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Abstract: This paper develops a fourth order entropy stable scheme to approximate the entropy
solution of one-dimensional hyperbolic conservation laws. The scheme is constructed by employing a
high order entropy conservative flux of order four in conjunction with a suitable numerical diffusion
operator that based on a fourth order non-oscillatory reconstruction which satisfies the sign property.
The constructed scheme possesses two features: (1) it achieves fourth order accuracy in the smooth
area while keeping high resolution with sharp discontinuity transitions in the nonsmooth area; (2) it
is entropy stable. Some typical numerical experiments are performed to illustrate the capability of
the new entropy stable scheme.

Keywords: conservation laws; entropy stable; entropy conservative; non-oscillatory reconstruction;
sign property

1. Introduction

During the past few decades, abundant numerical methods for solving hyperbolic conservation
laws have been designed; one can consult the review papers [1,2] and the references therein. Among
the various methods, high order schemes, such as total variation diminishing (TVD) schemes, weighted
essentially non-oscillatory (WENO) schemes and discontinuous Galerkin (DG) schemes, have achieved
great success. However, it seems that there are few entropy stability results for high order numerical
schemes for hyperbolic conservation laws, especially for the nonlinear hyperbolic conservation laws.
In view of the above discussion, we limit our research on high order entropy stable methods for solving
hyperbolic conservation laws.

In accordance with the idea of Tadmor, entropy schemes are often constructed by utilizing entropy
conservative flux in conjunction with suitable numerical diffusion [3]. For example, physical viscosity
was discretized and used as numerical diffusion in [4]. Roe-type numerical diffusion was selected
for various systems like Euler equations, shallow water equations and ideal magnetohydrodynamic
equations [5–7]. Based on the limiter mechanism, Liu et al. constructed a family of entropy consistent
schemes with high resolution [8]. Recently, Dubey discussed the amount of suitable diffusion for the
sake of devising non-oscillatory entropy stable schemes in the TVD sense [9]. To obtain high order
entropy stable schemes, Fjordholm et al. firstly proved that ENO reconstruction satisfies a sign property
and presented entropy stable schemes based on ENO reconstruction of arbitrary order accuracy [10,11].
To overcome the drawbacks of ENO reconstruction, we presented a third order reconstruction which is
non-oscillatory and satisfies the sign property to construct a third order entropy stable scheme [12].
WENO reconstruction was modified to satisfy the sign property and also used to construct an entropy
stable scheme in [13,14], although they are limited to third order accuracy.

In this paper, we are aiming at presenting a new entropy stable scheme of fourth order accuracy
to solve hyperbolic conservation laws in one dimension. First, we employ a fourth order entropy
conservative flux which is a linear combination of two-point entropy conservative fluxes. Then, we
present a non-oscillatory reconstruction of fourth order accuracy which possesses the sign property
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to obtain a fourth order accurate numerical diffusion operator. By adding this numerical diffusion
operator to the entropy conservative flux, the resulting flux is entropy stable.

The remainder of this paper is given as follows. Section 2 describes the procedure for building
our fourth order entropy scheme. After that, we present some typical numerical experiments to show
the effectiveness of the newly developed scheme. Finally, concluding remarks are given in Section 4.

2. Numerical Method

Consider the scalar conservation law

∂

∂t
u +

∂

∂x
f (u) = 0. (1)

The weak solutions for Equation (1) are not unique and we are interested in the so-called entropy
solution, which satisfies the entropy condition

∂

∂t
η(u) +

∂

∂x
q(u) ≤ 0. (2)

Here, the entropy function η(u) is convex and the entropy flux function q(u) satisfies ∂q
∂u = v ∂ f

∂u with

the entropy variable v = ∂η
∂u . To solve Equation (1) with the conservative difference method, we have

the semi-discrete scheme
dui
dt

= − fi+1/2 − fi−1/2

∆x
, (3)

where ui represents the point valve at the node xi on a uniform Cartesian mesh with the mesh size
xi+1− xi = ∆x. The scheme (3) is said to be entropy stable if it satisfies a discrete version of the entropy
condition (2), namely,

∂

∂t
η(ui) +

qi+1/2 − qi−1/2

∆x
≤ 0; (4)

the scheme is said to be entropy conservative if it satisfies the discrete entropy equality

∂

∂t
η(ui) +

qi+1/2 − qi−1/2

∆x
= 0. (5)

In this work, we utilize the familiar Runge–Kutta scheme of order four to solve the ordinary
Equation (3). Now, we focus on how to build the entropy stable numerical flux fi+1/2.

First, the numerical flux is split into an entropy conservative part and a numerical diffusion part

fi+1/2 = f EC
i+1/2 −

1
2

δi+1/2

(
v+i+1/2 − v−i+1/2

)
. (6)

Here, f EC
i+1/2 is a fourth order entropy conservative flux [15] expressed as

f EC
i+1/2 =

4
3

f̃ (ui, ui+1)−
1
6
(

f̃ (ui−1, ui+1)− f̃ (ui, ui+2)
)

(7)

with f̃ (α, β) being the second order entropy conservative flux defined by Tadmor [3]. Generally, δi+1/2
in the numerical diffusion part is chosen to be | f ′(ui+1/2)|. If the reconstructed values v±i+1/2 at the
interfaces from the entropy variable vi satisfy

sign(v+i+1/2 − v−i+1/2) = sign(vi+1 − vi), (8)

the numerical flux (6) achieves entropy stability. Property (8) in which the jump of the reconstructed
point values at each cell interface has the same sign as the jump of the underlying point values across
that interface is called the sign property. We present the fourth order reconstruction satisfying the sign
property as follows to obtain v±i+1/2.
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Consider a polynomial reconstruction of the form

pi(x) = vi + di

(
x− xi

∆x

)
+

(
vi−1 − 2vi + vi+1

2

)(
x− xi

∆x

)2
+

(
−vi−1 + vi+1 − 2di

2

)(
x− xi

∆x

)3
(9)

with di being a slope function. For convenience, we introduce the following notation

dsi =
2
3

vi+1 −
2
3

vi−1 −
1
12

vi+2 +
1

12
vi−2,

WCi = vi+1 − vi−1, WRi = vi+1 − vi, WC2i = vi+2 − vi−2,

ds1i = 0, ds2i =
1
2
(WCi − 8WRi) , ds3i =

1
2
(8WRi − 7WCi) ,

Si = sign(WCi),

C1 =

√
3

6
, C2 =

6
12 +

√
3

,

(10)

and define the slope di in the following way:

1. If Si = 0, then di = 0.
2. If Si 6= 0 and (2Si ·WCi ≥ Si ·WC2i), then di = dsi.
3. If Si 6= 0 and (2Si ·WCi < Si ·WC2i), then the following hold:

(a) If vi =
vi+1+vi−1

2 , we define

di =

{
max(ds1i, dsi), if Si > 0,

min(ds1i, dsi), if Si < 0.

(b) If vi 6=
vi+1+vi−1

2 , then the following hold:

i. If
∣∣∣WRi − 1

2 WCi

∣∣∣ ≥ 1
8 |WC2i − 2WCi|, then

di =

{
max(ds2i, ds3, dsi), if Si > 0,

min(ds2i, ds3, dsi), if Si < 0.

ii. If
∣∣∣WRi − 1

2 WCi

∣∣∣ < 1
8 |WC2i − 2WCi|, then

di =


WCi

2
− Si · C1 · |2WRi −WCi| , if

∣∣∣∣WRi
WCi

− 1
2

∣∣∣∣ ≤ C2,

WCi
2

, if
∣∣∣∣WRi
WCi

− 1
2

∣∣∣∣ > C2.

Theorem 1. With this definition of the slope, the polynomial reconstruction (9) fulfills the shape preserving
property, namely,

• pi(x) is monotone in [xi−1/2, xi+1/2] iff the point values {vi−1, vi, vi+1} are;
• pi(x) generates an extremum in the interior of [xi−1/2, xi+1/2] iff vi is an extremum value.

The proof of this theorem can be found in [16]. According to this property, the polynomial
pi(x) does not create new extrema in the interior of [xi−1/2, xi+1/2]. In other words, the polynomial
pi(x) may create new extrema at the interfaces {xi±1/2}. To keep away from such spurious extrema,
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we can employ a similar strategy as in [17]. Let us modify the polynomial reconstruction to be the
following form:

ϕi(x) = (1− θi)vi + θi pi(x), 0 < θi < 1. (11)

The limiter θi is determined by

θi =


min

{
Mi+1/2−vi

Mi−vi
, mi−1/2−vi

mi−vi
, 1
}

, if vi−1 < vi < vi+1,

min
{

Mi−1/2−vi
Mi−vi

, mi+1/2−vi
mi−vi

, 1
}

, if vi−1 > vi > vi+1,

1, otherwise,

(12)

with
Mi = max

x∈[xi−1/2,xi+1/2]
pi(x), mi = min

x∈[xi−1/2,xi+1/2]
pi(x),

and Mi±1/2 = max
{

1
2 (vi + vi±1), pi±1(xi±1/2)

}
,

mi±1/2 = min
{

1
2 (vi + vi±1), pi±1(xi±1/2)

}
.

Theorem 2. The polynomial reconstruction (11) is fourth order accurate and fulfills the sign property (8).

Theorem 3. With the definitions of the reconstructed values v+i+1/2 = ϕi+1(xi+1/2) and v−i+1/2 = ϕi(xi+1/2),
the numerical flux (6) is entropy stable and fourth order accurate.

Remark 1. The proofs for Theorems 2 and 3 can be carried out very similarly as in [12,17]. We omit the simple
but trivial procedure here.

Remark 2. For hyperbolic systems, the reconstruction procedure should be implemented in the local
characteristic directions for the purpose of achieving entropy stability. The detailed steps can be found in
our previous paper [12].

3. Numerical Examples

In this section, we illustrate the effectiveness of the presented scheme which is abbreviated by ES4
by means of three typical examples. Numerical results include the convergence order and the capacity
of dealing with discontinuous problems.

Example 1. Consider the linear advection equation ut + ux = 0 on the domain [−1, 1] with two initial data
u(x, 0) = sin(πx) and u(x, 0) = sin4(πx). For a comparison, a third order entropy stable scheme (ES3) [12]
is also implemented for this example. The numerical errors ( L1 error and L∞ error) and convergence orders
are displayed in Tables 1 and 2. We can observe that the fourth order convergence of the proposed scheme is
confirmed and ES4 performs better than ES3.
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Table 1. The numerical errors and convergence orders for ut + ux = 0 with u(x, 0) = sin(πx) at t = 8.

Method N L1 Error L1 Order L∞ Error L∞ Order

40 7.8941 ×10−3 2.9838 6.1563 ×10−3 2.9528
80 9.8686 ×10−4 2.9999 7.7371 ×10−4 2.9922

ES3 160 1.2332 ×10−4 3.0004 9.6812 ×10−5 2.9985
320 1.5413 ×10−5 3.0002 1.2104 ×10−5 2.9997
640 1.9266 ×10−6 3.0000 1.5131 ×10−6 2.9999

40 7.2962 ×10−4 5.5350 ×10−4

80 4.4746 ×10−5 4.0273 3.4513 ×10−5 4.0034
ES4 160 2.7650 ×10−6 4.0164 2.1523 ×10−6 4.0032

320 1.7178 ×10−7 4.0086 1.3430 ×10−7 4.0023
640 1.0702 ×10−8 4.0046 8.3862 ×10−9 4.0013

Table 2. The numerical errors and convergence orders for ut + ux = 0 with u(x, 0) = sin4(πx) at t = 1.

Method N L1 Error L1 Order L∞ Error L∞ Order

80 3.8419 ×10−3 3.7835 ×10−3

160 4.9986 ×10−4 2.9422 5.8676 ×10−4 2.6889
ES3 320 6.7841 ×10−5 2.8813 8.6901 ×10−5 2.7553

640 1.0357 ×10−5 2.7115 1.5669 ×10−5 2.4715
1280 1.4533 ×10−6 2.5625 4.9399 ×10−6 1.6654

80 8.1572 ×10−4 1.2001 ×10−3

160 5.9041 ×10−5 3.7883 1.4743 ×10−4 3.0249
ES4 320 4.9006 ×10−6 3.5907 2.7023 ×10−5 1.3202

640 1.6184 ×10−7 4.9203 1.4716 ×10−7 7.5207
1280 1.0013 ×10−8 4.0146 8.6289 ×10−9 4.0921

Example 2. Consider the Burgers equation

ut + (u2/2)x = 0 (13)

subjected to the initial data

u(x, 0) =

{
1, for |x| ≤ 1/3,
−1, for 1/3 < |x| ≤ 1.

For this problem, we can deduce the analytical solution that evolves a rarefaction fan and a stationary shock on
the left-hand and right-hand side, respectively. Figure 1 presents the numerical result at time t = 0.3 on a mesh
of 100 grids. Our scheme resolves the shock wave and the rarefaction wave very well.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

exact

ES4

Figure 1. The numerical result for Burgers equation.



Entropy 2019, 21, 508 6 of 8

Example 3. Consider the Euler equations from aerodynamics

∂

∂t

 ρ

ρµ

E

+
∂

∂x

 ρµ

ρµ2 + p
µ(E + p)

=0 (14)

with ρ, µ, p and E being the density, velocity, pressure and total energy, respectively. For an idea gas, the total
energy E is given by the relation

E =
p

γ− 1
+

1
2

ρµ2 (15)

with the specific heats ratio γ = 1.4. Three Riemann problems are tested by the presented scheme.

Case 1: Sod’s shock tube problem. The initial data is given as

(ρ, µ, p) =

{
(1, 0, 1), for x < 0,
(0.125, 0, 0.1), for x > 0.

The numerical simulation is carried out on a mesh of 200 grids on [−0.5, 0.5] up to time t = 0.16. The
computed density is plotted in Figure 2. We can see that the ES4 scheme performs well by capturing
the shock, the contact discontinuity and the rarefaction wave accurately.

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

d
e

n
s
it
y

 

 

exact

ES4

Figure 2. The density for Sod’s shock tube problem.

Case 2: Toro’s 123 problem. The initial data is given as

(ρ, µ, p) =

{
(1,−2, 0.4), for x < 0,
(1, 2, 0.4), for x > 0.

The difficulty for simulating this problem lies in the fact that the pressure between the evolved
rarefactions is very small (near vacuum) and may bring about the blow-ups of the code if the numerical
method is not robust. The numerical simulation is carried out on a mesh of 200 grids on [−0.5, 0.5] up
to time t = 0.1. Figure 3 displays the computed density. It can be observed that the computed result by
ES4 compares well with the reference solution.
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Figure 3. The density for Toro’s 123 problem.

Case 3: Shu–Osher problem. The initial data is given as

(ρ, µ, p) =

{
(3.857, 2.629, 10.333), for x < −4,
(1 + 0.2 sin(5x), 0, 1), for x > −4.

This problem, also called the shock density-wave interaction problem, describes a moving Mach 3
shock interacting with sine waves in density. The numerical simulation is carried out on a mesh of 500
grids on [−5, 5] up to time t = 1.8. We present the results of density in Figure 4. It can be seen clearly
that the ES4 scheme produces accurate results and captures the sine wave well.
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exact
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Figure 4. The density for the Shu–Osher problem.

4. Conclusions

This paper presents a fourth order entropy stable scheme for solving one-dimensional hyperbolic
conservation laws. Along the lines of [10,12], our scheme is also obtained by utilizing entropy
conservative flux in conjunction with suitable numerical diffusion. We first select the existing fourth
order entropy conservative scheme based on the combination of the two-point entropy conservative
flux. The main novelty lies in the construction of numerical diffusion by presenting a fourth order
non-oscillatory reconstruction possessing the sign property. Compared to other high order schemes,
the main advantage of our scheme is the entropy stability. Some numerical results are displayed to
show the accuracy and shock capturing capacity of our scheme. Ongoing work involves generalizing
the idea of this paper to multidimensional cases and other hyperbolic systems such as shallow water
equations and magnetohydrodynamic equations.
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