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Abstract: Warships play an important role in the modern sea battlefield. Research on the line 
spectrum features of warship radio noise signals is helpful to realize the classification and 
recognition of different types of warships, and provides critical information for sea battlefield. In 
this paper, we proposed a novel linear spectrum frequency feature extraction technique for 
warship radio noise based on complete ensemble empirical mode decomposition with adaptive 
noise (CEEMDAN), duffing chaotic oscillator (DCO), and weighted-permutation entropy (W-PE). 
The proposed linear spectrum frequency feature extraction technique, named 
CEEMDAN-DCO-W-PE has the following advantages in comparison with other linear spectrum 
frequency feature extraction techniques; (i) as an adaptive data-driven algorithm, CEEMDAN has 
more accurate and more reliable decomposition performance than empirical mode decomposition 
(EMD) and ensemble EMD (EEMD), and there is no need for presetting parameters, such as 
decomposition level and basis function; (ii) DCO can detect the linear spectrum of narrow band 
periodical warship signals by way of utilizing its properties of sensitivity for weak periodical 
signals and the immunity for noise; and (iii) W-PE is used in underwater acoustic signal feature 
extraction for the first time, and compared with traditional permutation entropy (PE), W-PE 
increases amplitude information to some extent. Firstly, warship radio noise signals are 
decomposed into some intrinsic mode functions (IMFs) from high frequency to low frequency by 
CEEMDAN. Then, DCO is used to detect linear spectrum of low-frequency IMFs. Finally, we can 
determine the linear spectrum frequency of low-frequency IMFs using W-PE. The experimental 
results show that the proposed technique can accurately extract the line spectrum frequency of the 
simulation signals, and has a higher classification and recognition rate than the traditional 
techniques for real warship radio noise signals. 

Keywords: underwater acoustic signal; linear spectrum; frequency feature extraction; empirical 
mode decomposition (EMD); complete EEMD with adaptive noise (CEEMDAN); duffing chaotic 
oscillator (DCO); weighted-permutation entropy (W-PE); warship radio noise 
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1. Introduction 

It is very important to find underwater targets as early as possible and extract their effective 
features for recognition, so as to take better defensive measures and countermeasures to reduce the 
threat of underwater targets, such as warships and submarines [1–3]. There are two main 
components of underwater target radiated noise: the continuous spectrum of broadband noise and 
the discrete line spectrum. Line spectrum has higher energy level and stability than continuous 
spectrum. Its energy is usually concentrated in the low-frequency band. Line spectrums contain 
abundant underwater target parameters and motion information, which are the main basis for 
underwater target tracking and recognition. Line spectrum feature extraction is one of the key 
techniques for detecting underwater targets, especially for submarines and warships. Therefore, 
how to extract line spectrum features from underwater target radiated noise is always a difficult 
problem in complicated marine environment [4–6]. 

For a long time, classical Fourier analysis and wavelet transform have been used as the basis of 
underwater acoustic signal processing [7]. The characteristic parameters of underwater acoustic 
target signals are extracted by correlation analysis, spectral analysis and time-frequency analysis. 
However, these signal processing methods are not suitable for analyzing the nonstationary 
underwater acoustic signals, the feature extraction results cannot reflect the real features for the 
target signal well [8,9]. As the rapid development of signal processing technology, some signal 
processing methods for nonlinear and nonstationary signals are proposed, such as empirical mode 
decomposition (EMD) [10,11], local mean decomposition (LMD) [12,13], variational mode 
decomposition (VMD) [14,15], and their improved algorithms [16–19]. Some of these mode 
decomposition algorithms have been applied to feature extraction of underwater acoustic target 
signals, which can be divided into three groups based on the extracted feature information: energy 
feature extraction, complexity feature extraction, and frequency feature extraction. 

In terms of energy feature extraction, a new energy feature extraction technique was proposed 
for ship-radiated noise based on ensemble EMD (EEMD) and energy distribution by Yang Hong et 
al. [20], which extracted energy difference between high-frequency band and low-frequency band. 
On the basis of reference [20], an improved energy feature extraction technique was put forward for 
ship-radiated noise by Li Yuxing et al. [21], which uses complete EEMD with adaptive noise 
(CEEMDAN) instead of EEMD and combines energy difference and energy entropy as a new 
hybrid energy feature. Therefore, this hybrid energy feature extraction technique has better 
performance of classification and recognition. 

In terms of complexity feature extraction, EMD and permutation entropy (PE) were first used 
in feature extraction of underwater acoustic signals in 2016 [22]. On the basis of reference [22], an 
improved complexity feature extraction technique was put forward for underwater acoustic signals 
in 2017 [23], which uses VMD and multiscale PE (M-PE) instead of EMD and PE, and has the 
following advantages; (i) VMD can suppress mode mixing in EMD and (ii) M-PE can better reflect 
the difference of intrinsic mode functions (IMFs) complexity from different scales. In addition, some 
techniques have been proposed based on mode decomposition and complexity in the last two years 
[24,25]. 

Frequency feature extraction techniques can be divided into two categories: statistical 
frequency and line spectrum frequency. Two statistical frequency feature extraction techniques 
were put forward for ship-radiated noise, which extracted the central frequency features of 
maximum energy IMF by using EEMD and VMD [26,27]. In [28], a line spectrum frequency feature 
extraction technique for underwater acoustic signals was proposed by using duffing chaotic 
oscillator (DCO) and Hilbert transform, which has better performance of feature extraction in low 
signal noise ratio ocean environment. Combining the advantages of the above frequency feature 
extraction techniques, an improved line spectrum frequency feature extraction technique was put 
forward for underwater acoustic signals by using VMD, DCO, and a kind of PE (KPE) in 2019 [29], 
which can accurately extract line spectrum frequency features of low-frequency IMFs. However, 
this frequency feature extraction technique still has some limitations: (i) the decomposition result of 
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VMD is affected by parameter setting and (ii) KPE cannot reflect the amplitude information of time 
series, which is affects the accuracy of line spectrum frequency. 

For resolving these problems, this paper introduces a novel linear spectrum frequency feature 
extraction technique for warship radio noise based on CEEMDAN, DCO and 
weighted-permutation entropy (W-PE), named CEEMDAN-DCO-W-PF. The proposed technique 
not only retains the advantages of existing techniques, but also overcomes the disadvantages by 
using CEEMDAN and W-PE instead of VMD and KPE, respectively. 

This paper is organized as follows. Section 2 is the introduction of basic theories, such as 
CEEMDAN, DCO, and W-PE. Section 3 introduces the CEEMDAN-DCO-W-PF technique; 
simulation and real warship radio noise data are processed by CEEMDAN-DCO-W-PF and other 
frequency feature extraction techniques in Section 4 and 5.Conclusions are drawn in Section 6. 

2. Methods 

2.1. CEEMDAN 

CEEMDAN can provide IMFs for feature extraction of underwater acoustic signals, which 
attenuates the effect of mode mixing on decomposition results and eliminates the selection of 
parameters. We set the original underwater acoustic signal as ( )y t , ( )iw t  is white Gaussian noise 

with different amplitudes, and ( )iE ⋅  represents the -thi  IMF by EMD. Then the CEEMDAN 
algorithm steps are as follows. 

(1) New underwater acoustic signals are constructed as follows 

( ) ( ) ( ), 1,2, ,i iy t y t w t i N= + =   (1) 

(2) Each new underwater acoustic signal is decomposed into a first IMF and a residual item as 
follows 
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where ( )ic t  and ( )ir t  are the first IMF and residual item of ( )iy t  by EMD. 
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1
1

1( ) ( )
N

i
i

c t c t
N =

=   (3) 
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(6) 1( ( ))iE w t  can be expressed as 

( )1 2
1 1 1 1 1( ( )) ( ) ( ) ( ) ( )i N

Tw ww w
iE w t c t c t c t c t=    (6) 

(7) Construct 1( )iy t  as follows 

1
1 1( ) ( ) ( ( ))i iy t r t E w t= +  (7) 

(8) Decompose 1( )iy t  to obtain the first IMF as follows 
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(9) The second IMF of ( )y t  can be expressed as follows 
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(10) The residual item of 2 ( )c t  can be expressed as 

2 1 2( ) ( ) ( )r t r t c t= −    (10) 

(11) Calculate the other IMFs according to the following formulas 
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(12) The original underwater acoustic signal ( )y t  can be expressed as 

1
( ) ( ) ( )

L

j
j
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=

= +   (14) 

where L  and ( )r t  represent the number of ( )jc t  and the residual item of ( )y t . 

2.2. DCO 

The DCO system model was originally derived from a nonlinear dynamic equation describing 
the forced oscillation of a damped simple pendulum. The nonlinear dynamic equation is as follows 

sin cosml rl mg f tθ θ θ ω′′ ′+ + =  (15) 

where m  is mass and l  and θ  represent the length and the swing angle of the simple 

pendulum, respectively. Divide formula (15) by mg  and set 2
0ω  equal to 

g
l

; the renewal 

equation is as follows 

2 2
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fr t

mgm
θ θ θ ω

ω ω
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Set 
0

ω
ω

, 0tω , 
0

r
mω

, and 
f

mg
 equal to Ω , T , 2β , and F ; the renewal equation is as follows 

2

2 2 sin cosd d F T
dTdT

θ θβ θ+ + = Ω  (17) 

sinθ  is replaced according to Maclanrin polynomial expansion as follows 
2 13

1 3 2 1 1 2 5 2 1 ( 1, 1, 0)p
p pa x a x a x a a a a+

+ ++ + + = − = = = =   (18) 

Set 2β , θ , and F  equal to k , x , and r , the DCO equation is as follows 

3 cosx kx x x r tω′′ ′+ − + =  (19) 

where k  and 3x x− +  are the damping ratio and the nonlinear resilience item, respectively, and r  
and ω  are the amplitude and the angular frequency of the driving force, respectively. 

DCO has abundant nonlinear dynamic characteristics because of 3x x− + . As r  increases from 
0, the system has four stages: the homoclinic orbit stage, the bifurcation stage, the chaos stage, and 
the great periodic stage. When r  is greater than the threshold value dr , the system enters into a 

great periodic stage from a chaos stage. The threshold value dr  from DCO is different according to 
the angular frequency of the driving force ω  [28]. The steps for detecting the line spectrum 
frequency of the periodic signal based DCO are as follows [29]: 

(1) Mixed signal is added to the system, which is made up of periodic signal s  and noise 
signal n . The renewal equation is as follows 

3 cosx kx x x r t s nω′′ ′+ − + = + +  (20) 

(2) Initialize (0)x  and (0)x′  to 0 and set k  equal to 0.5. Then, we use the fourth-order 
Runge–Kutta method to solve the above equation. 

(3) The line spectrum frequency of the periodic signal depends on the stage of the system. If 
the system is in the great periodic stage, the line spectrum frequency of the periodic signal is 
close to ω . 

DCO can help us to determine the range of line spectrum frequency. However, the final line 
spectrum frequency depends on the value of W-PE. 

2.3. W-PE 

W-PE was proposed by Fadlallah et al. in 2013 [30]. Like PE, W-PE is also a nonlinear dynamic 
parameter based on complexity measure. However, they have some similarities and differences as 
follows. 

(1) Both PE and W-PE include four steps: phase space reconstruction, ascending order, 
entropy calculation, and normalization. Except for the entropy calculation, the other three 
steps between PE and W-PE are exactly the same. 

(2) Compared with the original patterns for PE, W-PE has more possible patterns because of 
the introduction of amplitude information. For example, when the embedding dimension 
is 3, the original patterns for PE and the possible patterns for W-PE are shown in Figure 1. 

(3) Entropy calculations are different. The equations of PE and W-PE are as follows 
!
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where m  is the embedded dimension and ( )iP π  and ( )iPω π  represent the -thi  probability of 
PE and W-PE, respectively, as follows 



Entropy 2019, 21, 507 6 of 17 

 

!

1

!

1

( )
( )

( )

( )
( )

( )

i
i m

i
i

i
i m

i
i

f
P

f

f
P

f

ω
ω

ω

π
π

π

π
π

π

=

=


=




 =







 (22) 

where ( )if π  and ( )ifω π  are the frequency for the -thi  permutation of PE and W-PE, 

respectively, ( )if π  can be obtained directly by statistics, and ( )ifω π  can be expressed as 

( ) ( ( )) ( ) ( 0,1, , )
S

i i i
s

f f s s s Sω π π ω= =   (23) 

where S  and ( )i sω  are the number of possible patterns for the -thi  permutation and 

corresponding weight values, respectively. ( )i sω  can be obtained by calculating the variance of the 

vector jX  as follows 
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where jX  is the mean of the vector jX . 

 
Figure 1. The original patterns for permutation entropy (PE) and the possible patterns for 
weighted-permutation entropy (W-PE). 
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3. Linear Spectrum Frequency Feature Extraction Technique for Warship Radio Noise 

According to the theoretical analysis of CEEMDAN, DCO, and W-PE, a novel linear spectrum 
frequency feature extraction technique for warship radio noise is presented, named 
CEEMDAN-DCO-W-PE. The flow chart of CEEMDAN-DCO-W-PE is shown in Figure 2. The 
specific steps of the linear spectrum frequency feature extraction technique are as follows: 

Stage 1: Decomposition. 
(1) Different types of warship radio noise signals are measured through hydrophones. 
(2) Warship radio noise signals are decomposed by CEEMDAN, then we can obtain the IMFs 

from high frequency to low frequency. 

Stage 2: Linear spectrum frequency feature extraction. 
(1) Linear spectrum frequency of warship radio noise is usually in the low-frequency band, 

so we choose the low-frequency IMFs for further study. 
(2) We calculate the statistical center frequencies of the chosen IMFs as the initial detection 

frequencies of DCO. 
(3) Detect the line spectrum of the chosen IMFs by DCO, we can obtain the range of line 

spectrum frequency. 
(4) Obtain the linear spectrum frequencies of the chosen IMFs by W-PE. We regard the 

frequency corresponding to the minimum value of W-PE for DCO output as the line 
spectrum frequency. 

Stage 3: Classification. 
(1) Send frequency features into support vector machine (SVM). 
(2) Acquire the recognition rates of different types of warship radio noise signals by training 

samples and testing samples. 

 
Figure 2. The flow chart of CEEMDAN-DCO-W-PE. 
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4. Linear Spectrum Frequency Feature Extraction of Simulation Signals 

4.1. CEEMDAN of Simulation Signals 

We apply EMD, EEMD, and CEEMDAN to simulation signals. The simulation signals are as 
follows 

cos(20 ) cos(40 )
( )

S t t
Y S randn t

π π = +
 = +

 (25) 

where the signal S consists of two cosine signals with frequencies of 10 Hz and 20 Hz, and signal Y, 
with sampling frequency of 1 KHz, consists of signal S and standard Gaussian white noise randn(t). 
The time domain waveforms of S and Y with 0 dB are shown in Figure 3. As seen in Figure 3, the 
signal S is flooded in the standard Gaussian white noise. Decomposition results of different 
algorithms are shown in Figure 4. As seen in Figure 4, we obtain eight IMFs by EMD and nine IMFs 
by EEMD and CEEMDAN. Table 1 is the statistical center frequency distribution of IMFs by EMD, 
EEMD, and CEEMDAN. The statistical center frequency is defined in [26]. As seen in Table 1 and 
Figure 4, the cosine signal with frequency of 10 Hz corresponds to IMF6 by EMD and IMF7 by 
EEMD and CEEMDAN, and the cosine signal with frequency of 20 Hz corresponds to IMF5 by 
EMD and IMF6 by EEMD and CEEMDAN. Comparing the statistical center frequencies of different 
algorithms, CEEMDAN can more accurately reflect the line spectrum frequencies of the simulated 
signal S than EMD and EEMD. 

 
Figure 3. The time domain waveforms of S  and Y . 

 
(a) Empirical mode decomposition (EMD). 

Am
pl

itu
de
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(b) Ensemble empirical mode decomposition (EEMD). 

 
(c) Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). 

Figure 4. Decomposition results of different algorithms. 

Table 1. The statistical center frequency distribution of intrinsic mode functions (IMFs) by empirical 
mode decomposition EMD, empirical EMD (EEMD) and complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN). 

 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 

EMD 332.1 Hz 157.8 Hz 79.27 Hz 27.72 Hz 20.24 Hz 10.17 Hz 5.153 Hz 2.632 Hz - 
EEMD 327.9 Hz 179.8 Hz 126.4 Hz 73.67 Hz 26.01 Hz 20.18 Hz 10.75 Hz 4.972 Hz 3.316 Hz 

CEEMDAN 337.1 Hz 191.7 Hz 125.6 Hz 74.32 Hz 25.17 Hz 19.87 Hz 9.94 Hz 5.098 Hz 3.493 Hz 

4.2. Linear Spectrum Frequency Feature Extraction of the Cosine Signal with Frequency of 10 Hz 

We use DCO to detect the line spectrum of IMFs from low-frequency IMF to high-frequency 
IMF based on the statistical center frequency of IMFs by CEEMDAN. The results show that there is 
no line spectrum in IMF8 and IMF9; the first line spectrum is in IMF7. Figure 5 is the phase space 
tracks of IMF7 under different driving force frequencies. As seen in Figure 5, the phase space tracks 
are under great periodic stage with the driving force frequencies of 9.97 Hz and 10.17 Hz. We 
calculate the PEs and W-PEs of the DCO outputs under great periodic stage with different driving 
force frequencies. Table 2 is the complexity distribution of IMF7 under different driving force 
frequencies. As seen in Table 2, the minimum values of PE and W-PE correspond to the frequency 
of 9.95 Hz and 9.98 Hz, which can reflect the real line spectrum frequency of IMF7. 
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(a) 9.54 Hz (b) 9.97 Hz 

  
(c) 10.17 Hz (d) 10.37 Hz 

Figure 5. The phase space tracks of IMF7 under different driving force frequencies. 

Table 2. The complexity distribution of IMF7 under different driving force frequencies. 

 9.94 Hz 9.95 Hz 9.96 Hz 9.97 Hz 9.98 Hz 9.99 Hz 10 Hz 10.01 Hz 
PE 0.8038 0.8031 0.8035 0.8035 0.8041 0.8044 0.8045 0.8048 

W-PE 0.6949 0.695 0.6951 0.6949 0.6948 0.695 0.6951 0.6952 

4.3. Linear Spectrum Frequency Feature Extraction of the Cosine Signal with Frequency of 20 Hz 

DCO is used to detect the line spectrum of IMF6 by CEEMDAN based on the statistical center 
frequency of 19.87 Hz. Figure 6 shows the phase space tracks of IMF6 under different driving force 
frequencies. As seen in Figure 6, the phase space tracks are under great periodic stage with the 
driving force frequencies of 19.87 Hz and 20.07 Hz. We calculate the PEs and W-PEs of the DCO 
outputs under great periodic stage with different driving force frequencies. Table 3 is the 
complexity distribution of IMF6 under different driving force frequencies. As seen in Table 3, the 
minimum values of PE and W-PE correspond to frequencies of 19.95 Hz and 19.97 Hz, which are 
close to the real line spectrum frequency of 20 Hz. 

  
(a) 19.57 Hz (b) 19.87 Hz 
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(c) 20.07 Hz (d) 20.47 Hz 

Figure 6. The phase space tracks of IMF6 under different driving force frequencies. 

Table 3. The complexity distribution of IMF6 under different driving force frequencies. 

 19.94 Hz 19.95 Hz 19.96 Hz 19.97 Hz 19.98 Hz 19.99 Hz 20 Hz 20.01 Hz 
PE 0.8882 0.8878 0.8883 0.8885 0.8887 0.8886 0.8887 0.8891 

W-PE 0.7033 0.7032 0.7031 0.7028 0.7033 0.7035 0.7037 0.7041 

4.4. Comparison of Frequency Feature Extraction Techniques 

We compared different frequency feature extraction techniques to prove the effectiveness of 
CEEMDAN-DCO-W-PE. We name the frequency feature extraction techniques using statistical 
center frequency and three decomposition algorithms as EMD-TCF, EEMD-TCF, and 
CEEMDAN-TCF. The linear spectrum frequency feature extraction technique based on CEEMDAN, 
DCO, and PE is named CEEMDAN-DCO-PE. The frequency feature extraction results of different 
techniques are listed in Table 4. As seen in Table 4, two line spectrum feature extraction techniques 
based on CEMDAN and DCO are superior to EMD-TCF, EEMD-TCF, and CEEMDAN-TCF; the line 
spectrum frequencies obtained by CEEMDAN-DCO-W-PE are the most accurate results. 

Table 4. The frequency feature extraction results of different techniques. 

 EMD-TCF EEMD-TCF CEEMDAN-TCF CEEMDAN-DCO-PE CEEMDAN-DCO-W-PE 
IMF7 10.17 Hz 10.75 Hz 9.94 Hz 9.95 Hz 9.98 Hz 
IMF6 20.24 Hz 20.18 Hz 19.87 Hz 19.95 Hz 19.97 Hz 

5. Linear Spectrum Frequency Feature Extraction of Warship Radio Noise Signals 

5.1. CEEMDAN of Warship Radio Noise Signals 

Warship radio noise source is divided into three categories: mechanical noise, propeller noise 
and hydrodynamic noise. Warship radio noise signals contain abundant line spectrum components, 
which can reflect their real physical characteristics. CEEMDAN-DCO-W-PE is carried out on 
warship-A, warship-B, and warship-C. We measured warship radio noise signals at level 1 sea state 
by hydrophones. When one of the warships is running, the other warships remain out of work. 
Time-domain waveforms and decomposition results by CEEMDAN for warships are shown in 
Figures 7 and 8, respectively. As seen in Figures 7 and 8, the number of sampling points is 2000 and 
the numbers of IMFs for warships by CEEMDAN are 10, 10, and 11. For the sake of convenience we 
choose the low-frequency IMF10 for the research. The frequency feature extraction results of IMF10 
for warships by CEEMDAN-TCF are shown in Table 5. As seen in Table 5, the statistical center 
frequencies of three warship signals are different to some extent. 

y'
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(a) Warship-A 

 
(b) Warship-B 

(c) Warship-C 

Figure 7. Time-domain waveforms for warships. 

 
(a) Warship-A. 
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(b) Warship-B 

 
(c) Warship-C 

Figure 8. Decomposition results for warships. 

Table 5. The frequency feature extraction results of IMF10 for warships by CEEMDAN-TCF. 

Warship-A Warship-B Warship-C 
67.58 Hz 45.29 Hz 57.41 Hz 

5.2. Linear Spectrum Frequency Feature Extraction of IMF10 

DCO and W-PE are used to detect and determine the line spectrum of IMF10 for warships based 
on the statistical center frequencies in Table 5. When the phase space track and W-PE of DCO output 
are in great periodic stage and the minimum value, we can obtain the great periodic stages of and the 
frequency feature extraction results of IMF10 for warships by CEEMDAN-DCO-W-PE in Figure 9 and 
Table 6. As seen in Table 6, the frequency feature extraction results of the same warship signals by 
CEEMDAN-DCO-W-PE are different from the ones by CEEMDAN-TCF in Table 5. 
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(a) Warship-A. (b) Warship-B. 

(c) Warship-C. 

Figure 9. The great periodic stages of IMF10 for warships. 

Table 6. The frequency feature extraction results of IMF10 for warships by CEEMDAN-DCO-W-PE. 

Warship-A Warship-B Warship-C 
63.15 Hz 47.92 Hz 59.38 Hz 

5.3. Comparison of Frequency Feature Extraction Techniques 

First, we extract the frequency features of 20 samples for each warship by CEEMDAN-TCF and 
CEEMDAN-DCO-W-PE. The frequency feature distributions and boxplots of CEEMDAN-TCF and 
CEEMDAN-DCO-W-PE are shown in Figure 10 and Figure 11. As seen in Figures 10 and 11, for the 
same warship signals, the frequency features by CEEMDAN-TCF have a larger fluctuation range 
than the ones by CEEMDAN-DCO-W-PE. 

We increase the number of samples to 100 for each warship, and added a comparison with 
EMD-TCF, EEMD-TCF and CEEMDAN-DCO-PE. SVM with polynomial kernel function was used 
for the classification of three kinds of warships. The number of training samples and test samples 
are 50 and 50 for each warship. Finally, we can get the classification results by five frequency feature 
extraction techniques in Table 7. As seen in Table 7, the frequency feature extraction techniques 
based on CEEMDAN are better than ones based on EMD and EEMD, which have the recognition 
rates of more than 80%; two line spectrum feature extraction techniques based on CEEMDAN and 
DCO is superior to EMD-TCF, EEMD-TCF, and CEEMDAN-TCF, which have the recognition rates 
of more than 90%; the proposed CEEMDAN-DCO-W-PE has the highest classification accuracy. 

y'

y'
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(a) CEEMDAN-TCF (b) CEEMDAN-DCO-W-PE 

Figure 10. The frequency feature distributions of CEEMDAN-TCF and CEEMDAN-DCO-W-PE. 

 
(a) CEEMDAN-TCF (b) CEEMDAN-DCO-W-PE 

Figure 11. The frequency feature boxplots of CEEMDAN-TCF and CEEMDAN-DCO-W-PE. 

Table 7. The classification results by five frequency feature extraction techniques. 

EMD-TCF EEMD-TCF CEEMDAN-TCF CEEMDAN-DCO-PE CEEMDAN-DCO-W-PE 
69.5% 70.25% 82.5% 90.25% 92.75% 

6. Conclusions 

A novel linear spectrum frequency feature extraction technique for warship radio noise is 
proposed based on CEEMDAN, DCO and W-PE. The crucial contributions of 
CEEMDAN-DCO-W-PE are as follows: 

(1) CEEMDAN is used to decompose warship radio noise, which is a fully adaptive 
algorithm without selecting parameters. 

(2) Compared with traditional DCO, DCO combined with CEEMDAN can extract the IMF 
line spectrum frequency features based on the statistical center frequencies of IMFs, which 
is more conducive to distinguishing different kinds of signals. 

(3) W-PE combined DCO is first used in underwater acoustic signal processing, proving 
better capabilities to determine the final line spectrum frequency. 

(4) Compared with other frequency feature extraction techniques, CEEMDAN-DCO-W-PE 
has better performance for simulation signals and actual warship radio noise signals. The 
classification recognition rate for the three kinds of warship radio noise signal is 92.75%. 

Author Contributions: Y.L. and L.W. contributed the linear spectrum frequency feature extraction technique. 
Y.L., X.L., and X.Y. analyzed the experiments. 
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