ S̄q,opt) and f (x) = 0 (a.e. x ∈ R \ S̄q,opt), (52)

in other words, the “≤” in (51b) becomes “<” if the above condition (52) is violated, which is easily
verified from the graph of g(x) and the above argument for the “≤” in (51b). On the other hand, in
(51c), the second “≤” becomes “=” if and only if f (x) = sgn[g(x)] (a.e. x ∈ S̄q,opt) due to Lemma 1
(simply by replacing S with S̄q,opt, in Lemma 1). The final “≤” in (51d) becomes “=” if and only if
‖ f ‖∞,S̄q,opt

= 1 in (51c). From these three conditions, f is uniquely determined as f∗ in (47), and from
(45a) the associated maximizer popt for q = 0 is obtained as

popt(x) =

{
arbitrary positive value (x ∈ S̄q,opt)

0 (x ∈ R \ S̄q,opt),
(53)

where popt(x) should satisfy
〈〈

popt(x)
〉〉

S̄q,opt
= 1. Finally, substituting (53) into the constraint (3c),

we have
〈〈
(x2 − σ2)p0

opt(x)
〉〉

=
〈〈

x2 − σ2〉〉
S̄q,opt

= 0, and from (46) λq,opt and S̄q,opt are uniquely
obtained as

λq,opt = −
1
2
(< 0) and S̄q,opt =

[
−
√

3σ,
√

3σ
]

, (54)

respectively. This shows the uniqueness of the representation of popt in (53). (This exceptional case
q = 0 is also argued in T1, where the same result is obtained through a more direct graphical argument,
after proving that any candidate p∗(x) for the maximizer popt(x) is defined only on a simply connected
interval S∗ that is symmetric about the origin O.The proof is straightforward but lengthy, and we omit
it here.)

4.4. Proof of Theorem 4

Proof. Let p be arbitrary feasible solutions to R2 for q > 1, and let popt be its optimal solution,which is
eventually constructed in (61). Let λq,opt be a particular value of the additional parameter λq in R2,
which is associated with popt and is eventually constructed in (65). First, for any p and a particular
λq,opt, in (65), we define f and g as

f (x) = pq(x), (55a)

g(x) = 1 + λq,opt(x2 − σ2)p1−q(x), (55b)

and we define a set
¯
Sq in R:
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¯
Sq =

{
x
∣∣∣ pq(x) + λq,opt(x2 − σ2)p(x)(= f (x)g(x)) > 0

}
. (56)

Next, we introduce a subset Q of the feasible solutions p,

Q =
{

p(x)
∣∣∣ (5b), (5c), and pq(x) + λq,opt(x2 − σ2)p(x) ≥ 0 (∀x ∈ R)

}
, (57)

which is proved to be non-empty in Appendix A.1.
First, we show that the following holds: if p ∈ Q,

Rq[p; λq] = Rq[p; λq,opt] =
〈〈

pq(x) + λq,opt(x2 − σ2)p(x)
〉〉

¯
Sq

(58a)

=
〈〈∣∣∣pq(x) + λq,opt(x2 − σ2)p(x)

∣∣∣〉〉
¯
Sq

= ‖ f g‖1,
¯
Sq (58b)

≥ ‖ f ‖ 1
q ,

¯
Sq
‖g‖ 1

1−q ,
¯
Sq

, (58c)

where 〈〈·〉〉 =
∫ ∞
−∞ · dx, 〈〈·〉〉

¯
Sq

=
∫

¯
Sq
· dx, and ‖ · ‖α,

¯
Sq =

(∫
¯
Sq
| · |αdx

) 1
α . The first “=” in (58a) follows

from the fact that Rq[p; λq] = 〈〈pq(x)〉〉+ λq
〈〈
(x2 − σ2)p(x)

〉〉
in (7c) is independent from the value of

λq, since any feasible solution p(x) satisfies
〈〈
(x2 − σ2)p(x)

〉〉
= 0 in (6), and the second “=” in (58a)

is immediate from the definitions (56) and (57). The first “=” in (58b) is also immediate from (56).
The “≥” in (58c) follows from reverse Hölder’s inequality (11).

If Rq[p; λq] achieves the lower bound, and ‖ f ‖ 1
q ,

¯
Sq
‖g‖ 1

1−q ,
¯
Sq

in (58c) saturates at this bound for

popt (∈ Q) and λq,opt, then, from (58), the following has to be satisfied:

Rq[popt; λq,opt] = ‖ f ‖ 1
q ,

¯
Sq
‖g‖ 1

1−q ,
¯
Sq

= the lower bound.

Therefore, to construct a candidate popt achieving this bound, we consider the condition where
the “≥” in (58c) becomes “=”. Namely, we rewrite the equality condition (12) by using (55):

pq(x) = A
[
1 + λq,opt(x2 − σ2)p1−q(x)

] q
1−q

> 0 (x ∈
¯
Sq), i.e., (59a)

p1−q(x) = C
[
1 + λq,opt(x2 − σ2)p1−q(x)

]
> 0 (x ∈

¯
Sq), (59b)

where C = A
1−q

q > 0. From (59b), it is immediate that

p1−q(x)
[
1 + Cλq,opt(σ

2 − x2)
]
= C (x ∈

¯
Sq), (60)

and, hence,

p(x) =
(

1
C

) 1
q−1 [

1 + Cλq,opt(σ
2 − x2)

] 1
q−1

=

[
λq,opt(σ

2 − x2) +
1
C

] 1
q−1

(x ∈
¯
Sq),

since
[
1 + Cλq,opt(σ2 − x2)

]
> 0 because C > 0 and p1−q(x) > 0 (x ∈

¯
Sq) in (60). On the other hand,

for p ∈ Q, it is also immediate that p(x) = 0 (x ∈ R \
¯
Sq) from (56) and (57). Thereby, a candidate of

the minimizer (in Q) is constructed as:

popt(x) =


[

λq,opt(σ
2 − x2) +

1
C

] 1
q−1

=
1

Z∗q
expq∗

(
−β∗q x2

)
(x ∈

¯
Sopt)

0 (x ∈ R \
¯
Sopt),

(61)
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where q∗ = 2 − q. (The distribution in (61) is called the q∗-Gaussian [31].) In (61),

¯
Sopt =

[
−
√

σ2 + 1
Cλq,opt

,
√

σ2 + 1
Cλq,opt

]
is now specified and λq,opt, Z∗q , and β∗q are uniquely

determined as λq,opt = 1
2Cσ2

q−1
q > 0, Z∗q =

√
3q−1
q−1 σB

(
q

q−1 , 1
2

)
, and β∗q = 1

(3q−1)σ2 , respectively,
as shown in the following calculations. We note the formula ([42], p. 253):

∫ 1

0
xα(1− xγ)βdx =

1
γ

B
(

1 + β,
1 + α

γ

)
is repeatedly used for the integrations below. (More precisely, for (62) we set α = 0 (> −1), β =

1
q−1 (> −1), and γ = 2 (> 0).) For (63), we set α = 2 (> −1), β = 1

1−q (> −1), and γ = 2 (> 0).
Substituting (61) into the constraint (5b), we have

〈〈
popt(x)

〉〉
= r

(
2

q−1+1
)

λq,opt
1

q−1 B
(

q
q− 1

,
1
2

)
= 1, (62)

where r is defined by r2 = σ2 + 1
λq,optC . Note that r2 = 3q−1

q−1 σ2 > 0 as shown in (65). On the other hand,
substituting (61) into the constraint (5c), we have

〈〈
x2 popt(x)

〉〉
= r

(
2

q−1+3
)

λq,opt
1

q−1 B
(

q
q− 1

,
3
2

)
= σ2. (63)

Substitution of (62) and (63) (multiplied with σ2 to its both sides) into (7a) yields

r2B
(

q
q− 1

,
3
2

)
= σ2B

(
q

q− 1
,

1
2

)
, i.e., r2 =

3q− 1
q− 1

σ2
(
= σ2 +

1
λq,optC

)
, (64)

in which B(x, y + 1) = y
x+y B(x, y) ([42], p. 254) is used. Thus, λq,opt is obtained as

λq,opt =
1

2Cσ2
q− 1

q
. (65)

Since

r2 = σ2 +
1

λq,optC
=

3q− 1
q− 1

σ2.

While, from (62), or (63), and (64) that determines r with q and σ, λq,opt (> 0) is uniquely obtained
for any given q(> 1) and σ, and hence, C is also uniquely determined from (65):

C =
1

2σ2
q− 1

q
rq+1Bq−1

(
q

q− 1
,

1
2

)
.

Next, we obtain Z∗q and β∗q from (61) and (65):

[
λq,opt(σ

2 − x2) +
1
C

] 1
q−1

=

(
3q− 1

2Cq

) 1
q−1
[

1− 1− q∗
(3q− 1)σ2 x2

] 1
q∗

=
1

Z∗q
expq∗

[
− x2

(3q− 1)σ2

]
,
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which yields

β∗q =
1

(3q− 1)σ2 , Z∗q =

(
3q− 1

2Cq

) 1
1−q

=

√
3q− 1
q− 1

σB
(

q
q− 1

,
1
2

)
.

Therefore, from (61), (62), and (65), popt(x) is uniquely determined as in (61). Note that popt(x) ∈
Q, since

1 + λq,opt(x2 − σ2)p1−q
opt (x) =

1
C

[
λq,opt(σ

2 − x2) +
1
C

]−1
> 0 (x ∈

¯
Sopt)

is immediate from (61).
Next, to prove that the candidate in (61) is the unique minimizer, we directly compare 〈〈pq(x)〉〉

and
〈〈

pq
opt(x)

〉〉
in the following way:

〈〈pq(x)〉〉 −
〈〈

pq
opt(x)

〉〉
=

〈〈
pq(x)− pq

opt(x) + qλq,opt(x2 − σ2)
[
p(x)− popt(x)

]〉〉
− q

C
〈〈

p(x)− popt(x)
〉〉

(66a)

=
〈〈

pq(x) + qλq,opt(x2 − σ2)p(x)− q
C

p(x)
〉〉

R\
¯
Sopt

(66b)

+
〈〈

pq(x)− pq
opt(x)− qpq−1

opt (x)[p(x)− popt(x)]
〉〉

¯
Sopt

. (66c)

Note that (66a) follows from
〈〈

popt(x)
〉〉
= 〈〈p(x)〉〉 = 1 in (5b) and

〈〈
x2 popt(x)

〉〉
=
〈〈

x2 p(x)
〉〉
=

σ2 in (5c), (66b) follows from (61), in other words, popt(x) = 0 (x ∈ R \
¯
Sopt), and (66c) follows

from (66a) by using qλq,opt(x2 − σ2) − q
C = −qpq−1

opt (x) (x ∈
¯
Sopt), which is immediate from (61).

Finally, substituting λq,opt =
1

2Cσ2
q−1

q in (65) into (66b), we obtain〈〈
pq(x) +

q− 1
2Cσ2 p(x)(x2 − 3q− 1

q− 1
σ2)

〉〉
R\

¯
Sopt

≥ 0,

in which the equality holds if and only if p(x) = 0 (x ∈ R \
¯
Sopt), since

¯
Sopt =

[
−
√

σ2 +
1

Cλq,opt
,

√
σ2 +

1
Cλq,opt

]
=

[
−
√

3q− 1
q− 1

σ,

√
3q− 1
q− 1

σ

]
,

and hence,

q− 1
2Cσ2

(
x2 − 3q− 1

q− 1
σ2
)
> 0 (x ∈ R \

¯
Sopt).

On the other hand, the term (66c) can be expressed as〈〈
pq

opt(x)
{[

p(x)
popt(x)

]q
− q

p(x)
popt(x)

+ q− 1
}〉〉

¯
Sopt

. (67)

Because, for q > 1, h(X) = Xq − qX + q− 1 ≥ 0 for any X ≥ 0, and because h(X) = 0 only when
X = 1, (67) is nonnegative and it becomes 0 if and only if X = 1, in other words, p(x) = popt(x)
(x ∈

¯
Sopt). This proves that popt(x) in (61) is the unique minimizer to R2 for q > 1.
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4.5. Proof of Theorem 5

Proof. Let p be arbitrary feasible solutions to R2 for 1
3 < q < 1, and let popt be its optimal solution,

which is eventually constructed in (72). Let λq,opt be a particular value of the additional parameter
λq in R2, which is associated with popt and is eventually constructed in (76). Then, for any p and a
particular λq,opt , in (76), we define f and g as

f (x) = pq(x), (68a)

g(x) = 1 + λq,opt(x2 − σ2)p1−q(x). (68b)

First, we show the following holds for any feasible solution p,

Rq[p; λq] = Rq[p; λq,opt] = 〈〈 f g〉〉 (69a)

≤ ‖ f g‖1 ≤ ‖ f ‖ 1
q
‖g‖ 1

1−q
(69b)

= ‖g‖ 1
1−q

. (69c)

The first “=” in (69a) follows from the fact that Rq[p; λq] = 〈〈pq(x)〉〉+ λq
〈〈
(x2 − σ2)p(x)

〉〉
in (7c)

is independent from the value of λq, since any feasible solution p(x) satisfies
〈〈
(x2 − σ2)p(x)

〉〉
= 0

in (6), and the second “=” in (69a) is immediate from (68). The first “≤” in (69b) follows from
f (x)g(x) ≤ | f (x)g(x)| (∀x ∈ R), since f (x) is always nonnegative but g(x) in (68b) can be negative
on some intervals in R by choosing certain p(x). The second “≤” in (69b) follows from Hölder’s
inequality (9). The final “=” in (69c) follows from ‖ f ‖ 1

q
= ‖pq‖ 1

q
= 〈〈|p(x)|〉〉q = 1 in (69b).

Next, if Rq[p; λq] achieves the upper bound, and ‖g‖ 1
1−q

in (69c) saturates at this bound for popt

and λq,opt, then from (69) the following has to be satisfied:

Rq[popt; λq,opt] = ‖ f g‖1 = ‖ f ‖ 1
q
‖g‖ 1

1−q
= the upper bound.

Therefore, to construct a candidate popt achieving this bound, we consider the condition where
the two “≤” in (69) become “=”. As for the first “≤” in (69b), it becomes “=” if g(x) > 0 (a.e. x ∈ R),
in other words,

1 + λq,opt(x2 − σ2)p1−q(x) > 0 (a.e. x ∈ R), (70)

which is eventually verified in (78). On the other hand, the second “≤” in (69b) becomes “=” if

and only if the equality condition (10) is satisfied, Ap(x) = B|1 + λq,opt(x2 − σ2)p1−q(x)|
1

1−q , in other
words,

p1−q(x) = C
∣∣∣1 + λq,opt(x2 − σ2)p1−q(x)

∣∣∣ (∀x ∈ R), (71)

where C =(B/A)1−q> 0. Note that A 6= 0 and B 6= 0 because of (70). From (70) and (71), a candidate
of the maximizer is uniquely constructed:

popt(x) =
[
λq,opt(σ2 − x2) + 1

C

] −1
1−q

=
1

Z∗q
expq∗

(
−β∗q x2

)
(∀x ∈ R), (72)

in which C =(B/A)1−q, λq,opt=
1

2Cσ2
q−1

q (< 0), Z∗q =
√

3q−1
1−q σB

(
1

1−q −
1
2 , 1

2

)
, and β∗q = 1

(3q−1)σ2 are

uniquely determined, and λq,opt(σ2 − x2) + 1
C > 0 is verified, as shown in the following calculations.

We note the formula ([42], p. 253):
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∫ ∞

0

dx
xα(1 + xγ)β

=
1
γ

B
(

β− 1− α

γ
,

1− α

γ

)
is repeatedly used for the integrations below. (More precisely, for (73) we set α = 0 (< 1), β =

1
1−q (> 0), γ = 2 (> 0), and βγ > 1− α is satisfied.)For (74), we set α = −2 (< 1), β = 1

1−q (> 0),
γ = 2 (> 0), and βγ > 1− α is satisfied. Substituting (72) into the constraint (5b), we have

〈〈
popt(x)

〉〉
= r

(
2

q−1+1
) (
−λq,opt

) 1
q−1 B

(
1

1− q
− 1

2
,

1
2

)
= 1, (73)

where r is defined by r2 = −
(

σ2 + 1
λq,optC

)
. Note that r2 = 3q−1

1−q σ2 > 0 as shown in (76). On the other
hand, substituting (72) into the constraint (5c), we have

〈〈
x2 popt(x)

〉〉
= r

(
2

q−1+3
) (
−λq,opt

) 1
q−1 B

(
1

1− q
− 3

2
,

3
2

)
= σ2. (74)

Substitution of (73) and (74) after multiplying σ2 to both sides into (7a) yields

r2B
(

1
1− q

− 3
2

,
3
2

)
= σ2B

(
1

1− q
− 1

2
,

1
2

)
, i.e., r2 =

3q− 1
1− q

σ2, (75)

in which B(x + 1, y− 1) = x
y−1 B(x, y) ([42], p. 254) is used. Thus, we first obtain λq,opt as

λq,opt =
1

2Cσ2
q− 1

q
, (76)

since

r2 = −
(

σ2 +
1

λq,optC

)
=

3q− 1
1− q

σ2.

Meanwhile, from (73), or (74), and (75) that determines r with q and σ, λq,opt (< 0) is uniquely
determined for any q (<1) and σ, and hence, C (> 0) is also uniquely determined from (76):

C =
1

2σ2
1− q

q
rq+1Bq−1

(
1

1− q
− 1

2
,

1
2

)
.

Next, we obtain Z∗q and β∗q from (72) and (76):

[
λq,opt(σ

2 − x2) +
1
C

] −1
1−q

=

(
3q− 1

2Cq

) 1
q−1
[

1− 1− q∗
(3q− 1)σ2 x2

] 1
1−q∗

=
1

Z∗q
expq∗

[
− x2

(3q− 1)σ2

]
,

which yields

β∗q =
1

(3q− 1)σ2 , Z∗q =

(
3q− 1

2Cq

) 1
1−q

=

√
3q− 1
1− q

σB
(

1
1− q

− 1
2

,
1
2

)
.

Now, we verify (70) is satisfied by popt. Note that if 1
3 < q < 1, using (76) we have

λq,opt

(
σ2 − x2

)
+

1
C

=
1
C

(
1− q
2σ2q

x2 +
3q− 1

2q

)
> 0 (77)
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and hence (70) is satisfied by popt:

1 + λq,opt

(
x2 − σ2

)
p1−q

opt (x) =
1
C

[
λq,opt

(
σ2 − x2

)
+

1
C

]−1
> 0 (a.e. x ∈ R), (78)

which is immediate from (71), (72), and (77). Thus, popt is uniquely determined as in (72).
Finally, to prove that this candidate (72) is the unique maximizer, we directly compare 〈〈pq(x)〉〉

and
〈〈

pq
opt(x)

〉〉
as follows. Similar to (66), the following holds here:

〈〈pq(x)〉〉 −
〈〈

pq
opt(x)

〉〉
=

〈〈
pq(x)− pq

opt(x) + qλq,opt(x2 − σ2)[p(x)− popt(x)]
〉〉
− q

C
〈〈

p(x)− popt(x)
〉〉

(79a)

=
〈〈

pq(x)− pq
opt(x)− qpq−1

opt (x)[p(x)− popt(x)]
〉〉

. (79b)

Note that (79a) follows from
〈〈

popt(x)
〉〉
= 〈〈p(x)〉〉 = 1 in (5b) and

〈〈
x2 popt(x)

〉〉
=
〈〈

x2 p(x)
〉〉
= σ2

in (5c), and (79b) follows from (79a) by using qλq,opt(x2 − σ2)− q
C = −qpq−1

opt (x) (x ∈ R), which is
immediate from (72). Because for 0 < q < 1, h(X) = Xq − qX + q− 1 ≤ 0 for any X ≥ 0 and because
h(X) = 0 only when X = 1, (79b) is not positive, and it becomes 0 if and only if X = 1, in other
words, p(x) = popt(x) (x ∈ R). This proves that popt(x) in (72) is the unique maximizer to R2 for
1
3 < q < 1.

5. Conclusions and discussion

We obtained a new insight about a direct link between generalized entropy and Hölder’s
inequality, and yet another proof for Rényi–Tsallis entropy maximization; the q-Gaussian distribution
is directly obtained from the equality condition of Hölder’s inequality, and its optimality is proved
by Hölder’s inequality through Moriguti’s argument. The simplicity in the proofs of Tsallis entropy
maximization (Theorem 1, 2, and 3) is worth noting; essentially, several lines of inequalities (including
Hölder’s inequality) are sufficient for the proof.

As an analogy, what we have described in this study can be explained as mountain climbing;
as for Tsallis entropy maximization, the top of the mountain, in other words, the upper/lower bound
is clearly seen from the starting point. Namely, the bounds in (24c), (34d), and (51d) are explicitly given
by q and σ. Therefore, all we need to do is to keep climbing to the top, in other words, to construct
a series of inequalities (24), (34), and (51) that saturate at the bound. On the other hand, for Rényi
entropy maximization, the top of the mountain is not clearly seen from the starting point. Namely,
the upper/lower bound is not given only by q and σ but contains p(x), as in (58c) or (69c). Even in such
a case, Hölder’s inequality is still useful for finding a peak of the mountain, in other words, it leads to
a candidate of the global optimal, and then we verify this candidate is really the top by using a GPS
(global positioning system). In addition, this GPS is obtained as in (66) or (79), thanks to Moriguti [5].

Our technique with Hölder’s inequality plus the additional parameter λq can be useful for other
inequalities (e.g., Young’s inequality), and it seems an interesting open problem to clarify what sort of
optimization problems can be solved from such a technique.
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Appendix A

Appendix A.1. Example of Non-Empty set Q

Here, we illustrate an example of Q introduced in Section 4.4. Having obtained popt and λq,opt in
Section 4.4, an element p (∈ Q) , which satisfies (5b), (5c), and

pq(x) + λq,opt(x2 − σ2)p(x) ≥ 0 (∀x ∈ R) (A1)

is constructed from popt in (61) as follows. Figure A1 shows how we are going to construct p from popt;
the basic idea is that such p is obtained only by slightly modifying popt at its edge while keeping the

constraint (A1). First, we choose small adjacent intervals I1 and I2 inside the interval
[
σ,
√

3q−1
q−1 σ

]
.

This choice is consistent to the fact that the constraint (A1) is equivalent to

p(x) ≥
[
λq,opt(σ

2 − x2), 0
] 1

q−1

+
(as shown by the red dotted line in Figure A1),

and hence p(x) can be 0 in
[
σ,
√

3q−1
q−1 σ

]
(as observed in the inset of Figure A1). Second, we shift I1,

I2, and the associated value of popt(x) originally defined on I1 and I2, altogether, while keeping the
original value of

〈〈
(x2 − σ2)p(x)

〉〉
at 0. As shown in the inset of Figure A1, an option for this shift is:

I1 to the right and I2 to the left. Such an option for small shifts always exists because of the continuity
of integration

〈〈
(x2 − σ2)p(x)

〉〉
with respect to I1 and I2. Note that the resulting p shown in the inset

of Figure A1 satisfies (5b), (5c), and (A1). The above constructed p constitutes a non-empty set Q and
it is straightforwardly verified to be convex.

Figure A1. Construction of p (∈ Q) from popt.
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