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Abstract: In this paper, inspired by a newly proposed two-dimensional nonlinear oscillator with an
infinite number of coexisting attractors, a modified nonlinear oscillator is proposed. The original
system has an exciting feature of having layer–layer coexisting attractors. One of these attractors is
self-excited while the rest are hidden. By forcing this system with its twin, a new four-dimensional
nonlinear system is obtained which has an infinite number of coexisting torus attractors, strange
attractors, and limit cycle attractors. The entropy, energy, and homogeneity of attractors’ images and
their basin of attractions are calculated and reported, which showed an increase in the complexity of
attractors when changing the bifurcation parameters.

Keywords: chaotic oscillators; megastability; hidden attractors; entropy

1. Introduction

In dynamic systems, there exists a type of categorization, which divides these systems into two
groups: the first group includes systems which have self-exited attractors, and the second group
includes systems with hidden attractors [1,2]. Self-exited attractor means that at least one equilibrium
can be observed in its basin of attraction [3]. If there is no equilibrium in an attractor’s basin of
attraction, that attractor is a hidden attractor.

Designing new special chaotic systems is a hot topic in the literature. There are chaotic systems
which have no equilibria [4–7]. Some special systems have only stable equilibria [8,9] or lines of
equilibria [10]. Similarly there are some systems with surfaces [11,12] and curves of equilibria [13–15],
with multi-scroll attractors [16–19], fractional-order [20–23], free control [24,25], with non-hyperbolic
equilibria [26], with offset boosting, having hyperchaotic attractors [27,28], conditional symmetry [29],
and with real-world applications [30,31].

Multi-stability is one of the critical topics in dynamical systems [32,33]. This phenomenon has
some advantages and disadvantages in different cases. For example, it is useful for allowing flexibility
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in the system’s performance without changing parameters. However, multi-stability is unfavorable in
designing some commercial devices that should work in a noisy environment. Exceptional cases of
multi-stability are extreme multi-stability [34–36] and megastability [37–41]. Systems with extreme
multi-stability have an infinite uncountable number of coexisting attractors [42], while systems with
megastability have an infinite countable number of coexisting attractors [43–45].

Feature extraction from images is an essential term for accurately analyzing them. Analysis of a
large amount of data requires a lot of memory, computation, and cost. Feature extraction solves these
problems by specifying the data with enough correctness [46]. The texture is a vital feature utilized
to recognize objects or sections of interest in an image. It comprises essential information from the
structure of images [47].Texture analysis is a general method for feature extracting from images. One of
the most popular methods for extracting texture features is the Gray Level Co-occurrence Matrix
(GLCM) that was introduced by Haralick et al. for the first time [48]. GLCM is a two-dimensional
matrix that is pi, j(d,θ) of ith and jth pixels with distance d in four directions according to θ that can be
0◦, 45◦, 90◦ and 135◦ [49,50]. Some statistical measures can be computed using GLCM such as energy,
contrast, entropy, correlation, homogeneity, etc. [50,51].

In this paper, by modifying the system mentioned in [37], we design a four-dimensional system
with unique features mentioned in the following sections. This system also has chaotic solutions and
infinite hidden attractors. The regularity of the system’s attractors in the limit cycle, torus, and chaotic
modes are compared with each other by calculating the GLCM matrix of their trajectories and the
basins of attraction’s images and then extracting the entropy, energy, and homogeneity of these images.

In the next section, the designed system is introduced, and then thoroughly investigated in
Section 3. The numerical stability analysis of the proposed system is investigated in Section 4, and in
Section 5 the attractors with basins of attraction are given. The image processing and the features of
attractors’ images are done in Section 6, and we conclude in Section 7.

2. The Main System

Consider the system below given by Kahn et al. [52], and modified by Sprott et al. in [37]:

.
x = y

.
y = −k2x + ycos(x)

(1)

This system consists of infinite layer–layer limit-cycles, which are hidden, except for the inner
one. By giving different initial conditions to this system, hidden attractors appear. In Figure 1 seven
attractors of System (1) are shown. The parameter k is set to k = 0.33. Since the equilibrium point of
this system is (0, 0), and this point is unstable, the nearest limit cycle to this point is the self-excited
attractor. However, the other limit cycles are hidden attractors. The attractors were plotted with initial
conditions ((2n− 1)π, 0) that n = 1, 2, . . . , 7.
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The basins of attractions of limit cycles that are shown in Figure 1, and can be seen in Figure 2
with the same colors as the attractors. It has been obtained using a mesh of 500 × 500 initial conditions
(x = −50:0.2:+50, and y = −20:0.08:+20).
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3. The Proposed System by Coupling Two Oscillators

We aim to design a system inspired by the system mentioned in the previous section. In this
system, two oscillators of the form of Equation (1) were coupled one way. Therefore, we generated the
following system, and the goal was to investigate particular characteristics of this system and find
possible chaotic solutions.

.
x = y

.
y = −k2x + ycos(x) + Az

.
z = ωu

.
u = ω

(
−k2z + ucos(z)

) (2)

The second half of these equations does not depend on the first half, but affects it. The first
two equations are the main equations in System (1), with the difference that the z variable is added
to the second equation as a forcing term. The third and fourth equations are similar to those of our
primary system (or System (1)), with a multiplying term ω, which tune the frequency of oscillations.
Consider the second part of System (2) as an independent system. By giving three different values for
ω and setting k to 0.33, it can be seen that the limit cycle attractors are the same but time series rely
on the value of ω. Figure 3 shows the time series and limit cycles of this sub-system with ω = 0.5, 1,
and 2, respectively.
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Figure 3. (a) The limit cycle of z and u variables in System (3) with ω = 0.5, (b) ω = 1, and (c) ω = 2
that are the same attractors and changing the parameter ω has no effect on the attractor’s topology, (d)
The time series of variable z in ω = 0.5, (e) ω = 1, and (f) ω = 2 that differ with each other in proportion
to the value of ω as the frequency tuner.

4. Numerical Stability Analysis

The only fixed point of the System (2) is [0, 0, 0, 0] and the Jacobian matrix is:

J =


0

−k2
− ysin(x)

0
0

1
cos(x)

0
0

0
A
0

−ωk2
−ωusin(z)

0
0
ω

ωcos(z)


(x,y,z,u)=(0,0,0,0)

=⇒

J =


0
−k2

0
0

1
1
0
0

0
A
0
−ωk2

0
0
ω
ω


(3)

therefore, the eigenvalues are:

|λI − J| = 0 →

∣∣∣∣∣∣∣∣∣∣∣
λ
k2

0
0

−1
λ− 1

0
0

0
−A
λ
ωk2

0
0
−ω
λ−ω

∣∣∣∣∣∣∣∣∣∣∣ = 0

→ λ4
− λ3(ω+ 1) + λ2(ω+ k2ω2 + k2) − λ(k2ω2 + k2ω) + k4ω2 = 0
→ λ1,2 = ω

2

(
1±

√
−(2k− 1)(2k + 1)

)
= ω

2

(
1±
√

1− 4k2
)
,

λ3,4 = 1
2

(
1±

√
−(2k− 1)(2k + 1)

)
= 1

2

(
1±
√

1− 4k2
)

(4)

It can be seen that this equilibrium point is unstable in any parameter value.
The parameters of System (2) are chosen by trial and error in such a way that we detect chaotic

solution. By selecting k = 0.33 and ω = 2.77, we choose parameter A as the bifurcation parameter.
Figure 4 shows the bifurcation diagram and Lyapunov exponents’ spectrum versus A, for the inner
attractor. For A < 0.06, the dynamic is an attracting torus because of two zero and one negative
Lyapunov exponents [53] and in larger values of A periodic and chaotic attractors can be seen.
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5. The Attractors and Their Basins of Attraction

Choosing A = 0.1, we obtain Figure 5 with seven different initial conditions
((0.1, 0.1, 0.1, 0.1), (3, 3, 0.1, 0.1), (4, 4, 0.1, 0.1), (6, 6, 0.1, 0.1), (9, 9, 0.1, 0.1), (10, 10, 0.1, 0.1)
and (12, 12, 0.1, 0.1)). Except for the inner limit cycle that is self-excited, others are hidden
torus attractors.

The basin of attraction for each attractor is shown in Figure 6. The color of each basin was the
same color as the corresponding attractor (from Figure 5). It was obtained using a mesh of 500 × 500
initial conditions (x = −50:0.2:+50, and y = −20:0.08:+20).

By further changing parameter A to 0.25, the chaotic solution was observed. The first seven
attractors are plotted in Figure 7 with the same initial conditions as before.
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Figure 8 shows the corresponding basins of attraction for the chaotic attractors from Figure 7.
This figure shows that the first, second, and third basins are intertwined together. It was obtained
using a mesh of 500 × 500 initial conditions (x = −50:0.2:+50, and y = −20:0.08:+20).
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6. Entropy Analysis

As mentioned before, texture analysis is a popular method for image feature extraction. Important
structural form of plane information is in the texture. The GLCM method is a method for extracting
second-order statistic features of textures. The definition of GLCM is that it is a two dimensional
histogram of gray levels for two pixels that are parted by certain spatial correlation. In other words
GLCM is a matrix that shows the relative frequency of two pixels by using a displacement vector and
the angle between them. GLCM matrix elements are the second order probability values that show
changes between gray levels on i and j pixels of the image at a particular displacement distance d
with a particular angle θ. The usual values of the angle are 0◦, 45◦, 90◦, and 135◦ which are shown
in Figure 9, and the GLCM matrix can be calculated separately at each angle. The default value of
the displacement vector is equal to 1. GLCM have been used in many applications [54–58]. The exact
calculation of the GLCM matrix is described in the literature [46,49]. Therefore, the aim of the rest of
this research is the calculation of entropy, energy, and homogeneity from GLCM matrix.
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Figure 9. The GLCM matrix with different directions and angles.

One of the important measures that indicate the level of complexity of an image is called Entropy.
This feature is higher in the images that are not a smooth image in terms of texture [47]. Thus, the more
complex and chaotic the image, the larger the value of entropy. Entropy is calculated with the GLCM
matrix elements through the following formula:

Entropy = −
n−1∑
i=0

n−1∑
j=0

pi j log pi j (5)
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where pi j is the element of GLCM matrix.
The second statistical measure that is known as Angular second moment, is Energy. This measure

also detects irregularity in the texture of images and the difference of it from Entropy is that the value
of Energy becomes larger in smooth images when the gray level of images is steady or periodic states.
Thus Energy has an inverse relationship with Entropy.

The formulation of energy is:

Energy =
n−1∑
i=0

n−1∑
j=0

p2
i j (6)

pi j is similarly the element of GLCM matrix. The normalized range of Energy is [0, 1]. This measure is
equal to 1 in a constant image.

Another important feature is Homogeneity, which is called Inverse Difference Moment and
measures the homogeneity of the image. The maximum value of this measure occurs when all elements
of the image are equal.

The equation of Homogeneity is:

Homogeneity =
n−1∑
i=0

n−1∑
j=0

1

1 + (i− j)2 pi j (7)

the range of Homogeneity is also [0, 1] and reaches 1 for a diagonal GLCM.
Now the goal is calculating these three features in four different angles for Figures 1, 5 and 7,

then for the basins of attraction that are Figures 2, 6 and 8.

6.1. The Entropy of Attractors

The results of calculating the entropy of attractor images in four directions are shown in Figure 10.
As expected, the Entropy of chaotic attractors shown in Figure 7 had the highest value in each direction
because of more irregularity than others in its texture. Then, Figure 5 including torus attractors in
yellow had the middle value of Entropy, and the limit cycle attractors in Figure 1 were on the lower
level of Entropy. This result proves that the Entropy of chaotic attractor images is higher than that of
regular attractors.Entropy 2019, 21, 535 9 of 14 
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135◦. The Entropy of chaotic attractors is larger than that of torus and limit cycle attractors.
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6.2. The Energy of Attractors

The Energy of images has a reverse correlation with Entropy. In Figure 11 it can be seen that the
Energy of chaotic attractors had the lowest value in each angle and the limit cycle attractors were on
ahigh level of Energy. Given the inverse relationship between Entropy and Energy, one can expect that
the chaotic attractor is on the lowest level of Energy compared to the other attractors.
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Figure 11. The Energy measure of Figure 1, Figure 5, and Figure 7 in four directions 0◦, 45◦, 90◦, and
135◦. The Energy of the limit cycle attractors is larger than the Energy of the torus and chaotic attractors
contrary to Entropy.

6.3. The Homogeneity of Attractors

The results of the Homogeneity measure weresimilar to those of the Energy measure so that the
most homogeneous texture wasfor Figure 1, and the Homogeneity of Figure 7 was the lowest in these
three textures. Figure 12 showedthe values of Homogeneity in each direction for each image.
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6.5. The Energy of Basins of Attraction 

Figure 12. The Homogeneity measure of Figure 1, Figure 5, and Figure 7 in four directions 0◦, 45◦, 90◦,
and 135◦. The Homogeneity of the limit cycle attractors is larger than the Homogeneity of the torus
and chaotic attractors that is the same result for Energy.

In all features, there is not a significant difference between each angle.
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6.4. The Entropy of Basins of Attraction

Now the calculation of three measures is desired for the basins of attraction images that are
Figure 2, Figure 6, and Figure 8. Since the basins of System (1) and System (2) in the limit cycle mode
were almost the same, the comparison was between Figures 6 and 8. As predicted before, the chaotic
basin has more amount of Entropy than the limit cycle basin. Figure 13 showed the Entropy values of
Figures 6 and 8 in four directions.
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Figure 13. The Entropy measure of Figures 6 and 8 in four directions 0◦, 45◦, 90◦, and 135◦. The Entropy
of the limit cycle basins is lower than the Entropy of chaotic basins of attraction.

6.5. The Energy of Basins of Attraction

The Energy measure of Figures 6 and 8 was calculated, and the result was in line with our
expectations. Thus, the Energy of limit cycle basins is larger than the Energy of chaotic basins in each
direction as it can be seen in Figure 14.

Entropy 2019, 21, 535 11 of 14 

 

The Energy measure of Figures 6 and 8 was calculated, and the result was in line with our 

expectations. Thus, the Energy of limit cycle basins is larger than the Energy of chaotic basins in each 

direction as it can be seen in Figure 14. 

 

Figure 14. The Energy measure of Figures 6 and 8 in four directions 0°, 45°, 90°, and 135°. The 

Energy of the chaotic basins of attraction is lower than the Energy torus basins of attraction that is the 

opposite result for Entropy. 

6.6. The Homogeneity of Basins of Attraction 

The last measure is the Homogeneity of Figures 6 and 8 that was calculated and the results were 

similar to those of the Energy measure. Therefore, the Homogeneity of the chaotic basins that is 

Figure 8, is lower than the Homogeneity of the limit cycle and torus basins (Figure 6). The results are 

presented in a chart format in Figure 15. 

 

Figure 15. The Homogeneity measure of Figures 6 and 8 in four directions 0°, 45°, 90°, and 135°. The 

Homogeneity of the chaotic basin of attraction is larger than the Homogeneity of torus basin of 

attraction that is the likewise result for Energy. 

7. Discussion and Conclusions 

Figure 14. The Energy measure of Figures 6 and 8 in four directions 0◦, 45◦, 90◦, and 135◦. The Energy
of the chaotic basins of attraction is lower than the Energy torus basins of attraction that is the opposite
result for Entropy.
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6.6. The Homogeneity of Basins of Attraction

The last measure is the Homogeneity of Figures 6 and 8 that was calculated and the results were
similar to those of the Energy measure. Therefore, the Homogeneity of the chaotic basins that is
Figure 8, is lower than the Homogeneity of the limit cycle and torus basins (Figure 6). The results are
presented in a chart format in Figure 15.
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7. Discussion and Conclusions 

Figure 15. The Homogeneity measure of Figures 6 and 8 in four directions 0◦, 45◦, 90◦, and 135◦.
The Homogeneity of the chaotic basin of attraction is larger than the Homogeneity of torus basin of
attraction that is the likewise result for Energy.

7. Discussion and Conclusions

In this paper, we introduced a new four-dimensional nonlinear system that has infinite countable
coexisting attractors. Those attractors appeared in an unusual topology. We described that oneof
the attractors is self-excited and others are hidden. By modifying and choosing the parameters, we
designed a complex system, which can have coexisting torus, strange attractors, and limit cycle attractor.
We investigated the GLCM Entropy, Energy and Homogeneity on the figures of attractors and their
basins and we concluded that the Entropy of chaotic behavior whether in the attractor or basin of
attraction, is larger than the limit cycle or torus attractor. In contrast, the Energy and Homogeneity of
the chaotic attractors are at the lowest level in comparison with torus and limit cycle attractors.
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