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Abstract: We introduce a new three-parameter lifetime distribution, the exponentiated Lindley geometric
distribution, which exhibits increasing, decreasing, unimodal, and bathtub shaped hazard rates.
We provide statistical properties of the new distribution, including shape of the probability density
function, hazard rate function, quantile function, order statistics, moments, residual life function,
mean deviations, Bonferroni and Lorenz curves, and entropies. We use maximum likelihood estimation
of the unknown parameters, and an Expectation-Maximization algorithm is also developed to find the
maximum likelihood estimates. The Fisher information matrix is provided to construct the asymptotic
confidence intervals. Finally, two real-data examples are analyzed for illustrative purposes.

Keywords: compounding; Lindley distribution; geometric distribution; maximum likelihood estimation;
Expectation-Maximization algorithm; lifetime distribution

1. Introduction

Suppose that a company has N systems functioning independently and producing a certain product
at a given time, where N is a random variable determined by economy, customers demand, etc. The reason
for considering N as a random variable comes from a practical viewpoint, because failure (of a device for
example) often occurs due to the present of an unknown number of initial defects in the system. In this
paper, we consider the case in which N is taken to be a geometric random variable with the probability
mass function given by

P(N = n) = (1− p)pn−1,

for 0 < p < 1 and n is a positive integer. We may take N to follow other discrete distributions, such as
binomial, Poisson, etc, whereas they need to be truncated 0 because one must have N ≥ 1. Another rationale
by taking N to be a geometric random variable is that the “optimum” number can be interpreted as “number to
event”, matching up with the definition of a geometric random variable, as commented by [1]. The geometric
distribution has been widely used for the number of “systems” in the literature; see, for example, [2,3].
It has also been adopted to obtain some new class of distributions; see [4] for the exponential geometric
(EG) distribution, [5] for the exponentiated exponential geometric (EEG) distribution, [6] for the Weibull
geometric distribution, [1] for the geometric exponential Poisson (GEP) distribution, to name just a few.

On the other hand, we assume that each of N systems is made of α parallel components, and therefore,
the system will completely shutdown if all of the components fail. Meanwhile, we assume that the failure
times of the components for the ith system, denoted by Zi1, . . . , Ziα, are independent and identically
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distributed (iid) with the cumulative distribution function (cdf) G(z) and the probability density function
(pdf) g(z). For simplicity of notation, let Yi stand for the failure time of the ith system and X denote the
time to failure of the first out of the N functioning systems, i.e., X = min(Y1, . . . , YN). Then it can be seen
from [5] that the conditional cdf of X given N is given by

G(x | N) = 1− P(X > x | N) = 1−
[
1− G(x)α

]N ,

and the unconditional cdf of X can thus be written as

F(x) =
∞

∑
n=1

G(x | N)P(N = n) =
G(x)α

1− p + p · G(x)α
. (1)

The new class of distribution in (1) depends on the cdf of the failure times of the components in the system,
which may follow some continuous probability distributions, such as the exponential, Lindley, and Weibull
distributions. As an illustration, if the failure times of the components for the ith system are iid exponential
random variables with the rate parameter λ, i.e., G(z) = 1− e−λz, then we obtain the EEG distribution
due to [5]. Its cdf is given by

F(x) =

(
1− e−λx)α

1− p + p
(
1− e−λx

)α . (2)

Please note that in reliability engineering and lifetime analysis, we often assume that the failure times of
the components within each system follow the exponential lifetimes; see, for example [4,5,7], among others.
This assumption may be unreasonable because the hazard rate of the exponential distribution is a
constant, whereas some real-life systems may not have constant hazard rates, and the components
of a system are often more rigid than the system itself. Accordingly, it becomes reasonable to consider the
components of a system following a distribution with a non-constant hazard function that has flexible
hazard function shapes.

In this paper, we propose a new three-parameter lifetime distribution by compounding the Lindley
and geometric distributions based on the new class of distribution in (1). The Lindley distribution was
first proposed by [8] in the context of Bayesian statistics, as a counterexample of fiducial statistics. It has
recently received considerable attention as an appropriate model to analyze lifetime data especially in
applications modeling stress-strength reliability; see, for example, [9–11]. Ghitany et al. [12] argue that
the Lindley distribution could be a better lifetime model than the exponential distribution through a
numerical example and show that the hazard function of the Lindley distribution does not exhibit a
constant hazard rate, indicating the flexibility of the Lindley distribution over the exponential distribution.
These observations motivate us to study the structure properties of the distribution in (1) when the failure
times of the units for the ith system are iid Lindley random variables with the parameter θ, i.e.,

G(z) = 1− θ + 1 + θz
θ + 1

e−θz, z > 0, (3)

where the parameter θ > 0. Its corresponding cdf is given by

F(x) =

(
1− θ+1+θx

θ+1 e−θx
)α

1− p + p
(

1− θ+1+θx
θ+1 e−θx

)α , x > 0, (4)
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where the parameters α > 0, θ > 0, and 0 < p < 1. We call the distribution as the exponentiated Lindley
geometric (ELG) distribution. Indeed, it is necessary to compute the entropy measure for ELG distribution
under the assumption that errors are non-Gaussian distributed (e.g., [13]). Other motivations of the ELG
distribution are briefly summarized as follows. (i) It contains several lifetime distributions as special cases,
such as the Lindley-geometric (LG) distribution due to [14] when α = 1. (ii) It can be viewed as a mixture
of exponentiated Lindley distributions introduced by [15]. (iii) The ELG distribution is a flexible model
which can be widely used for modeling lifetime data in reliability and survival analysis. (iv) It exhibits
monotonically increasing, decreasing, unimodal (upper-down bathtub), and bathtub shaped hazard rates
but does not exhibit a constant hazard rate, which makes the ELG distribution to be superior to other
lifetime distributions, which exhibit only monotonically increasing/decreasing, or constant hazard rates.

The remainder of the paper is organized as follows. In Section 2, we discuss various statistical
properties of the new distribution. The maximum-likelihood estimation is considered in Section 3, and an
EM algorithm is proposed to find the maximum likelihood estimates because they cannot be obtained in
closed form. The maximum-likelihood estimation for censored data is also discussed briefly. In Section 4,
two real-data applications are provided for illustrative purposes. Some concluding remarks are given in
Section 5.

2. Properties of the ELG distribution

We provide statistical properties of the ELG distribution. These include the pdf and its shape
(Section 2.1), hazard rate function and its shape (Section 2.2), quantile function (Section 2.3), order statistics
(Section 2.4), expressions for the nth moments (Section 2.5), residual life function (Section 2.6),
mean deviations (Section 2.7), Bonferroni and Lorenz curves (Section 2.8), and entropies (Section 2.9).

2.1. Probability Density function

The corresponding pdf of the ELG distribution corresponding to the cdf in (4) is given by

f (x) =
αθ2(1− p)(1 + x)e−θx

(
1− θ+1+θx

θ+1 e−θx
)α−1

(θ + 1)
[

1− p + p
(

1− θ+1+θx
θ+1 e−θx

)α
]2 , (5)

for x > 0, α > 0, θ > 0, and 0 < p < 1.
It should be noted that the pdf in (5) is still a well-defined density function when p ≤ 0. Thus, we can

define the ELG distribution in (5) to any p < 1. As mentioned in Section 1, the ELG distribution includes
several special submodels. When α = 1, it becomes the LG distribution due to [14]. When p = 0 and α = 1,
it turns out to be the Lindley distribution due to [8]. It converges a distribution degenerating at the point 0
when p→ 1−.

Figure 1 displays the pdf of the ELG distribution in (5) with selected values of α, θ, and p. We observe
from Figure 1 that the shape of the pdf is monotonically decreasing with the modal value of ∞ at x = 0
when α < 1 and the shape of the pdf appears upside-down bathtub for α > 1. When α = 1, we observe
that the shape exhibits monotonically decreasing as well as unimodal. This observation coincides with
Theorem 1 of [14], which states that the density function of the LG distribution is (i) decreasing for all values of p
and θ for which p > 1−θ2

1+θ2 , (ii) unimodal for all values of p and θ for which p ≤ 1−θ2

1+θ2 .
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Figure 1. Plots of the pdf of the ELG distribution for different values of α, θ, and p.

2.2. Hazard Rate Function

The failure rate function, also known as the hazard rate (hf) function, is an important characteristic
for lifetime modeling. For a continuous distribution with the cdf F(x) and the pdf f (x), its failure rate
function is defined as

h(x) = lim
∆x→0

=
P(X < x + ∆x | X > x)

∆x
=

f (x)
S(x)

,

where S(x) = 1− F(x) is the survival function of X. The hf of the ELG distribution is given by

h(x) =
αθ2(1 + x)e−θx

(
1− θ+1+θx

θ+1 e−θx
)α−1

(θ + 1)
[

1−
(

1− θ+1+θx
θ+1 e−θx

)α
][

1− p + p
(

1− θ+1+θx
θ+1 e−θx

)α
] (6)

for x > 0, α > 0, θ > 0, and p < 1.
Figure 2 depicts shapes of the hf with selected values of α, θ, and p. We observe that the hf of the ELG

distribution is quite flexible. For example, the shape appears monotonically decreasing if α is sufficiently
small and p is not sufficiently large. The shape appears monotonically increasing for small p and large α.
The shape appears bathtub-shaped or first increases then bathtub-shaped for α = 1. We may conclude that
the ELG distribution exhibits increasing, decreasing, upside-down bathtub, and bathtub shaped failure
hazard rates, but does not exhibit a constant hazard rate.
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Figure 2. Plots of the hf of the ELG distribution for different values of α, θ, and p.

Note also that as x → 0, the initial hf behaves as h(x) ∼ {αθ2α/[(θ + 1)α(1− p)]}xα−1, which implies
that h(0)→ ∞ for α < 1, h(0) = θ2/[(θ + 1)(1− p)] for α = 1, and h(0) = 0 for α > 1.

2.3. Quantile Function

Let Z denote a Lindley random variable with the cdf in (3). We observe from [16] that the quantile
function of the Lindley distribution is

G−1(u) = −1− 1
θ
− 1

θ
W−1

(
− θ + 1

eθ+1 (1− u)
)

, (7)

where 0 < u < 1 and W−1(·) denotes the negative branch of the Lambert W function (i.e., the solution of
the equation W(z)eW(z) = z), which can be calculated by using the Lambert-W function in the R package
lamW; see [17] in detail.

Let X be a ELG random variable with the cdf F(x) in (4). By inverting F(x) = u for 0 < u < 1,
we obtain (

u− up
1− up

)1/α

= 1− θ + 1 + θx
θ + 1

e−θx = G(x).

It follows from Equation (7) that the quantile function of the ELG distribution is given by

F−1(u) = −1− 1
θ
− 1

θ
W−1

(
− θ + 1

eθ+1

[
1−

(u− up
1− up

)1/α
])

. (8)
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Please note that − 1
e < − θ+1

eθ+1

[
1−

(
u−up
1−up

)1/α
]
< 0, so the W−1(·) is unique, which implies that F−1(u)

is also unique. Thus, one can use Equation (8) for generating random data from the ELG distribution.
In particular, the quartiles of the ELG distribution, respectively, are given by

Q1 = F−1
(1

4

)
= −1− 1

θ
− 1

θ
W−1

(
− θ + 1

eθ+1

[
1−

(1− p
4− p

)1/α
])

,

Q2 = F−1
(1

2

)
= −1− 1

θ
− 1

θ
W−1

(
− θ + 1

eθ+1

[
1−

(1− p
2− p

)1/α
])

,

Q3 = F−1
(3

4

)
= −1− 1

θ
− 1

θ
W−1

(
− θ + 1

eθ+1

[
1−

(3− 3p
4− 3p

)1/α
])

.

2.4. Order Statistics

Suppose X1, . . . , Xn is a random sample from the ELG distribution. Let X(1) < X(2) < · · · < X(n) be
the corresponding order statistics. The pdf for the rth order statistic of the ELG distribution, say Y = X(r),
is given by

fY(y) =
n!

(r− 1)!(n− r)!
Fr−1(y)

[
1− F(y)

]n−r f (y)

=
n!

(r− 1)!(n− r)!

n−r

∑
τ=0

(
n− r

τ

)
(−1)τ Fr−1+τ(y) f (y)

=
αθ2(1− p)(1 + x)e−θxn!
(θ + 1)2(r− 1)!(n− r)!

n−r

∑
τ=0

(
n− r

τ

) (−1)τ
(

1− θ+1+θx
θ+1 e−θx

)α(r+τ)−1

[
1− p + p

(
1− θ+1+θx

θ+1 e−θx
)α
]r+τ+1 .

The corresponding cdf of Y is given by

FY(y) =
n

∑
j=r

Fj(y)
[
1− F(y)

]n−j
=

n

∑
j=r

n−j

∑
τ=0

(
n
j

)(
n− j

τ

)
(−1)τ Fj+τ(y)

=

n

∑
j=r

n−j

∑
τ=0

(
n
j

)(
n− j

τ

) (−1)τ
(

1− θ+1+θx
θ+1 e−θx

)α(j+τ)

[
1− p + p

(
1− θ+1+θx

θ+1 e−θx
)α
]j+τ

.

In practice, we may be interested in studying the asymptotic distribution of the extreme values X(1) and
X(n). By using L’Hospital’s rule, we have

lim
t→∞

1− F(t + x/θ)

1− F(t)
= lim

t→∞

f (t + x/θ)

f (t)
=

1−
[
1− θt

θ+1 e−(θt+x)
]α

1−
[
1− θt

θ+1 e−θt
]α

= e−x.
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In addition, by using L’Hospital’s rule, it can be easily shown that

lim
t→0

F(tx)
F(t)

= lim
t→0

x f (xt)
f (t)

= lim
t→0

(1− θ+1+θtx
θ+1 e−θtx

1− θ+1+θt
θ+1 e−θt

)α

= xα.

By following Theorem 1.6.2 in [18] we observe that there must be some normalizing constants an > 0, bn,
cn > 0, and dn, such that

Pr
[
an(X(1) − bn) ≤ x

]
→ exp

(
−e−x)

and
Pr
[
cn(X(n) − dn) ≤ x

]
→ 1− exp

(
−xa)

as n→ ∞. The form of the normalizing constants can be determined by using Corollary 1.6.3 in [18]. As an
illustration, one can see that an = θ and bn = F−1(1− 1/n), where F−1(·) denotes the inverse function
of F(·).

2.5. Moment Properties

Many important features of a distribution can be characterized through its moments, such as
dispersion, skewness, and kurtosis. To derive the nth moment of the ELG distribution, we consider
the Taylor series expansion of the form

(1 + x)−a =
∞

∑
k=0

(
−a
k

)
xk, (9)

which converges for |x| < 1. This provides that

[
1− p + pGα(x)

]−1
=

∞

∑
k=0

(
−1
k

)[
−p
(
1− Gα(x)

)]k

=
∞

∑
k=0

k

∑
j=0

(
−1
k

)(
k
j

)
(−1)j+k pk[G(x)

]αj, (10)

where (−1
k ) is the generalized binomial coefficient. Therefore, we can rewrite Equation (4) as

F(x) =
∞

∑
k=0

k

∑
j=0

(
−1
k

)(
k
j

)
(−1)j+k pk[G(x)

]αj+α

=
∞

∑
k=0

k

∑
j=0

(
−1
k

)(
k
j

)
(−1)j+k pk

(
1− θ + 1 + θx

θ + 1
e−θx

)αj+α

. (11)

We observe that the ELG distribution is a mixture of exponentiated Lindley distributions introduced
by [15], i.e.,

[
1− p + pGα(x)

]−1
=

1
1− p

[
1 +

p
1− p

Gα(x)
]−1

=
1

1− p

∞

∑
k=0

(
−1
k

)[ p
1− p

Gα(x)
]k

,
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which is convergent for |p/(1− p)Gα(x)| < 1. They show that if Y is an exponentiated Lindley random
variable with parameters θ and β, the nth moment and the moment generating function of Y are,
respectively, given by

IE(Yn
θ,β) =

βθ2

1 + θ
K(β, θ, n, θ)

and

MYθ,β(t) =
βθ2

1 + θ
K(β, θ, 0, θ − t)

for t < θ, where

K(a, b, c, δ) =
∫ ∞

0
xc(1 + x)

[
1− 1 + b + bx

1 + b
e−bx

]a−1

e−δx dx

=
∞

∑
i=0

i

∑
j=0

j+1

∑
k=0

(
a− 1

i

)(
i
j

)(
j + 1

k

)
(−1)ibjΓ(c + k + 1)
(1 + b)i(bi + δ)c+k+1 .

By using Equation (11), we obtain the nth moment of X can be rewritten as

µr(x) = IE(Xn) =
∞

∑
k=0

(
−1
k

)
(−p)k

k

∑
j=0

(
k
j

)
(−1)jIE

(
Yn

θ,αj+α

)
=

∞

∑
k=0

(
−1
k

)
(−p)k

k

∑
j=0

(
k
j

)
(−1)j (αj + α)θ2

1 + θ
K(αj + α, θ, n, θ)

=
αθ2

1 + θ

∞

∑
k=0

k

∑
j=0

(
−1
k

)(
k
j

)
(−1)j+k pk(j + 1)K(αj + α, θ, n, θ) (12)

for n = 1, 2, . . . Equation (12) can be adopted to compute the third and fourth central moments of the ELG
distribution, which are then used to define skewness and kurtosis, respectively. For instance, based on
the first four moments of the ELG distribution, the measures of skewness γ and kurtosis κ of the ELG
distribution are, respectively, given by

γ =
µ3(x)− 3µ2(x)µ2(x) + 2µ3

1(x)[
µ2(x)− µ2

1(x)
]3/2 ,

and

κ =
µ4(x)− 4µ1(x)µ3(x) + 6µ2

1(x)µ2(x)− 3µ4
1(x)[

µ2(x)− µ2
1(x)

]2 .

The moment generating function of the ELG distribution, denoted by MX(t), is given by

MX(t) =
∞

∑
k=0

(
−1
k

)
(−p)k

k

∑
j=0

(
k
j

)
(−1)j MYθ,αj+α

(t)

=
αθ2

1 + θ

∞

∑
k=0

k

∑
j=0

(
−1
k

)(
k
j

)
(−1)j+k pk(j + 1)K(αj + α, θ, 0, θ − t).
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Thereafter, we can use MX(t) to obtain the nth moment about zero of the ELG distribution. In particular,
if | p

1−p Gα(x)| < 1, then Equation (11) can be simplified to

F(x) =
1

1− p

∞

∑
k=0

(−p)k

(1− p)k

(
1− θ + 1 + θx

θ + 1
e−θx

)αk+α

. (13)

The corresponding nth moment of X can be simplified as

µr(x) = IE(Xn) =
1

1− p

∞

∑
k=0

(−p)k

(1− p)k IE
(
Yn

θ,αk+α

)
=

αθ2

(1 + θ)(1− p)

∞

∑
k=0

(−p)k(j + 1)
(1− p)k K(αk + α, θ, n, θ) (14)

for n = 1, 2, · · · , and the moment generating function of the ELG distribution is given by

MX(t) =
1

1− p

∞

∑
k=0

(−p)k

(1− p)k MYθ,αk+α
(t)

=
αθ2

(1 + θ)(1− p)

∞

∑
k=0

(−p)k(j + 1)
(1− p)k K(αk + α, θ, 0, θ − t).

2.6. Residual Life Function

Given that a component of a system survives up to time t ≥ 0, the residual life will be the period
beyond t until the time of failure occurs in the system and is thus defined by the conditional random
variable X− t | X > t. The mean residual life plays an important role in survival analysis and reliability of
characterizing lifetime, because it can be used to determine a unique corresponding lifetime distribution.
The rth moment of the residual life of the ELG distribution can be obtained by the general formula

mr(t) = IE
[
(X− t)r | Y > t

]
=

1
S(t)

∫ ∞

t
(x− t)r f (x) dx, (15)

where S(t) = 1− F(t) is the survival function defined before. Noting that the ELG distribution is a mixture
of exponentiated Lindley distributions, we may calculate mr(t) by using the expression in Lemma 2 of [15],
which is given by

L(a, b, c, t) =
∫ ∞

t
xc(1 + x)

[
1− b + 1 + bx

b + 1
e−bx

]a−1

e−bx dx

=
∞

∑
i=1

i

∑
j=1

j+1

∑
k=0

(
a− 1

i

)(
i
j

)(
j + 1

k

)
(−1)ibjΓ(c + k + 1, (bi + b)t)

(1 + b)i(bi + b)c+k+1 ,
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where Γ(a, x) =
∫ ∞

x ta−1 exp(−t) dx represents the complementary incomplete gamma function. Let X be
an ELG random variable. By using the Taylor series expansion in (9), it can be easily shown that∫ ∞

t
xr f (x) dx

=
αθ2(1− p)

θ + 1

∫ ∞

t
xr(1 + x)

(
1− θ + 1 + θx

θ + 1
e−θx

)α−1
[

1− p + p
(

1− θ + 1 + θx
θ + 1

e−θx
)α
]−2

dx

=
αθ2(1− p)

θ + 1

∫ ∞

t

∞

∑
l=0

(
−2

l

)
(−p)l

l

∑
j=0

(
l
j

)
(−1)jxr(1 + x)

(
1− θ + 1 + θx

θ + 1
e−θx

)α+αj−1
dx

=
αθ2(1− p)

θ + 1

∞

∑
l=0

(
−2

l

)
(−p)l

l

∑
j=0

(
l
j

)
(−1)j

∫ ∞

t
xr(1 + x)

(
1− θ + 1 + θx

θ + 1
e−θx

)α+αj−1
dx

=
αθ2(1− p)

θ + 1

∞

∑
l=0

l

∑
j=0

(
−2

l

)(
l
j

)
(−1)j+l pl L(α + αj, θ, r, t).

From the binomial expansion for (x− t)r, we get that the rth order moment of the residual life of the ELG
distribution is given by

mr(t) =
1

S(t)

∫ ∞

t
(x− t)r f (x)

=
1

S(t)

∫ ∞

t

r

∑
k=0

(
r
k

)
xr−k(−t)k f (x) dx

=
1

S(t)

r

∑
k=0

(
r
k

)
(−t)k

∫ ∞

t
xr−k f (x) dx

=
1

S(t)
αθ2(1− p)

θ + 1

∞

∑
l=0

l

∑
j=0

r

∑
k=0

(
r
k

)(
−2

l

)(
l
j

)
(−1)j+l+ktk pl L(α + αj, θ, r− k, t).

The mean and variance of the residual life function of the ELG distribution can be easily obtained using
m1(t) and m2(t), and are not shown here for simplicity. In a similar way as done for Equation (13), it can
be shown that if | p

1−p Gα(x)| < 1, then

∫ ∞

t
xr f (x) dx =

αθ2

(θ + 1)(1− p)

∞

∑
l=0

(
−2

l

)
(−p)l

(1− p)l L(α + αl, θ, r, t), (16)

and the rth order moment of the residual life of the ELG distribution can be written as

mr(t) =
1

S(t)
αθ2

(θ + 1)(1− p)

∞

∑
l=0

r

∑
k=0

(
r
k

)(
−2

l

)
(−1)k+l pltk

(1− p)l L(α + αl, θ, r− k, t).

2.7. Mean Deviations

We consider the totality of deviations from the mean and median and the mean deviation from the
mean, which is often used to estimate the amount of scatter in a population. The mean deviation is a more
robust statistic to outliers in the data set than the standard deviation and the mean deviation from the
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median is a measure of statistical dispersion, which is a more robust statistic to outliers than the sample
variance or standard deviation.

Let X denote a random variable with the pdf f (x), the cdf F(x), mean µ, and median M. The mean
deviation about the mean and the mean deviation about the median are defined by

δ1(X) =
∫ ∞

0
|x− µ| f (x) dx

=
∫ µ

0
(µ− x) f (x) dx +

∫ ∞

µ
(x− µ) f (x) dx

= µF(µ)−
∫ µ

0
x f (x) dx +

∫ ∞

µ
x f (x) dx− µ(1− F(µ))

= 2µF(µ)− 2µ + 2
∫ ∞

µ
x f (x) dx

= 2µF(µ)− 2µ +
2αθ2(1− p)

θ + 1

∞

∑
l=0

l

∑
j=0

(
−2

l

)(
l
j

)
(−1)j+l pl L(α + αj, θ, 1, µ)

and

δ2(X) =
∫ ∞

0
|x−M| f (x) dx

=
∫ M

0
(M− x) f (x) dx +

∫ ∞

M
(x−M) f (x) dx

= MF(M)−
∫ M

0
x f (x) dx +

∫ ∞

M
x f (x) dx−M(1− F(M))

= µ + 2
∫ ∞

M
x f (x) dx

= −µ +
2αθ2(1− p)

θ + 1

∞

∑
l=0

l

∑
j=0

(
−2

l

)(
l
j

)
(−1)j+l pl L(α + αj, θ, 1, M).

respectively. Of particular note is that when | p
1−p Gα(x)| < 1, the mean deviations above can be further

simplified as

δ1(X) = 2µF(µ)− 2µ +
2αθ2

(1− p)(θ + 1)

∞

∑
i=1

(
−2

j

)( p
p + 1

)j
L(α + αj, θ, 1, t).

and

δ2(X) = −µ +
2αθ2

(1− p)(θ + 1)

∞

∑
i=1

(
−2

j

)( p
p + 1

)j
L(α + αj, θ, 1, M).

2.8. Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves (Bonferroni 1930) have many practical applications not only in
economics and poverty, but also in other fields like reliability, lifetime testing, insurance, and medicine.
For a random variable X with cdf F(·), the Bonferroni and Lorenz curves are defined by

B
[
F(x)

]
=

1
µF(x)

∫ q

0
x f (x) dx, (17)
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where µ = IE(X), and

L
[
F(x)

]
=

1
F(x)

∫ q

0
x f (x) dx, (18)

respectively. If X is an ELG random variable with the pdf in (5), we observe Equation (17) can be written as

B
[
F(x)

]
=

1
µF(x)

∫ q

0
x f (x) dx

=
1

µF(x)

[∫ ∞

0
x f (x) dx−

∫ ∞

q
x f (x) dx

]

=
1

µF(x)

[
µ− αθ2(1− p)

θ + 1

∞

∑
l=0

l

∑
j=0

(
−2

l

)(
l
j

)
(−1)j+l pl L(α + αj, θ, 1, q)

]
,

which is obtained by using Equation (16) with t = q and r = 1. By using Equation (18), it follows easily
that the Lorenz curve of the ELG distribution is given by L[F(x)] = µB[F(x)].

2.9. Entropies

It is well known that an entropy of a random variable X is a measure of variation of the uncertainty.
The Rényi entropy is defined as

IR(γ) =
1
γ

log
∫ ∞

0
f γ(x) dx,

where γ > 0 and γ 6= 1. The Shannon entropy is defined as E
[
− log( f (x))

]
, which is a particular case of

the Rényi entropy as γ→ 1. We first observe that

∫ ∞

0
f γ(x) dx

=

[
αθ2(1− p)

1 + θ

]γ
∫ ∞

0
(1 + x)γe−θγx

(
1− θ + 1 + θx

θ + 1
e−θx

)αγ−γ
[

1− p + p
(

1− θ + 1 + θx
θ + 1

e−θx
)α
]−2γ

dx

=

[
αθ2(1− p)

1 + θ

]γ ∞

∑
k=0

∞

∑
j=0

(
−2γ

k

)(
k
j

)
(−1)k+j pk

∫ ∞

0
(1 + x)γe−θγx

(
1− θ + 1 + θx

θ + 1
e−θx

)αγ−γ+αj
dx,

which shows that the Rényi entropy of the ELG distribution is given by

IR(γ) =
1
γ

log
∫ ∞

0
f γ(x) dx,

=
γ

1− γ
log
[

αθ2(1− p)
1 + θ

]

+
1

1− γ
log

∞

∑
k=0

∞

∑
j=0

(
−2γ

k

)(
k
j

)
(−1)k+j pk

∫ ∞

0
(1 + x)γe−θγx

(
1− θ + 1 + θx

θ + 1
e−θx

)αγ−γ+αj
dx.



Entropy 2019, 21, 510 13 of 23

It can be shown that the Shannon entropy of the ELG distribution is given by

H(X) = E[− log f (X)]

= − log
[

αθ2(1− p)
1 + θ

]
− E[log(1 + x)] + θE[x]− (α− 1)E[log(G(x))] + 2E[log(1− p + pGα(x)],

which can be easily evaluated using a unidimensional integral. Figure 3 depicts shapes of the Shannon
entropy of the ELG distribution with several selected values of α, θ, and p. It deserves mentioning that the
entropy measure of the ELG distribution can be estimated by using numerical integration methods with
the (plug-in) estimators found in the following section.
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Figure 3. Plots of the Shannon entropy of the ELG distribution for different values of α, θ, and p.

3. Estimation of Parameters

We adopt the maximum likelihood estimation to estimate the unknown parameters (Section 3.1) and
develop an Expectation-Maximization (EM) algorithm to find the maximum likelihood estimate (MLE)
(Section 3.2). We also discuss the MLEs of the unknown parameters when the data is censored (Section 3.3).

3.1. Maximum Likelihood Estimation

It is well known that the MLE is often used to estimate the unknown parameter of a distribution
because of its attractive properties, such as consistency, asymptotic normality, etc. Let X1, . . . , Xn be



Entropy 2019, 21, 510 14 of 23

a random sample from the ELG distribution with unknown parameter vector φ = (θ, α, p). Then the
log-likelihood function l = l(φ; x) is given by

l = n log α + 2n log θ − n log(θ + 1) + n log(1− p) +
n

∑
i=1

log(1 + xi)− θ
n

∑
i=1

xi + (α− 1)

×
n

∑
i=1

log
(

1− θ + 1 + θxi
θ + 1

e−θxi

)
− 2

n

∑
i=1

log
[

1− p + p
(

1− θ + 1 + θxi
θ + 1

e−θxi
)α
]

. (19)

For notational convenience, let

τi(θ) = 1− θ + 1 + θxi
θ + 1

e−θxi ,

for i = 1, . . . , n. The MLEs of the unknown parameters can be obtained by taking the first partial
derivatives of Equation (19) with respect to α, θ, and p and putting them equal to 0. We have the following
likelihood equations

∂l
∂α

=
n
α
+

n

∑
i=1

log
[
τi(θ)

]
− 2p

n

∑
i=1

τα
i (θ) log

[
τi(θ)

]
1− p + pτα

i (θ)
, (20)

∂l
∂θ

=
2n
θ
− n

θ + 1
−

n

∑
i=1

xi +
(α− 1)θ
(θ + 1)2

n

∑
i=1

xi(2 + θ + θxi + xi)e−θxi

τi(θ)
− 2αpθ

(θ + 1)2

×
n

∑
i=1

τα−1
i (θ)xi(2 + θ + θxi + xi)e−θxi

1− p + pτα
i (θ)

, (21)

∂l
∂p

= − n
1− p

+ 2
n

∑
i=1

1− τα
i (θ)

1− p + pτα
i (θ)

. (22)

Please note that the MLEs, respectively α̂, θ̂ and p̂ of α, θ and p cannot be solved analytically. Numerical
iteration techniques, such as the Newton-Raphson algorithm, are required to solve these equations,
whereas the second derivatives of the log-likelihood are required for all iterations involved in numerical
iteration techniques. We thus develop an EM algorithm to estimate the MLEs of the unknown parameters.

For interval estimation of the parameters, we consider suitable pivotal quantities based on the
asymptotic properties of the MLEs and approximate the distributions of these quantities by the normal
distribution. We observe that

∂2 log l
∂α2 = − n

α2 − 2p(1− p)
n

∑
i=1

τα
i (θ)[log(τi(θ))]

2

[1− p + pτα
i (θ)]

2 ,

∂2 log l
∂θ2 = −2n

θ2 +
n

(θ + 1)2 −
(α− 1)
(θ + 1)4

n

∑
i=1

xie−θxi
[
e−θxi (xi + 2xiθ + 2 + 2θ) + (t + 1)κi

]
τ2

i (θ)

+
2αpθ2

(θ + 1)4

n

∑
i=1

x2
i (2 + θ + θxi + xi)

2e−2θxi τα−2
i (θ)

{
(1− α)[1− p + pτα

i (θ)] + αpτα
i (θ)

}[
1− p + pτα

i (θ)
]2

+
2αp

(θ + 1)3

n

∑
i=1

xiκiτ
α−1
i (θ)e−θxi

1− p + pτα
i (θ)

,
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∂2 log l
∂p2 = − n

(1− p)2 + 2
n

∑
i=1

[
1− τα

i (θ)

1− p + pτα
i (θ)

]2

,

∂2 log l
∂α∂θ

=
∂2 log l
∂θ∂α

=
θ

(θ + 1)2

n

∑
i=1

xi(2 + θ + θxi + xi)e−θxi

τi(θ)
− 2pθ

(θ + 1)2

×
n

∑
i=1

[
α(1− p) log(τi(θ)) + 1− p + pτα

i (θ)
]
xi(2 + θ + θxi + xi)e−θxi τα−1

i (θ)

[1− p + pτα
i (θ)]

2 ,

∂2 log l
∂α∂p

=
∂2 log l
∂p∂α

= −
τα

i (θ) log(τi(θ))

[1− p + pτi(θ)]2
,

∂2 log l
∂θ∂p

=
∂2 log l
∂p∂θ

= −2
τα

i (θ) log(τi(θ))

[1− p + pτα
i (θ)]

2 ,

where κi = (θ3 + θ)(xi + x2
i ) + θ2(3xi + 2x2

i )− xi − 2 for i = 1, . . . , n. The observed Fisher information
matrix of α, θ, and p can be written as

I = −


∂2 log l

∂α2
∂2 log l
∂α∂θ

∂2 log l
∂α∂p

∂2 log l
∂θ∂α

∂2 log l
∂θ2

∂2 log l
∂θ∂p

∂2 log l
∂p∂α

∂2 log l
∂p∂θ

∂2 log l
∂p2

 ,

so the variance-covariance matrix of the MLEs α̂, θ̂ and p̂ may be approximated by inverting the matrix I
and is thus given by

V = −


∂2 log l

∂α2
∂2 log l
∂α∂θ

∂2 log l
∂α∂p

∂2 log l
∂θ∂α

∂2 log l
∂θ2

∂2 log l
∂θ∂p

∂2 log l
∂p∂α

∂2 log l
∂p∂θ

∂2 log l
∂p2


−1

=


var(α) cov(α, θ) cov(α, p)

cov(θ, α) var(θ) cov(θ, p)

cov(p, α) cov(p, θ) var(p)

 .

The asymptotic joint distribution of the MLEs α̂, θ̂, and p̂ can be treated as being approximately multivariate
normal and is given by

 α̂

θ̂

p̂

 ∼ N


 α

θ

p

 ,


var(α) cov(α, θ) cov(α, p)

cov(θ, α) var(θ) cov(θ, p)

cov(p, α) cov(p, θ) var(p)


 . (23)

Since V involves the unknown parameters α, θ, and p, we replace these parameters by their corresponding
MLEs to obtain an estimate of V denoted by

V̂ =


v̂ar(α) ̂cov(α, θ) ̂cov(α, p)

̂cov(θ, α) v̂ar(θ) ̂cov(θ, p)

̂cov(p, α) ̂cov(p, θ) v̂ar(p)

 .
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The asymptotic 100(1− γ)% confidence intervals of α, θ, and p are determined by

[
α̂− zγ/2

√
v̂ar(α), α̂ + zγ/2

√
v̂ar(α)

]
,[

θ̂ − zγ/2

√
v̂ar(θ), θ̂ + zγ/2

√
v̂ar(θ)

]
,[

p̂− zγ/2

√
v̂ar(p), p̂ + zγ/2

√
v̂ar(p)

]
,

respectively, where zp is the upper pth percentile of the standard normal distribution.
The likelihood ratio (LR) can be used to evaluate the difference between the ELG distribution and

its special submodels. We partition the parameters of the ELG distribution into (φ′1, φ′2)
′, where φ1 is the

parameter of interest and φ2 is the remaining parameters. Consider the hypotheses

H0 : φ1 = φ
(0)
1 versus H1 : φ1 6= φ

(0)
1 . (24)

The LR statistic for the test of the null hypothesis in (24) is given by

ω = 2
{

l(φ̂; x)− l(φ̂∗; x)
}

, (25)

where φ̂ and φ̂∗ are the restricted and unrestricted maximum likelihood estimators under H0 and H1,
respectively. Under H0, it follows

ω
D−→ χ2

κ , (26)

where D−→ denotes convergence in distribution as n→ ∞ and κ is the dimension of the subset φ1 of interest.
For instance, we can compare the ELG and LG distributions by testing H0 : α = 1 versus H1 : α 6= 1.
The ELG and Lindley distributions are compared by testing H0 : (α, p) = (1, 0) versus H1 : (α, p) 6= (1, 0).

3.2. Expectation-Maximization Algorithm

Dempster et al. [19] introduce an EM algorithm to estimate the parameters when some observations
are treated as incomplete data. Suppose that X = (X1, X2, . . . , Xn) and Z = (Z1, Z2, . . . , Zn) represent the
observed and hypothetical data, respectively. Here, the hypothetical data can be thought of as missing
data because Z1, Z2, . . . , Zn are not observable. We formulate the problem of finding the MLEs as an
incomplete data problem, and thus, the EM algorithm is applicable to determine the MLEs of the ELG
distribution. Let W = (X, Z) denote the complete data. To start this algorithm, define the pdf of each
(Xi, Zi) for i = 1, . . . , n as

g(x, z, α, θ, p) =
α(1− p)θ2z(1 + x)

θ + 1
e−θx

(
1− θ + 1 + θx

θ + 1
e−θx

)α−1

×
[

p− p
(

1− θ + 1 + θx
θ + 1

e−θx
)α
]z−1

.
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The E-step of an EM cycle requires the conditional expectation of (Z | X, α(r), θ(r), p(r)), where
(α(r), θ(r), p(r)) is the current estimate of (α, θ, p) in the rthe iteration. Please note that the pdf of Z
given X, say g(z | x), is given by

g(z | x) =
z
[

p− p
(

1− θ+1+θx
θ+1 e−θx

)α
]z−1

[
1− p + p

(
1− θ+1+θx

θ+1 e−θx
)α
]2 .

Thus, the conditional expectation is given by

IE[Z | X, α, θ, p] =
1 + p

[
1−

(
1− θ+1+θx

θ+1 e−θx
)α
]

1− p
[

1−
(

1− θ+1+θx
θ+1 e−θx

)α
] .

The log-likelihood function lc(W; α, θ, p) of the complete data after ignoring the constants can be written as

lc(W; α, θ, p) ∝
n

∑
i=1

zi + n log α +
n

∑
i=1

log(1 + xi) + 2n log θ − n log(θ + 1)

− θ
n

∑
i=1

xi + n log(1− p) + (α− 1)
n

∑
i=1

log
(

1− θ + 1 + θxi
θ + 1

e−θxi

)

+
n

∑
i=1

(zi − 1) log
[

p− p
(

1− θ + 1 + θxi
θ + 1

e−θxi
)α
]

. (27)

Next the M-step involves the maximization of the pseudo log-likelihood function in (27). The components
of the score function are given by

∂lc
∂α

=
n
α
+

n

∑
i=1

log
(

1− θ + 1 + θxi
θ + 1

e−θxi
)
−

n

∑
i=1

(zi − 1)

(
1− θ+1+θxi

θ+1 e−θxi
)α

log
(

1− θ+1+θxi
θ+1 e−θxi

)
1−

(
1− θ+1+θxi

θ+1 e−θxi

)α ,

∂lc
∂θ

=
2n
θ
− n

θ + 1
−

n

∑
i=1

xi + (α− 1)
n

∑
i=1

θxie−θx(1 + xi +
1

θ+1
)

(θ + 1)
(

1− θ+1+θxi
θ+1 e−θxi

) − αθ

(θ + 1)2

×
n

∑
i=1

(zi − 1)xi(2 + θ + θxi + xi)e−θxi
(

1− θ+1+θxi
θ+1 e−θxi

)α−1

1−
(

1− θ+1+θxi
θ+1 e−θxi

)α ,

∂lc
∂p

= − n
1− p

+
n

∑
i=1

zi − 1
p

.

For notational convenience, let

τ
(r)
i (θ) = 1− θ(r) + 1 + θ(r)xi

θ(r) + 1
e−θ(r)xi ,
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for i = 1, . . . , n. By replacing the missing Z’s with their conditional expectations IE[Z | X, α(r), θ(r), p(r)],
we obtain an iterative procedure of the EM algorithm given by the following equations.

0 =
n

α(r+1)
+

n

∑
i=1

log
(
τ
(r+1)
i (θ)

)
−

n

∑
i=1

(zi − 1)

(
τ
(r+1)
i (θ)

)α(r+1)
log
(
τ
(r+1)
i (θ)

)
1−

(
τ
(r+1)
i (θ)

)α(r+1) , (28)

0 =
2n

θ(r+1)
− n

θ(r+1) + 1
−

n

∑
i=1

xi + (α(r+1) − 1)
n

∑
i=1

θ(r+1)xie−θ(r+1)xi
(
1 + xi +

1
θ(r+1)+1

)
(θ(r+1) + 1)τ(r+1)

i (θ)

− α(r+1)θ(r+1)

(θ(r+1) + 1)2

n

∑
i=1

(zi − 1)xi(2 + θ(r+1) + θ(r+1)xi + xi)e−θ(r+1)xi (τ(r+1)
i (θ)

)α(r+1)−1

1−
(
τ
(r+1)
i (θ)

)α(r+1) , (29)

p(r+1) = 1− n
∑n

i=1 zi
,

where

zi =

1 + p(r)
[

1−
(
τ
(r)
i (θ)

)α(r)
]

1− p(r)
[

1−
(
τ
(r)
i (θ)

)α(r)
] ,

for i = 1, . . . , n. Please note that some efficient numerical methods, such as the Newton-Raphson algorithm,
are only needed for solving Equations (28) and (29).

3.3. Censored Maximum Likelihood Estimation

Censored data often occur in lifetime data analysis. Several popular mechanisms of censoring, such as
type-I censoring and type-II censoring, have received much attention in the literature. The survival
function of the ELG distribution has a simple closed-form expression, and therefore, it can be used in
analyzing lifetime data in the presence of censoring. We briefly discuss the general case of multicensored
data. Suppose that n = n0 + n1 + n2 subjects of which

• n0 is known to have failed at the times t1, . . . , tn0 ,
• n1 is known to have failed into the interval [si−1, si] for i = 1, . . . , n1,
• n2 is known to have survived at a time ri for i = 1, . . . n2 but not observed any longer.

Please note that Type-I censoring and Type-II censoring are contained as particular cases of multicensoring
above. The log-likelihood function of φ = (θ, α, p) of the ELG distribution for this multicensoring takes
the form

l(φ; x) =
n0

∑
i=1

log(1 + ti) + n0 log
[

α2θ2(1− p)
θ + 1

]
− θ

n0

∑
i=1

ti + (α− 1) log
[

1− θ + 1θti
θ + 1

e−θti

]

−
n0

∑
i=1

log
[

1− p + p
(

1− θ + 1θti
θ + 1

e−θti

)α]

+
n1

∑
i=1

log

[ (
1− θ+1+θsi

θ+1 e−θsi
)α

1− p + p
(

1− θ+1+θsi
θ+1 e−θsi

)α −

(
1− θ+1+θsi−1

θ+1 e−θsi−1
)α

1− p + p
(

1− θ+1+θsi−1
θ+1 e−θsi−1

)α

]
dx
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+
n2

∑
i=1

log

[
1−

(
1− θ+1+θri

θ+1 e−θri
)α

1− p + p
(

1− θ+1+θri
θ+1 e−θri

)α

]
.

It is straightforward to derive the first derivatives of the log-likelihood function with respect to the three
unknown parameters α, θ, and p. Thereafter, the MLEs of the unknown parameters can be obtained by
setting the first derivatives equal to zero, i.e.,

∂l(φ; x)
∂θ

=
∂l(φ; x)

∂α
=

∂l(φ; x)
∂p

= 0.

Please note that the Newton-Raphson algorithm or other optimization algorithms may be employed to
solve the above system of equations, because the MLEs of the unknown parameters cannot be obtained in
closed-forms. Finally, the corresponding information matrix for φ is too complicated to be presented here.

4. Two Real-Data Applications

In this section, we illustrate the applicability of the ELG distribution using two real-data examples.
We use the same data sets to compare the ELG distribution with the Gamma, Weibull, Lindley geometric
(LG), Weibull geometric (WG) distributions, whose densities are given by

(i) Gamma(β, α)

f1(x) =
1

Γ(β)
αβxβ−1e−αx, β > 0, α > 0;

(ii) Weibull(β, λ)

f2(x) =
α

β

(
x
β

)α−1

e−(x/β)α
, β > 0, α > 0;

(iii) LG(θ, p)

f3(x) =
θ2

θ + 1
(1− p)(1 + x)e−θx

[
1− p(θ + 1 + θx)

θ + 1
e−θx

]−2

, θ > 0, p < 1,

(iv) WG(α, β, p)

f4(x) = αβα(1− p)xα−1e−(βx)α[
1− pe−(βx)α]−2, α > 0, β > 0, p < 1,

for x > 0, respectively. To compare the ELG distribution with the four distributions listed above,
we advocate the Akaike information criterion (AIC), the Bayesian information criterion (BIC), and the AIC
with a correction (AICc) for the two-real data sets. In addition, we apply two formal goodness-of-fit tests:
the Cramér-von Mises (W∗) and Anderson-Darling (A∗) statistics to further verify which distribution fits
better to the data; see, for example, [5,20], among others. The smaller the value of the considered criterion,
the better the fit to the data.

The first data set is about the remission time (in months) of a random sample of 128 bladder cancer
patients. This data set presented in Table 1 was studied by [21] in fitting the extended Lomax distribution
and [22] for the modified Weibull geometric distribution. Table 2 shows the MLEs of the parameters,
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AIC, BIC, and AICc for the ELG, Gamma, Weibull, LG, and WG distributions for the first data set.
We observe from Table 2 that the ELG distribution and its special case LG provide an improved fit over
other distributions that are commonly used for fitting lifetime data. The plots of the fitted probability
density and survival function are also shown in Figure 4. Please note that the density and survival functions
of the ELG distribution seem to be better than Gamma, Weibull, and WG density and survival functions.
In addition, we observe from the values of goodness-of-fit tests in Table 3 that the ELG distribution fits the
current data better than other distributions under consideration.

Table 1. The first data set: the remission time (in months) of a random sample of 128 bladder cancer patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23
3.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09
9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24
25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81
2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32
7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64
17.36 1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40
5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02
2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76
12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 2. MLEs of the fitted models, AIC, BIC, and AICc for the first data set.

Model Parameters AIC BIC AICc

Gamma α̂ = 0.1252 β̂ = 1.1726 830.7356 836.4396 830.8316
Weibull α̂ = 1.0478 β̂ = 9.5607 832.1738 837.8778 832.2698
LG θ̂ = 0.0742 p̂ = 0.8898 823.1859 833.742 823.2819
WG α̂ = 1.6042 β̂ = 0.0286 p̂ = 0.9362 826.1842 834.7403 826.3777
ELG α̂ = 1.0792 θ̂ = 0.0699 p̂ = 0.9204 824.6214 833.1775 824.8149
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Figure 4. Plots of the estimated density and survival function of the fitted models for the first data set.
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Table 3. Goodness-of-fit tests for the first data set.

Statistic

Model W∗ A∗

Gamma 0.11988 0.71928
Weibull 0.13136 0.78643
LG 0.05374 0.33827
WG 0.01493 0.09939
ELG 0.01389 0.09498

As mentioned in Section 3.1, we can adopt the LR statistic to compare between the ELG distribution
and its special submodels. For example, the LR statistic for testing between the LG and ELG distributions
(i.e., H0 : α = 1 versus H1 : α 6= 1) is ω = 0.5645 and the corresponding p-value is 0.4525. Thus, we fail to
reject H0 and conclude that there is no statistical difference between the fits to this data using the ELG
and its submodel LG. This is quite reasonable because the estimate of α in the ELG model is α̂ = 1.0792,
which is close to 1 in the LG model.

In the second data set, we consider the waiting time (in minutes) before service of 100 bank customers.
The data are presented in Table 4. This data set was used by [12] in fitting the Lindley distribution. Table 5
shows the MLEs of the parameters, AIC, BIC, and AICc for the ELG, Gamma, Weibull, LG, and WG
distributions for the second data set. Table 5 indicates that the ELG distribution is still a strong competitor
to other lifetime distributions. In addition, the plots of the fitted probability density and survival function
are shown in Figure 5. Please note that the ELG and WG distributions perform identically and that
the empirical and fitted five survival curves almost overlap for this data set, supporting that the ELG
distribution fits this data at least as good as the four alternative distributions. In addition, we observe from
the values of goodness-of-fit tests in Table 6 that the ELG distribution fits the current data better than the
Gamma, Weibull, and LG distributions and is comparable with the WG distribution.

Table 4. The second data set: the waiting time (in minutes) before service of 100 bank customers.

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7
2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2
4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9
5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3
6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0
8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6
9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5
11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9
14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0
19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5

Table 5. MLEs of the fitted models, AIC, BIC, and AICc for the second data set.

Model Parameters AIC BIC AICc

Gamma α̂ = 0.2033 β̂ = 2.0089 638.6002 643.8106 638.724
Weibull α̂ = 1.4585 β̂ = 10.9553 641.4614 646.6717 641.5851
LG θ̂ = 0.2027 p̂ = −0.2427 641.8269 647.0372 641.9506
WG α̂ = 1.9789 β̂ = 0.0501 p̂ = 0.82132 639.9084 647.7239 640.1584
ELG α̂ = 1.4602 θ̂ = 0.1725 p̂ = 0.5385 640.3108 648.1263 640.5608
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Figure 5. Plots of the estimated density and survival function of the fitted models for the second data set.

Table 6. Goodness-of-fit tests for the second data set.

Statistic

Model W∗ A∗

Gamma 0.02761 0.18225
Weibull 0.06294 0.39624
LG 0.05374 0.33827
WG 0.01706 0.12365
ELG 0.01801 0.12665

5. Concluding Remarks

In this paper, we introduced the exponentiated Lindley geometric distribution, which generalizes
the LG distribution due to [14] and the Lindley distribution proposed by [23]. We have studied various
statistical properties of the new distribution. Estimations of the unknown parameters of the distribution are
discussed based on the maximum likelihood estimation and an EM algorithm is provided for estimating
the parameters. In an ongoing project, we study and Bayesian inference of these parameters and results
will be reported elsewhere.
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