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Abstract: We ask a question about the possibility of a discontinuous phase transition and the related
social hysteresis within the q-voter model with anticonformity. Previously, it was claimed that within
the q-voter model the social hysteresis can emerge only because of an independent behavior, and for
the model with anticonformity only continuous phase transitions are possible. However, this claim
was derived from the model, in which the size of the influence group needed for the conformity was
the same as the size of the group needed for the anticonformity. Here, we abandon this assumption
on the equality of two types of social response and introduce the generalized model, in which the
size of the influence group needed for the conformity qc and the size of the influence group needed
for the anticonformity qa are independent variables and in general qc 6= qa. We investigate the model
on the complete graph, similarly as it was done for the original q-voter model with anticonformity,
and we show that such a generalized model displays both types of phase transitions depending on
parameters qc and qa.
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1. Introduction

Recently there has been an increased interest in discontinuous phase transitions in models of
opinion dynamics [1–6]. The main reason for this interest may be the observation of the social hysteresis,
which appears only in the case of discontinuous phase transitions. A hysteresis, i.e., dependence
of the state on the previous states, was observed empirically in animal [7–9] as well as in human
societies [10–12]. Moreover, it has been claimed for years that in social sciences, the hysteresis is typical
rather than exceptional [10].

However, it has occurred that discontinuous phase transitions are not that typical in models
of opinion dynamics, especially if we consider models belonging to the class of the binary-state
dynamics [13,14] such as the voter model [15], the majority-vote model [15–17], the Galam model [18],
the Sznajd model [19], the threshold model [6,20], the q-voter model [21] or the threshold q-voter
model [22,23]. This is not very surprising, taking into account claims that the nonequilibrium
spin systems with up-down symmetry fall in the universality class of the equilibrium Ising model,
at least on regular lattices [1,17,24]. On the other hand, the above claim does not always have to be
right. For example, it has occurred that the generalized voter and directed percolation universality
classes are observed in models with two symmetric absorbing states [23,25,26]. These models
can display continuous or discontinuous phase transitions, depending on the model parameters.
One would therefore suspect that absorbing states are responsible for discontinuous phase transitions.
However, the transition changes from continuous to discontinuous also within binary-opinion models
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without absorbing states [3,6,22,27], which will be discussed below. Moreover, recently the switch
from a continuous to a discontinuous phase transition via a transcritical bifurcation was observed in
a model of social contagion [28]. Yet, there are many opinion models with up-down symmetry that
display only continuous phase transitions.

For example, within the original majority-vote model only continuous phase transitions are
observed, even in the presence of an additional noise [1,5]. It was only the inertia, introduced on the
microscopic level into the majority-vote model, that has changed the type of the phase transition from
a continuous to a discontinuous one [2,4]. This result, however, might be criticized by the classicism of
’You only get out what you put into it’, because hysteresis is just an inertia at the macroscopic level. On the
other hand, the assumption of the inertia on the microscopic scale, which means that a probability
of flipping a spin depends not only on the states of its neighbors, but also on its own state, is very
intuitive from the psychological point of view. Therefore, the inertia on the microscopic scale maybe
indeed the realistic explanation of the hysteresis in the social systems. Nevertheless, one can also ask
about the possibility of hysteresis as an emergent property in the system of memoryless agents and
such a question has been asked within the q-voter model.

It has occurred that within several versions of the q-voter model, similarly as in the majority-vote
model without inertia, only continuous phase transitions was observed, including the original q-voter
model [29], the q-voter model with anticonformity [30], the q-voter model with zealotry [31–33] or the
threshold q-voter model with anticonformity [22]. On the other hand, discontinuous phase transitions
has been reported for the q-voter model with independence for q > 5 [30], for the threshold q-voter
model with independence [22], for the nonlinear noisy voter model [34], as well as for threshold q-voter
model with the stochasticity that acts in the lack of majority [23]. The existence of a discontinuous
phase transition was one of the reasons for which the q-voter model with independence has gained
more attention than the q-voter model with anticonformity and has been investigated on various
monoplex [3], as well as duplex networks [35].

Similarly, as for the q-voter model, also for the symmetrical threshold model (which can be
interpreted as the super-majority-vote model) independence is needed for a discontinuous phase
transitions and for the model with anticonformity only continuous phase transitions are possible [6].

Taking into account all these results, we ask the question whether independence is actually
necessary for a discontinuous phase transition within the q-voter model or maybe anticonformity is
sufficient if we abandon unjustified assumptions introduced in [30]. It has been assumed that the size of
the unanimous group of influence needed for conformity is the same as the size of the unanimous group
of influence needed for anticonformity. This assumption is not confirmed by any social experiment,
but it made the model simpler in the sense of the number of parameters. Abandoning the assumption
increases the number of parameters from two to three, but it is still not much in comparison to a
very extensive model proposed in [36]. Therefore, on contrary to [36] we are able to systematically
examine the model and find analytical formula not only for the critical point, below which an up-down
symmetry is broken, but also to derive an analytical formula for the tricritical point, which proofs the
possibility of the discontinuous phase transition for the q-voter model with anticonformity.

2. Model

We consider a system of N individuals that are tied to the nodes of an arbitrary graph. Each node
of a graph is occupied by exactly one individual (wording “individual”, “agent”, “voter” and “spin”
will be used interchangeably). Each of them can be in one of two states, described by the dynamical
binary variable Si(t) = +1(↑) or Si(t) = −1(↓), i = 1, . . . , N that represents an opinion on a given
subject (yes/no, agree/disagree, etc.) at given time t. At each elementary update, a single node i is
randomly chosen from the entire system. In a given update a voter at node i behaves like anticonformist
with probability p, whereas with complementary probability 1− p it behaves like conformist. In the
first case (anticonformity) a voter is influenced by the group of size qa and it rebels against the group.
This means that qa agents are randomly chosen without repetitions from ki neighbors of a voter at site
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i to form a group of influence. If this group is unanimous, i.e., if all qa agents are in the same state then
a voter at site i takes the opposite position to this group. If qa > ki then an efficient group of influence
cannot be formed, and the state of the system does not change. In the second case (conformity) a voter
is influenced by the group of size qc and it adapts to the group. This means that qc agents are randomly
chosen without repetitions from ki neighbors of a voter at site i to form a group of influence. If all qc

agents that form a group of influence are in the same state then a voter at site i takes the same state as
individuals in the group. If qc > ki then an efficient group of influence cannot be formed, and nothing
happens. In result only the following changes are possible:

↑↑ . . . ↑︸ ︷︷ ︸
qa

⇑ p−→ ↑↑ . . . ↑︸ ︷︷ ︸
qa

⇓

↓↓ . . . ↓︸ ︷︷ ︸
qa

⇓ p−→ ↓↓ . . . ↓︸ ︷︷ ︸
qa

⇑

↑↑ . . . ↑︸ ︷︷ ︸
qc

⇓ 1−p−→ ↑↑ . . . ↑︸ ︷︷ ︸
qc

⇑

↓↓ . . . ↓︸ ︷︷ ︸
qc

⇑ 1−p−→ ↓↓ . . . ↓︸ ︷︷ ︸
qc

⇓, (1)

where ⇑ / ⇓ denotes a state of a voter at node i and ↑ / ↓ denotes a state of an agent in the group of
influence. For qa = qc = q the model reduces to the original q-voter model with anticonformity [30].

In this paper, we will consider the model on a complete graph for two reasons. First, the original
q-voter model with anticonformity has been investigated exclusively on a complete graph, so this
structure is the best for the comparison with the previous results. Secondly, for this structure analytical
calculations are particularly simple, and it is possible to derive exact analytical formula for the critical
point below which an up-down (yes-no) symmetry is broken, as well as the tricritical point above
which the phase transition becomes discontinuous.

Before we proceed to the results, let us make one comment regarding the choice of the group of
influence. Originally repetitions in choosing neighbors were allowed to make the model universal,
i.e., unambiguously defined for any type of graph and for any value of q [21]. Later on, the model
without repetitions was introduced [3,30]. In a case of a complete graph two approaches give the same
result. However, in general one must decide if repetitions should be allowed or not. Each of these two
choices can be interpreted differently from the social point of view. For the model with repetitions
one possible interpretation is the following: the change of an individual’s opinion is induced by the
consecutive q meetings with people who can influence her/him, and we take into account that she/he
can meet several times with the same person. On the other hand, for the model without repetitions
a natural interpretation is the following: the change of opinion takes place under the influence of a
unanimous group on which one is exposed at a given moment. Only the second possibility has been
confirmed by social experiments [37] and thus we formulated the version without repetitions.

3. Results

In the case of a complete graph a state of the system is fully defined by a single aggregated
quantity, such as an average concentration of agents with positive opinions:

c(t) =
N↑(t)

N
, (2)
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where N↑(t) denotes the number of agents in the state ↑ at time t. Alternatively, we could choose an
average opinion (magnetization), which is a natural order parameter [38]:

m(t) =
1
N

N

∑
i=1

Si(t) =
N↑(t)− N↓(t)

N
= 2c(t)− 1. (3)

For the analytical treatment c(t) is usually more convenient, because within the mean-field
approach it gives the probability that a randomly chosen agent, at any site, is positive [3,30]. However,
in case of the Landau approach an order parameter m will be used.

3.1. Time Evolution

The q-voter model is based on the random sequential updating, which means that in an elementary
update only one spin can change its state and thus one of three events is possible: the concentration
of the positive opinion c = N↑/N increases or decreases by 1/N or remains constant with the
respective probabilities:

γ+(c) = Prob
{

c→ c +
1
N

}
γ−(c) = Prob

{
c→ c− 1

N

}
γ0(c) = Prob {c→ c} = 1− γ+(c)− γ−(c). (4)

For our model on the infinite (N → ∞) complete graph:

γ+(c) = (1− p)(1− c)cqc + p(1− c)qa+1,

γ−(c) = (1− p)c(1− c)qc + pcqa+1. (5)

Using probabilities given by Equation (5) we can simulate trajectories of a random variable c(t),
as done in [3,30]. However, we can also write the evolution equation of the corresponding expected
value. For N → ∞ we can safely assume, which is confirmed also by Monte Carlo simulations [3] that
random variable c(t) localizes to the expected value:

c(t + ∆t) = c(t) +
1
N
[
γ+(c)− γ−(c)

]
, (6)

where ∆t = 1/N, because one Monte Carlo step corresponds to N elementary updates, i.e., N∆t = 1.
Therefore for N → ∞ we obtain the following rate equation:

∂c
∂t

= γ+(c)− γ−(c) = (1− p)[(1− c)cqc − c(1− c)qc ] + p[(1− c)qa+1 − cqa+1] (7)

Sample trajectories obtained from Equation (6) and independently from the Monte Carlo
simulations for the systems of size N = 104 are shown in Figure 1. It is seen that the agreement
between the Monte Carlo and the analytical results is high, even for relatively small system, what
is expected in case of a complete graph. Therefore, all other results will be presented based on the
analytical calculations.

Preliminary results, presented in Figure 1, suggest that there is a continuous phase transition
for qa = 2 and qc = 4 (upper panels in Figure 1), whereas a discontinuous one for qa = 2 and
qc = 8 (bottom panels in Figure 1). In the middle bottom panel metastability is visible, i.e., the final
concentration of positive opinions depends on the initial state. In the metastable region a standard
deviation is much larger for trajectories starting from c(0) near the borders of basins of attraction.
To explore deeper the possibility of the existence of discontinuous phase transitions within the model,
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we calculate the dependence between the stationary value of c = cst, as a function of the probability of
anticonformity p.
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Figure 1. Average trajectories for qa = 2, two values of qc (qc = 4 in the upper and qc = 8 in the
bottom panels) and several values of p increasing from left to right. Analytical results are marked by
the solid lines, whereas Monte Carlo results are marked by symbols. Simulation results were obtained
for the graph of size N = 104 and averaged over 100 samples. The area between the bounded lines
showing the standard deviation is marked by the light blue color. Exact values of p from left to right
are the following: p = 0.18, 0.2, 0.22 (upper panels, i.e., in for qa = 2, qc = 4) and p = 0.03, 0.05, 0.07
(bottom panels, i.e., for qa = 2, qc = 8).

3.2. Stationary States

To calculate stationary values of concentration c = cst we must solve the following equation:

∂c
∂t

= γ+(c)− γ−(c) = F(c) = 0, (8)

where F(c) plays a role of an effective force [30,39]. One solution of the above equation, namely
c = 1/2, is straightforward because it is seen that for c = 1/2 the right side of quation (7) equals to
zero. The stability of this solution can be checked within linear stability analysis [39]. The fixed point
c = 1/2 is stable if [39]:

∂F(c)
∂c

∣∣∣∣
c= 1

2

=
∂γ+(c)

∂c

∣∣∣∣
c= 1

2

− ∂γ−(c)
∂c

∣∣∣∣
c= 1

2

< 0. (9)

From Equation (5):

∂γ+(c)
∂c

= (1− p)
[
−cqc + qc(1− c)cqc−1

]
− p(qa + 1)cqa ,

∂γ−(c)
∂c

= (1− p)
[
(1− c)qc − qcc(1− c)qc−1

]
+ p(qa + 1)cqa , (10)

and thus, we obtain:
∂F(c)

∂c

∣∣∣∣
c= 1

2

= 2
[
(1− p)

qc − 1
2qc

− p
qa + 1

2qa

]
< 0. (11)
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It means that c = 1/2 is a stable fixed point for

p > p∗1(qa, qc) =
2qa(qc − 1)

2qa(qc − 1) + 2qc(qa + 1)
. (12)

At p = p∗1(qa, qc) the fixed point c = 1/2 loses stability and for p < p∗1(qa, qc) it becomes unstable,
which is also visible in Figure 1.

Unfortunately, we are not able to calculate analytically other steady states, i.e., generally solve
Equation (8) in the form cst = cst(p) for arbitrary values of qa and qc. However, following [30] we can
easily derive the opposite relation:

p =
cst(1− cst)qc − (1− cst)c

qc
st

cst(1− cst)qc − (1− cst)c
qc
st + (1− cst)qa+1 − cqa+1

st

(13)

We use the above formula to plot cst = cst(p) simply rotating the figure p = p(cst). Results for
qa = 2 and qa = 4 are presented in Figures 2 and 3. Although Figure 2 shows only two examples
(qa = 2, qc = 4 and qa = 2, qc = 8), out of many presented in Figure 3, it helps to better visualize what
actually happens with the system. First of all, it is visible that there is a phase transition between phase
with up-down (yes-no) symmetry and the phase in which this symmetry is broken, i.e., one of two
opinions wins.
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Figure 2. Flow diagrams for qa = 2 and two values of qc: qc = 4 (left panel) and qc = 8 (right panel),
which are the same values as in Figure 1. Here solid lines denote stable steady values of concentration
cst, whereas dashed lines denote unstable values of cst. Arrows denote the direction of flow, i.e.,
how the concentration changes in time. Supercritical pitchfork bifurcation that corresponds to the
continuous phase transition is seen in the left panel, whereas subcritical pitchfork bifurcation that
corresponds to the discontinuous phase transition is seen in the right panel [28,39].
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Figure 3. Dependence between the stationary concentration of positive opinions cst and the probability
of anticonformity p for qa = 2 (left panel) and qa = 4 (right panel).

Moreover, it is seen that the phase transition is continuous for some values of parameters qa and
qc, whereas for others it is discontinuous. For example, for the fixed value qa = 2 the transition is
continuous for qc = 4 but for qc ≥ 6 it is discontinuous, see Figure 3. Similarly, for the fixed value
qa = 4 the phase transition is continuous for qc = 2 and qc = 6, whereas for qc ≥ 8 it is discontinuous.
In case of a discontinuous phase transition, hysteresis is clearly seen, which means that the system
can reach ordered or disordered state depending, on the initial conditions. The direction in which the
system moves is indicated by the arrows in Figure 2.

In case of a continuous phase transition function p = p(cst) has only one extremum—a maximum
at cst = 1/2. The value p∗ = p(1/2) is the critical point, above which the stationary state has an
up-down symmetry. It should be also noticed that in this case point p∗ coincides with the bifurcation
point p∗1 , given by Equation (12), at which the fixed point c = 1/2 changes stability. From the
perspective of nonlinear dynamics, point p∗1 is a point of the supercritical pitchfork bifurcation [28,39],
see left panel in Figure 2.

On the other hand, in case of a discontinuous phase transition function p = p(cst) has 3 extrema—a
minimum at cst = 1/2 and two maxima located symmetrically with respect to the line cst = 1/2
at cst = c+ > 1/2 and cst = c− < 1/2. The value p∗1 = p(1/2) is called the lower spinodal and
p∗2 = p(c+) = p(c−) is called the upper spinodal. For p < p∗1 the system reaches a phase in which
one of two opinions wins (cst 6= 1/2), independently of the initial state of the system. On the other
hand, for p > p∗2 the system reaches a phase with up-down symmetry (cst = 1/2), independently
of the initial state of the system. The most interesting is the metastable region which corresponds
to p ∈ (p∗1 , p∗2). In this region there is a phase coexistence and the stationary state depends on the
initial one. In this case, the bifurcation point p∗1 , given by Equation (12) coincides with the lower
spinodal. From the perspective of nonlinear dynamics, point p∗1 is a point of the subcritical pitchfork
bifurcation [28,39], see right panel in Figure 2.

To derive the phase diagram, we need to calculate:

1. The lower spinodal as a function of parameters qa, qc. It corresponds to the value of p = p∗1
at cst = 1/2, so it can be easily calculated from the relation p = p(cst) given by Equation (13).
In the case of a continuous phase transition this is simply the critical point p∗ = p∗1 , which
separates two phases. In this case, it corresponds to the maximum of p = p(cst), whereas in
case of a discontinuous phase transition it corresponds to the minimum of p = p(cst), as seen
in Figures 2 and 3. As already written, p = p∗1 is also a pitchfork bifurcation point, given by
Equation (12), at which a steady state c = 1/2 changes stability, i.e. for p < p∗1 an agreement
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phase (c 6= 1/2) is stable and disagreement phase (c = 1/2) is unstable. This indicates that
independently on the initial state of the system an agreement phase is reached. Although p∗1 has
been already calculated within linear stability analysis, we will show that indeed it can be also
obtained from Equation (13).

2. The tricritical point, i.e., the value of qc = q∗
c as a function of qa for which the transition

switches from continuous to discontinuous. As described above at this point the minimum at
cst = 1/2 changes to maximum and thus this point can be also easily derived by calculating the
point in which the second derivative of p changes the sign.

3. The upper spinodal p = p∗
2 as a function of parameters qa, qc. As written above, in case

of discontinuous phase transition p = p(cst) has two maxima at c+ and c− and the value
p(c+) = p(c−) = p∗2 is the upper spinodal, so it can be also derived from the relation p = p(cst)

given by Equation (13). In theory calculations are straightforward. Unfortunately, it occurs that
finding an analytical formula for p∗2 = p∗2(qa, qc) for arbitrary values of parameters qa and qc is
impossible and the upper spinodal will be obtained numerically.

4. The point of the phase transition p∗ = p∗(qa, qc). For a continuous phase transition, it is
straightforward, as described above, because it corresponds to the value of p = p∗1 at cst = 1/2.
In fact, for a continuous phase transition all three points: lower spinodal p∗1 , upper spinodal p∗2
and the point of the phase transition p∗ collapse to the single critical point, i.e., p∗ = p∗1 = p∗2 . For
a discontinuous phase transition, it is far less trivial. The transition point is placed between lower
and upper spinodals. In thermodynamics it corresponds to the point, at which phases are in the
equilibrium, i.e., corresponding thermodynamic potential has minima of equal depth. Here we
will also introduce an equivalent of a potential and use it to calculate the transition point.

As written above, the lower spinodal corresponds to the value of p at cst = 1/2. However, for
this value denominator in Equation (13) equals zero and therefore we have to take the limit c→ 1/2
and use L’Hospital’s rule:

p∗1(qa, qc) = lim
c→ 1

2

p(c, qa, qc)
H
=

2qa(qc − 1)
2qa(qc − 1) + 2qc(qa + 1)

qa=qc=q−−−−−→=
q− 1

2q
(14)

First of all, we see that indeed we obtained exactly the same result as within linear stability
analysis, see Equation (12). Moreover, it is seen that for qa = qc = q the results reduces to the formula
for the original q-voter model with anticonformity, derived in [30]. On the other hand, if we put qa = 1
and qc = q we obtain:

p∗1(1, q) =
2(q− 1)

2(q− 1) + 2q+1 =
q− 1

q− 1 + 2q , (15)

whereas for the model with independence, introduced in [30] the following result was obtained:

p∗1(q) =
q− 1

q− 1 + 2q−1 , (16)

which is very close to the result for the q-voter model with anticonformity for qa = 1 and qc = q.
So, it seems that changing qa for the fixed value of qc or vice versa we can tune the model from
the ’anticonformity’ regime to the ’independence’ regime, in which discontinuous phase transitions
are possible. However, it should be stressed here that this result may be valid only in case of a
complete graph, i.e., when we neglect all spatial correlations. In this case, both types of nonconformity,
anticonformity and independence, tries to disorder the system. However, in general anticonformity
should support active bonds, whereas independence introduces just random changes and thus
we expect that on graphs with high clustering coefficient the difference between two types of
nonconformity would be stronger. To check this prediction we plan to investigate the model on
different graphs.
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As written above, we can easily calculate the tricritical value q∗c = q∗c (qa), for which transition
changes from continuous to discontinuous, from the following condition:

lim
cst→ 1

2

∂2 p
∂c2

st
= 0⇔ qc = q∗c =

1
2

(
5 +

√
25− 4qa + 4q2

a

)
. (17)

To calculate the upper spinodal we should first find points at which p = p(cst) has maxima, but
for this the following equation has be solved for cst:

∂p
∂cst

= 0, (18)

which is in general impossible within an analytical treatment. However, it can be easily
done numerically.

Yet, it is less obvious how to calculate the point of the discontinuous phase transition. One natural
possibility to solve the problem is to use the Landau approach, similarly as it was done in [30].
We have to stress here that in [30] only the lower spinodal was calculated within this approach.
However, in general it could be used to derive analytical formulas also for the upper spinodal, the
point of the phase transition, as well as the tricritical point. Before we proceed to apply the Landau
approach, let us describe the method in an accessible way for researchers not trained in the theory of
phase transitions.

3.3. Landau Approach for Continuous and Discontinuous Phase Transitions

Landau theory was originally proposed to describe continuous phase transitions [38].
Landau introduced an order parameter, here the stationary value of m given by Equation (3),
to distinguish between phases of the system: m = 0 in a disordered state (traditionally above the
critical point), whereas m 6= 0 in an ordered phase (traditionally below the critical point). Additionally,
Landau assumed that the thermodynamical potential, originally the Gibbs free energy, is not only
a function of certain thermodynamical quantities, such as temperature and pressure, but it is also a
function of an order parameter. In general, different potential could be used, for example a potential
V = V(m, p) as a function of the order parameter m and the probability of nonconformity p has been
introduced for the q-voter model in [30] and here we will use the same approach. Finally, Landau
assumed that the value of m near the critical point is small and thus the potential can be expanded into
a power series:

V = V0 +
1
1!

∂V
∂m

m +
1
2!

∂2V
∂m2 m2 +

1
3!

∂3V
∂m3 m3 +

1
4!

∂4V
∂m4 m4 + . . . ,

= V0 + A0m + Am2 + B0m3 + Bm4 + . . . . (19)

For a system with up-down symmetry, V(−m) = V(m), all odd terms must disappear and thus
A0 = B0 = ... = 0. If we additionally ignore higher powers of m we obtain:

V = V0 + Am2 + Bm4. (20)

The condition of the stable equilibrium is equivalent to the condition for a minimum of the
potential and thus:

∂V
∂m

= 2m(A + 2Bm2) = 0,
∂2V
∂m2 = 2(A + 6Bm2) > 0. (21)

From the necessary condition for a minimum, i.e., the first condition of Equation (21), we obtain
two solutions: m = 0 (disordered phase) and m2 = ± − A/2B (ordered phase). Inserting these
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solutions into the condition of stability (sufficient condition for a minimum), i.e., the second condition
of Equation (21), we obtain:

∂2V
∂m2

∣∣∣∣
m=0

= 2A > 0⇒ A > 0,
∂2V
∂m2

∣∣∣∣
m2=±−A/2B

= −4A > 0⇒ A < 0, (22)

which means that A changes its sign during transition from one phase to another, i.e., the critical point
corresponds to A = 0. However, it should be noticed that the stability condition (21) at the critical
point (i.e., for A = 0) gives:

∂2V
∂m2 = 2(A + 6Bm2) = 12Bm2 > 0⇒ B > 0. (23)

Moreover, in order to obtain for A < 0 real values of m corresponding to the ordered state, i.e.,
m2 = ± − A/2B we also need B > 0. Therefore, the Landau theory describes continuous phase
transitions only for B > 0. In Figure 4 we present a potential, given by Equation (20), for B > 0
(specifically for B = 1) and three values of A: A = −1, A = 0 and A = 1. It is seen that indeed
for A < 0 the potential has three extrema: maximum at m = 0 and two minima corresponding to
m2 = ±− A/2B. For A > 0 the potential has only one extremum: minimum at m = 0. This means
that for A = 0 the steady state m = 0 loses stability. In the next section we will show that indeed this
condition is equivalent with the condition given by Equation (12).

-1 0 1
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0.5

1

-1 0 1

0

0.5

1

1.5

2

-1 0 1

0

1

2

3

Figure 4. Potential given by Equation (20) for B > 0(B = 1) and three values of A: A < 0(A = −1)
(left panel), A = 0 (middle panel) and A > 0(A = 1) (right panel).

Although originally Landau theory was introduced for continuous phase transitions, it occurs that
for B < 0, C > 0 we can describe discontinuous phase transitions [40]. At the end of this section we
will see why the assumption C > 0 is needed. For B < 0 we have to take into account the next term of
the power series:

V = V0 + Am2 + Bm4 + Cm6. (24)

Again, we start with the condition for a stable equilibrium, i.e., minimum of the potential:

∂V
∂m

= 2m(A + 2Bm2 + 3Cm4) = 0,
∂2V
∂m2 = 2(A + 6Bm2 + 15Cm4) > 0 (25)

The necessary condition for a minimum, i.e., the first condition of Equation (25) is fulfilled if:

m = 0 or A + 2Bm2 + 3Cm4 = 0. (26)
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Let us first check the stability of the first solution, which corresponds to the disordered phase.
Inserting this solution into the condition of stability (sufficient condition for a minimum), i.e., the
second condition of Equation (25), we obtain:

∂2V
∂m2

∣∣∣∣
m=0

= 2A > 0⇒ A > 0, (27)

which means that for A > 0 the solution m = 0 is stable, whereas for A < 0 it becomes unstable,
analogously as in the case of continuous phase transition (i.e., for B > 0). However, the behavior of the
potential is now very different, which is visible in Figure 5.

-1 0 1
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0
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Figure 5. Potential given by Equation (24) for B < 0(B = −1), C > 0(C = 1) and three values of
A: A = 0, which corresponds to lower spinodal (left panel), A = B2/4C, which corresponds to the
point of the phase transition (middle panel) and A = B2/3C, which corresponds to upper spinodal
(right panel).

It occurs that for a certain range of A > 0, additionally to m = 0, there are two other stable
solutions given by the second condition in Equation (26):

m2 =
−B±

√
B2 − 3AC

3C
. (28)

Because m has to be a real number, for B < 0 and C > 0 we obtain:

m2 =
−B +

√
B2 − 3AC

3C
, (29)

if the following condition is fulfilled:

B2 − 3AC > 0→ A <
B2

3C
. (30)

It means that for A ∈ (0, B2/3C) two different types of phases (ordered and disordered) can
coexist and region of metastability is limited by the spinodals:

A1 = 0, A2 = B2/3C. (31)

Until now we have not yet calculated the point of the phase transition. For B > 0 the phase
transition corresponds to the condition A = 0, i.e., to the critical point, in which the solution
m = 0 losses stability: for A < 0 the system always reaches one of two symmetrical ordered states
(only these are stable) and for A > 0 the system always reaches disordered phase. For B < 0 the
condition A = 0 still corresponds to the critical point, in which the solution m = 0 losses stability.
However, for A ∈ (0, B2/3C) the system can reach one of three different states, two ordered and one
disordered, depending on the initial conditions. In thermodynamics the point of the phase transitions is
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defined as the point in which all phases are in the equilibrium, which is equivalent to the condition that
potential V(0) for the disordered phase is equal to the potential V(m) of the ordered phases, where:

V(0) = V0, V(m) = V0 + Am2 + Bm4 + Cm6, (32)

which leads to:

m2(A + Bm2 + Cm4) = 0. (33)

From the condition of equilibrium (25) and from equality of potentials (33) we obtain the set
of equations:{

A + 2Bm2 + 3Cm4 = 0

A + Bm2 + Cm4 = 0

∣∣∣∣∣− ⇒ m2(B + 2Cm2) = 0⇒ m = 0, m2 = − B
2C

. (34)

Now we see why for B < 0 we had to assume that C > 0. For C < 0 solutions would be
complex. Inserting solution m2 = −B/2C, which corresponds to the jump of the order parameter at
the transition point, to the condition (33) we obtain that at the phase transition:

A =
B2

4C
. (35)

In Figure 5 we see that indeed for this value of A the potential has three minima of equal depth.

3.4. Application of the Landau Approach

To use this approach, we have to define an equivalent of a potential, which we called an effective
potential [30]:

V(c) = −
∫

F(c)dc =
1− p

(qc + 1)(qc + 2)
[cqc+1(c(qc + 1)− qc − 2)− (1− c)qc+1(c(qc + 1) + 1)]

+
p

qa + 2
[cqa+2 + (1− c)qa+2]. (36)

It is worth mentioning that potentials, defined as above, are used also in nonlinear dynamics as
an alternative way to visualize the dynamics of the first-order system [39]. Within such an approach
system always moves toward lower potential. Extrema of the potential (equilibrium states) correspond
to fixed points: minima of V correspond to stable fixed points and maxima correspond to unstable
fixed points.

To use the classical Landau approach, we need to express the above potential in terms of the order
parameter given by Equation (3):

V(m) =
1− p

(qc + 1)(qc + 2)2qc+2 [(1 + m)qc+1((1 + m)(qc + 1)− 2qc − 4)

− (1−m)qc+1((1 + m)(qc + 1) + 2)]

+
p

(qa + 2)2qa+2 [(1 + m)qa+2 + (1−m)qa+2]. (37)

Now we expand the above potential into power series and keep only the first three terms of
the expansion:

V(m) = Am2 + Bm4 + Cm6, (38)
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where:

A =
1
4

(
p(qa + 1)

2qa
− (1− p)(qc − 1)

2qc

)
,

B =
1

48

(
p(qa − 1)qa(qa + 1)

2qa
− (1− p)(qc − 5)(qc − 1)qc

2qc

)
,

C =
1

1440

(
p(qa − 3)(qa − 2)(qa − 1)qa(qa + 1)

2qa

− (1− p)(qc − 9)(qc − 3)(qc − 2)(qc − 1)qc

2qc

)
. (39)

We will use the results obtained within Landau approach, described in the previous section,
which can be summarized as follows:

• The critical point p = p∗1 at which solution m = 0(c = 1/2) loses stability corresponds to A = 0.
• For B = 0 there is a tricritical point at A = 0, which means that for B > 0 the transition is

continuous, whereas for B < 0 it is discontinuous.
• For B > 0 the transition is continuous, see Figure 6. In such a case potential takes one of two

forms. For p < p∗1 potential V is a double-well one with maximum at m = 0 (c = 1/2). It means
that the system always reaches one of two ordered phases: it is attracted by the minima of V and
repelled by the maximum at m = 0, which corresponds to the unstable fixed point. For p > p∗1
the potential has only one minimum that corresponds to m = 0 (c = 1/2). It means that a system
always reaches disordered phase, i.e., the fixed point m = 0 (c = 1/2) is stable.

• For B < 0 the phase transition is discontinuous, see Figure 7, and we can calculate the transition
point p∗ from the condition (35) as well as spinodals p∗1 , p∗2 from (31). As previously, the potential
has two minima (ordered state) and one maximum (disordered state) for p < p∗1 , i.e., below
lower spinodal. For p ∈ (p∗1 , p∗2) the potential has five extrema: two maxima corresponding to
unstable fixed points and three minima corresponding to stable fixed points. Finally, for p > p∗2
the potential has only one minimum that corresponds to m = 0 (c = 1/2).
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Figure 6. Potential for qa = 2, qc = 4 and several values of the probability of anticonformity. From left
to right: p << p∗, p < p∗, p = p∗, p > p∗, p >> p∗, where p∗ = 0.2 and exact values of p from left to
right are the following: p = 0.05, 0.15, 0.2, 0.25, 0.35.
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Figure 7. Potential for qa = 2, qc = 8 and several values of the probability of anticonformity. From
left to right: p < p∗1 , p ∈ (p∗1 , p∗), p = p∗, p ∈ (p∗, p∗2), p > p∗, where p∗ = 0.0564 and exact values of p
from left to right are the following: p = 0.02, 0.05, 0.0564, 0.06, 0.09.
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We start with the critical point p = p∗1 at which solution m = 0(c = 1/2) loses stability:

A = 0⇔ p = p∗1 =
2qa(qc − 1)

2qa(qc − 1) + 2qc(qa + 1)
. (40)

We see that within the Landau approach we have obtained exactly the same value as previously
in Equation (14). The transition is continuous as long as B > 0 and for B < 0 it is discontinuous, so we
obtain the tricritical point from the condition:

B(qa, qc, p∗1) = 0 ⇔ qc =
1
2

(
5 +

√
25− 4qa + 4q2

a

)
. (41)

Again, the Landau approach gives exactly the same value as obtained previously in Equation (17).
So far, we did not obtain any new result, but we have just shown that two approaches give exactly the
same results, which is expected in case of a complete graph. However, at least theoretically, the Landau
approach allows also to calculate upper spinodal, as well as the transition point for discontinuous
phase transition. The upper spinodal can be calculated from the condition A = B2/3C, whereas
the transition point from A = B2/4C, as long as C > 0. Unfortunately, there are two problems:
(1) analytical solution is difficult due to the form of coefficients A, B and C and more importantly
(2) C becomes negative shortly after the tricritical point is reached and thus we are able to obtain
results only for 3–4 values of qc > q∗c .

Therefore, we obtain the transition point numerically from the original form of the potential
given by Equation (37). In Figures 6 and 7 potentials for qa = 2, qc = 4 and qa = 2, qc = 8 are
shown respectively for several values of p. In Figure 6 we observe a typical behavior for a continuous
phase transition, which mean that for p < p∗ there are two symmetrical equally deep minima at
m = m+ > 0 and m = m− < 0 corresponding to two ordered phases: positive or negative opinion
wins. With increasing p minima are approaching each other and become shallower and finally for
p = p∗ they collapse to a single minimum at m = 0. On the other hand, in Figure 7 we observe a
typical behavior for a discontinuous phase transition, which means that between the spinodals, i.e.,
for p ∈ (p∗1 , p2

2) there are 3 minima: two symmetrical m− and m+ for the ordered phase and the third
one at m = 0 corresponding to the disordered phase. At the transition point all three minima are
equally deep and this allows us to calculate p∗ for a discontinuous phase transition.

Collecting all results obtained above, we can draw the phase diagram. Examples of phase
diagrams for two values of qa are shown in Figure 8. These diagrams remind the one for the q-voter
model with independence, presented in [30]. In both cases the maximum value is obtained for
p∗(qc = 2) = p∗(qc = 3), which means that agreement is more likely when the size of the group
needed for conformity is of size 2 or 3 and then decreases. Moreover, for qc > q∗c (qa) the transition
becomes discontinuous. It means that hysteresis appears, i.e., there is an interval of width p∗2 − p∗1
between lower and upper spinodal in which the final state depends on the initial one and in which
both phases (agreement and disagreement) coexist with each other. In this interval both phases are
metastable: for p < p∗ the agreement is more stable (represented by deeper minimum of the potential),
whereas for p > p∗ the disagreement is more stable.

To illustrate results for all values of qa and qc we have decided to plot the lower spinodal line
p∗1 (left panel in Figure 9), as well as the width of hysteresis, which is defined as a distance between
spinodals, (right panel in Figure 9) as a function of both parameters qa and qc. In the left panel in
Figure 9 it is visible that for the fixed value of qa the dependence between p∗ and qc is non-monotonic
and for all qa there is a maximum for p∗(qc = 2) = p∗(qc = 3), which reminds the results for the
q-voter model with independence [30]. On the other hand, for the fixed value of qc the transition
point p∗ increases monotonically with qa, which reminds the results for the q-voter model with
anticonformity [30]. The width of hysteresis (right panel in Figure 9) is increasing rapidly when the
tricritical point is crossed, then reaches certain maximal value and then decreases again, which means
that there are ’optimal’ values of qa and qc for which the interval of metastability is the largest.
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Figure 8. Phase diagrams for qa = 2 (left panel) and qa = 4 (right panel). Points of continuous phase
transitions are marked by ◦ and discontinuous by ∗. Solid lines without symbols denote spinodal lines,
i.e., limits of the region with metastability, in which the final state depends on the initial one.
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Figure 9. Left panel: the critical point p∗1 , below which the system is ordered (m 6= 0) independently
on the initial state, as a function of qa and qc. Right panel: the width of hysteresis p∗2 − p∗1 as a function
of qa and qc.

4. Conclusions

In this paper, we proposed a generalized version of the q-voter model with anticonformity [30].
The generalization was based on the observation that there are no indications, neither from the social
experiments nor from the social observations, to justify the assumption that the size of the group
of influence inducing conformity is the same as the size of the group effecting in anticonformity.
For example, within laboratory social experiments, it was repeatedly shown what there is a strong
impact of the size of the influence group and its unanimity on conformity, for a review check [37].
For instance, it has been shown that it is essential for the group of influence to be unanimous and of
sufficient size in order to persuade others. On the other hand, anticonformity is much less investigated.
One of the reasons is the difficulty in designing the appropriate experiment. One of the few experiments
on anticonformity was conducted by [41] but within this experiment the impact of the size of the group
of influence has not been examined. Due to our knowledge there is no other laboratory experiment
that checked the role of the size of the influence group on the anticonformity.
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Therefore, we decided here to abandon the assumption made in [30] and check if this would
change the type of the phase transition. It has occurred that indeed phase transition switches to a
discontinuous one if only the size of the group of influence needed for conformity qc is sufficiently larger
than the size of the group of influence needed for anticonformity qa. We were able to find the analytical
formula q∗c = q∗c (qa) for the tricritical point above which the transition becomes discontinuous, as well
as the analytical formula for the critical point p∗1 = p∗1(qa, qc), below which an up-down symmetry is
broken, within two independent methods. Results obtained here reduces to those obtained in [30] for
qa = qc = q. Interestingly, under the assumption that qa and qc are integer numbers the formula (17)
gives the simple relation that the transition is discontinuous if qc ≥ qa + 3 for any qa > 3. For smaller
values of qa ≤ 3 the formula (17) gives the condition qc ≥ qa + 4.

Results obtained here has encouraged us to design a laboratory experiment, based on the idea
introduced in [41], to check how the size of the influence group impacts the level of anticonformity.
However, it is too soon to provide more details of this project, as reported in [14].

In this paper, we investigated the model exclusively on a complete graph to make a comparison
with the original q-voter model with anticonformity. However, it would be desired task for the future to
study the model on various complex networks, because till now the q-voter model with anticonformity
was studied only on the complete graph, even in its original formulation.
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