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Abstract: In this paper, the properties of the classical confusion–substitution structure and some
recently proposed pseudorandom number generators using one-dimensional chaotic maps are
investigated. To solve the low security problem of the original structure, a new bit-level cellular
automata strategy is used to improve the sensitivity to the cryptosystem. We find that the new
evolution effects among different generations of cells in cellular automata can significantly improve
the diffusion effect. After this, a new one-dimensional chaotic map is proposed, which is constructed
by coupling the logistic map and the Bernoulli map (LBM). The new map exhibits a much better
random behavior and is more efficient than comparable ones. Due to the favorable properties
of the new map and cellular automata algorithm, we propose a new image-encryption algorithm
in which three-dimensional bit-level permutation with LBM is employed in the confusion phase.
Simulations are carried out, and the results demonstrate the superior security and high efficiency of
the proposed scheme.

Keywords: image privacy; evolution effects in cellular automata; chaotic system;
logistic–Bernoulli map

1. Introduction

Information security plays a significant role in peoples’ digital lives. With the development of
network technologies and wide use of portable digital devices, information is increasingly transmitted
or shared via the Internet. Meanwhile, theories and protocols have been established and applied to
guarantee the security of distributed information. In recent years, increasing amounts of multimedia
information are shared via the Internet, including photos, voice data, and short videos, which have
different characteristic features to text information. Such information is easily understood and vividly
representative. Unlike text-based information, multimedia information is always highly redundant in
the time and space domains, and traditional ciphers, such as DES (Data Encryption Standard) and AES
(Advanced Encryption Standard), are inefficient in dealing with multimedia information to satisfy the
real-time requirements of multimedia information transmission.

To cope with this issue, researchers have proposed many ciphers based on different perspectives,
which provide high security and efficiency for multimedia information. For instance, DNA coding-based
ciphers [1,2], S-box-based ciphers [3], compressive sensing-based ciphers [4,5], wave function-based
ciphers [6], etc. Moreover, by virtue of the similitude to pixel matrix of digital image, Sudoku
matrix [7] and Latin square [8] have also been utilized in image ciphers. Originating in the late 1990s,
chaos theory-based encryption algorithms have developed significantly, and most of them employ a
confusion–diffusion structure, which was first proposed by Fridrich [9]. Due to their superior properties,
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such as ergodicity, sensitivity to initial conditions and parameters, and dynamical complexity, chaotic
systems are quite similar to cryptosystems, and they are good candidates for generating pseudorandom
numbers when applying confusion and diffusion operations.

In recent years, many relevant works have been reported, and they can be mainly divided into
four categories.

In the first category, the properties of chaotic systems are investigated. Their benefits and
drawbacks are analyzed, and comparisons among different chaotic systems are studied. In addition,
new chaotic maps are proposed. In [10], Zhou et al. proposed a new one-dimensional chaotic map by
combining two existing one-dimensional chaotic maps as a pseudorandom number generator and
facilitated a new image-encryption algorithm using one-dimensional substitution and image-rotation
schemes. In [11], Hua et al. proposed a new scheme to formulate a new 2D chaotic map by combining
two 1D chaotic maps, and after that, a new chaotic magic transform is used to facilitate the confusion
operations. In [12], a new 2D chaotic logistic-adjusted-sine map was proposed, and its chaotic
properties were deeply investigated. With the help of the new chaotic map, a new image-encryption
scheme, LASIES, was proposed. The traditional 2D chaotic maps, such as the standard map or cat map,
have some problems when applied in the confusion stage of a cryptosystem, such as the fixed-point
problem, repeated-pattern problem, and short-cycle problem. In [13,14], the periodic distribution of the
generalized discrete cat map was analyzed. In [15], a new pattern that makes nonlinear combination of
two 1D chaotic maps was proposed, and a sine–logistic map (SLM) was attained by the pattern, then
applied to the encryption process.

In the second category, the researchers focus on encryption algorithms in the space domain
without transformations. Two branches can be found in this category: pixel-level ciphers and bit-level
ciphers. Pixel-level image-encryption schemes are significantly researched. In this branch, the Fridrich
architecture or its transformed structure is used, and in its confusion and diffusion stages, all operations
are performed on the pixel level. In [16], two random sequences were firstly generated, and after that,
the mapping rules were obtained by sorting the two random sequences and searching each number.
The columns and rows are the basic units during the permutation stage, according to the mapping
rules. In the diffusion phase, addition and modulation are applied to pixel values, random values, and
previous-cipher pixel values. Both confusion and diffusion are performed on the pixel level. In [17],
with the help of the reverse 2D chaotic map, a new mechanism to randomly visit the plain image
was proposed. In the permutation stage, a new mapping rule was employed from a random position
in the plain image to another random position in the cipher image, and the two random positions
were generated by different 2D chaotic maps. In the diffusion phase, the logistic map governs the
process. In [18], the permutation stage is realized by the vertical and horizontal wave-lines generated
by Arnold map. At the diffusion stage, blocks of pixels were consecutively diffused, and the current
diffused block will influence the next block. In the second branch of this category, the cryptosystem
was implemented on the bit level. Due to its special properties, bit-level permutation has a better
confusion effect than pixel-level permutation. In [19], bit-level permutation was firstly proposed. In
the first step of bit-level permutation, the image was divided into N bit planes according to the bit
length of each pixel in the plain image. For example, a 256-grey-level plain image has eight-bit planes.
In the second step, the higher four-bit planes were permuted independently as they contain more than
94% of the total information, while the lower four-bit planes were permuted together since the contain
only 4.4% of the total information. Since the bit constitution of each pixel is changed, their locations
and values are encrypted. In [20], the different properties of different bit planes were investigated,
and a new expand-and-shrink bit-level permutation algorithm was proposed. In [21], the plain image
was addressed as a 3D bit matrix, and three orthogonal Latin cubes were utilized to achieve spatial
permutation and diffusion in the 3D bit matrix.

In the third category, optics techniques are employed to facilitate the image-encryption algorithm.
There are usually three steps in optics-based image-encryption algorithms. In the first step, the plain
image is divided into a series of elemental images by light propagation using a lenslet or pinhole
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array. Each of the elemental images contains most of the plain-image information. In the second step,
encryption operations are applied on these elemental images, and in the last step, these encrypted
elemental images are back-propagated by the lenslet array or reconstructed by a computational
integral-imaging reconstruction algorithm to obtain the final cipher text. In [22], Li et al. proposed a
new optical-based image-encryption algorithm, in which cellular automata and a chaotic system were
employed to generate random sequences. One sequence was used to encrypt the pixel values in the
elemental images, while another sequence was sorted and searched to generate the mapping rule for
permuting each elemental image. In [23], a new multiple-image simultaneous encryption algorithm
using a back-propagation neural network (BP neural network) was proposed to solve the security and
interference problems.

In the fourth category, all image-encryption operations are performed in the frequency domain or
transformed domain. The plain image is firstly transformed into the frequency domain, using a method
such as the DCT (Discrete Cosine Transform) transform, wavelet transform, or Fourier transform. In
the frequency domain, the information of the plain image is not evenly distributed, and most of the
information is concentrated in a finite number of pixels. Selective encryptions are usually applied on
this finite number of pixels in terms of low-frequency pixels. In [24], a new lossless image-encryption
algorithm was proposed. In this cipher, the image was firstly transformed using the two-dimensional
Haar wavelet transform, and the permutation operations were performed in the frequency domain.
In the second step, the inverse Haar wavelet transform was applied and diffusion operations were
performed in the space domain.

The image-encryption algorithms that belong to the different categories provide different ways
to enhance the security of multimedia information. Most algorithms in all categories employ a
permutation and diffusion architecture. However, the permutation algorithms always suffer from
repeated-pattern problems for permuted images [25], which indicates that random permutation
is not sufficient. In the diffusion phase, most of the algorithms choose a one-dimensional chaotic
map and apply exclusive-or operations on the transformed one-dimensional pixel array. Diffusion
operations of this type are classical and fast. However, they do not provide sufficient sensitivity to
slight modifications of the plain image. This sensitivity is crucial for protecting against differential
attacks and can be measured by NPCR (number of pixels change rate) [25], which is the different pixels’
percentage in two images of the same size. In an ideal situation, a slight modification to the plain image
can lead to different values of 99.6% of the pixels after one or two encryption rounds. In other words,
the diffusion algorithm should spread one-bit modification to most of the remaining pixels in one
diffusion round, and the classical diffusion algorithms, which are employed by most image-encryption
algorithms, cannot achieve this goal, requiring more encryption rounds to diffuse the modification.

To cope with these problems, a new 3D bit-level permutation scheme was proposed to eliminate
the repeated patterns in the permuted image. To further enhance the security of the random sequences
used in the permutation and diffusion stages, a new chaotic map logistic–Bernoulli map (LBM) was
proposed and investigated, which exhibits much better chaotic behavior than other one-dimensional
chaotic maps. In the diffusion phase, a new bit-level cellular automata strategy was investigated to
improve the sensitivity to the plain image modification. We found that the new evolution effects
among different generations of the cells in cellular automata can significantly improve the diffusion
effect of the cryptosystem.

The rest of the paper is organized as follows. In Section 2, the new chaotic map and its properties
are introduced. In Section 3, a cellular automata-based diffusion strategy is described. The proposed
cryptosystem is described in Section 4. In Section 5, simulation results and the performance analysis
are reported, and in the last section, a conclusion is drawn.

2. A New One-Dimensional Chaotic Map for Image Encryption

One-dimensional (1D) maps are usually used as pseudorandom number generators in
image-encryption algorithms due to their simplicity and efficiency. The logistic map, sine map,
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tent map, and Bernoulli map [26] are four 1D maps that are commonly employed in cryptosystems,
and their definitions are as follows.

xn+1 = δ(µ, xn) = µxn(1− xn), (1)

xn+1 = β(a, xn) = a sin(πxn)/4, (2)

xn+1 = η(u, xn) =

{
uxn/2, xi < 0.5
u(1− xn)/2, xi ≥ 0.5

, (3)

xn+1 = B(σ, xn) = σxnmod1 =

{
σxn, 0 ≤ xi < 0.5
σxn − 1, 0.5 ≤ xi < 1

, (4)

However, single 1D maps suffer from the following problems [10]: (1) the chaotic behaviors are
not continuous; (2) the attack on the random sequence generated by a 1D map is computationally
inexpensive and fast; and (3) the output sequence is not uniformly distributed. As a consequence, many
researchers focus on high-dimensional chaotic systems to facilitate image-encryption operations [24].
Although high-dimensional chaotic systems provide more complex structures and chaotic behaviors,
their software or hardware implementations are complex and expensive [11], which indicates that a
pseudorandom number generator that uses a high-dimensional chaotic map is inefficient. To achieve
a balance between efficiency and security, in [10] and [11], Zhou and Hua suggested coupling or
combining two or more 1D chaotic maps to form a new 1D or multi-dimensional chaotic system. On
the one hand, a coupled high-dimensional chaotic map keeps the system computationally inexpensive
and highly efficient; on the other hand, it has been demonstrated that a coupled system has better
chaotic behavior and a larger Lyapunov exponent [10–12].

The speed of iterating the chaotic map to generate pseudorandom numbers is significant, since
it constitutes a large amount of the encryption time. The logistic map, sine map, tent map, and
Bernoulli map have similar chaotic behavior, especially as pseudorandom number generators in
image-encryption operations. However, their speeds vary. To examine this property, we performed
calculations with each chaotic map to generate 3,000,000 random numbers 10 times. The simulation
environment was a personal computer with Windows 7 Ultimate, Intel 3.4 GHz Dual-core CPU, and
8 GB memory, and the compiling environment is Visual C++ 2010. The average data are listed in
Table 1.

Table 1. The speed comparison among the logistic map, sine map, tent map, and Bernoulli map.

Logistic Map Sine Map Tent Map Bernoulli Map

Generating 3,000,000
random numbers 30.9 ms 96.2 ms 48.8 ms 48.0 ms

As Table 1 illustrates, to generate 3,000,000 pseudorandom numbers (without quantification),
the logistic map was much faster than the sine map, and a little faster than the tent map. Although
the logistic map, sine map, and tent map were all very fast, the logistic map had the highest speed.
This is due to its simple structure; moreover, to calculate each number, only multiplication and
addition operations are required. The sine map was the slowest, due to the relatively complex
trigonometric function calculation in each iteration. The tent map was relatively slow due to the
condition determination for the piecewise function in each iteration.

In [10], Zhou et al. proposed a new scheme to combine two 1D chaotic maps as seed maps to
form new 1D chaotic maps. The new maps were the logistic–tent system (LTS; the logistic map and
tent map are the two seed maps), logistic–sine system (LSS; the logistic map and sine map are the two
seed maps), and tent–sine system (TSS; the tent map and sine map are the two seed maps). Simulation
results show that the new 1D chaotic maps, LTS, LSS, and TSS, have better chaotic behaviors and larger
Lyapunov exponents.
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As Table 1 shows, the sine map and tent map are relatively slow, and provide chaotic behaviors
similar to that of the logistic map. To achieve a good balance between security and efficiency for image
encryption, a new one-dimensional chaotic system joint logistic map and Bernoulli map was proposed.
The logistic–Bernoulli map (LBM) is defined in Equation (5).

xn+1 = f (xn,γ) =
{
γ× xn × (1− xn) + (8− γ) × xn, xn ≤ 1
1− γ× xn × (1− xn) − (8− γ) × xn, xn > 1

, (5)

where the parameter y ∈ (0, 4], and x0 is the initial value of the LBM.
Like its bifurcation diagram shows (Figure 1), in most of the definitional domain of the coefficient,

the logistic map has no chaotic behavior. When the coefficient µ is very close to 4, the dots can spread
over the full range of xn in the bifurcation diagram, which indicates good chaotic properties. However,
the proposed LBM, in the entire definitional domain [0, 4] of the coefficient γ, the system is chaotic, as
shown in Figure 1d.
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Figure 1. Bifurcation diagrams of (a) logistic map; (b) sine map; (c) tent map; (d) proposed
logistic–Bernoulli map (LBM).

The bifurcation diagrams of the logistic map, sine map, tent map, and LBM are shown in Figure 1.
In [10], although the proposed 1D chaotic maps, including LTS, LSS, and TSS, can generate chaotic

properties similar to that of LBM, the numbers of iterations required to calculate the random sequence
with LTS, LSS, and TSS were higher than that of the proposed map. We iterate the proposed chaotic
map, LTS, LSS, and TSS 10 times, and the average execution times are listed in Table 2.
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Table 2. Speed comparison among logistic–tent system (LTS), logistic–sine system (LSS), tent–sine
system (TSS), and the proposed LBM.

LTS [10] LSS [10] TSS [10] LBM (Proposed)

Generating 3,000,000
random numbers 81.5 ms 128.2 ms 143.9 ms 53.0 ms

To further investigate the chaotic properties of the proposed 1D chaotic map, we calculated and
plotted the Lyapunov exponents of the proposed 1D chaotic map and comparison maps. A positive
Lyapunov exponent indicates chaotic behavior, while a negative exponent indicates that there are no
chaotic properties. A larger Lyapunov exponent indicates better chaotic properties. The maximum
Lyapunov exponents for different parameters of the chaotic maps are plotted in Figure 2.
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As Figure 2 shows, the Lyapunov exponents of the logistic map, sine map, and tent map are
larger than 0 when the parameter is very close to 4, and in most of domains of the parameter, there is
no chaotic behavior at all. When the parameters of LSS, LTS, and TSS fall into [0, 4], the Lyapunov
exponents are all larger than 0, indicating that over the entire parameter domain, these dynamical
systems are chaotic. The Lyapunov exponents obtained by LBM were also larger than 0 over its entire
parameter domain, and the Lyapunov exponents of LBM fall in the value range [1, 1.4] in all parameter
domains. This range is higher than the range [0.7, 1] of LSS, LTS, TSS, which indicates that the proposed
LBM system exhibits much better chaotic behavior.

To further test the randomness of the proposed LBM, the NIST (National Institute of Standards
and Technology) SP800-22 test was performed on 300 random binary sequences generated by LBM,
and the simulation results are shown in Table 3. This indicates that the random sequences have
high randomness.

Table 3. Randomness test results of 300 random sequences generated by LBM using NIST.

Statistical Tests P-Value = 0.01 Pass Rate (%) = 0.9628

Frequency 0.280306 Pass 98.67 Pass
Block frequency 0.685579 Pass 99.00 Pass

Cumulative sums 0.748094 Pass 98.83 Pass
Runs 0.032923 Pass 99.33 Pass

Longest run 0.534146 Pass 98.33 Pass
Rank 0.425059 Pass 99.67 Pass
FFT 0.804337 Pass 98.33 Pass

Non overlapping template 0.485302 Pass 98.96 Pass
Overlapping template 0.294431 Pass 99.67 Pass

Universal 0.057753 Pass 100.00 Pass
Approximate entropy 0.739918 Pass 99.67 Pass
Random excursions 0.648693 Pass 98.73 Pass

Random excursions variant 0.588852 Pass 98.81 Pass
Serial 0.515315 Pass 99.33 Pass

Linear complexity 0.561227 Pass 99.33 Pass

3. Cellular Automata-Based Diffusion Structure

The cellular automata algorithm provides a mechanism in which a slight change to the state of
one cell in the current generation will lead to modification of all the cells’ states in the next generation.
In an image-encryption algorithm, this feature makes cellular automata an ideal algorithm for the
diffusion stage, as one main goal for diffusion is to spread a single slight modification of one pixel to
all ciphered pixels. However, in previous cellular automata-based ciphers, cellular automata were
employed only as a pseudorandom number generators, while neglecting the connection between
diffusion effects and the intrinsic feature of cellular automata.

The idea of cellular automata was proposed by Stephen Wolfram in 1984 [27], and after that, a
series of pseudorandom number generators using cellular automata were proposed [28]. A cellular
automaton (CA) is a discrete model in the time and space domains, and each unit, which is called a
cell, has a finite number of states. In the discrete time domain, each cell can evolve into any predefined
state based on the neighboring cells’ states in a previous time slice, as defined in Equation (6) [28].

a′i = δ(ai−r, ai−r+1, · · · , ai+r), (6)

where i ∈ [0, M− 1], ai is the current state between 0 and k − 1, and r is the number of neighbors in each
direction that determine the current cell’s value. δ is the update rule of the CA. ai’ is the cell value in
the next generation.
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For a pseudorandom number-generation case, k = 2 and r = 1 are suggested in [28], and Equation (6)
is transformed to Equation (7). The first number and the last number are calculated in a circular way,
as shown in Equation (8) and Equation (9).

a′i = δ(ai−1, ai, ai+1), (7)

a′0 = δ(aM−1, a0, a1), (8)

a′N−1 = δ(aM−2, aM−1, a0). (9)

In this case, rules δ90 and δ150 are usually employed, as shown in Equations (10) and (11) [28].

Rule δ90: at+1
i = at

i−1 ⊕ at
i+1 (10)

Rule δ150: at+1
i = at

i−1 ⊕ ai
t ⊕ at

i+1 (11)

When k = 2, the sequences generated by Equations (8) and (9) contain binary values.
According to Equation (6), a CA with different generations can be defined by Equation (12).

at+1
i = δ(at

i−r
, at

i−r+1
, · · · , at

i , · · · , at
i+r
), (12)

where t is the generation number. Equation (12) illustrates that the state of cell ai in generation t + 1 is
determined by three factors: the state of ai in generation t; the states of the r neighboring cells of ai in
generation t; and the states of the r neighboring cells of ai. r is the radius of the influence range.

As mentioned above, spreading the slight modification of one or several pixels to all the ciphered
pixels is one significant characteristic for a diffusion algorithm. In a classical diffusion algorithm,
this spreading mechanism is achieved in a linear way. The two-dimensional pixel array is firstly
transformed into a one-dimensional array. The spreading starts at the modified pixel and ends at an
unpredictable pixel, governed by the “stop-point mechanism”, which is discussed in our previous
paper [29]; the end pixel is always not the last one. The finite number of influenced pixels can be
treated as the seeds for the next round of diffusion, to influence more pixels in a backward manner
(one direction).

Between generations, a CA can diffuse one cell’s modification to neighboring pixels in two
directions within its influence region of predefined size. In an ideal situation, a CA has the ability
to influence all the cells’ states in one round of evolution or diffusion. The mechanisms of classical
diffusion and CA-based diffusion are shown in Figure 3.
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In Figure 3, the red pixel indicates the modified pixel and the spreading starts at this pixel. The
black pixel is the last pixel that the spreading reaches when classical diffusion is performed, and all
white pixels are unchanged. All blue pixels are modified or influenced by the spreading. Figure 3
shows that a diffusion algorithm with CA can spread the modification in two directions, and in each
influence calculation, more pixels are affected according to Equation (12). Therefore, in the proposed
scheme, we investigate if a new CA-based diffusion algorithm will lead to better spreading effects and
make the system more sensitive.

4. The Proposed Scheme

In his masterpiece, Fridrich firstly proposed an image-encryption algorithm based on chaotic
systems considering the similarities between cryptography and chaotic dynamic systems [9]. Two
stages, confusion and diffusion, constitute one encryption round. Both stages are performed at the
pixel level. Confusion operations aim to change each pixel’s location, while in diffusion stages, pixel
values are modified.

In [19], bit-level permutation is firstly proposed. In this permutation algorithm, the basic permuting
unit is the bit, rather than the pixel, in the image. Each pixel contains eight bits of information. When
the bit locations are changed, not only the pixel values but also the pixel locations are modified. When
applying bit-level permutation, the plain image is firstly divided into eight-bit planes, and the eight-bit
planes are permuted independently. After that, the eight permuted bit planes are joined together to
generate the permuted cipher image.

In most bit-level image ciphers, only confusion operations are performed on bit level, while in the
diffusion phase, the calculations are performed on the pixel level [19,25,30]. Between the two phases,
a transformation is required. In [20], the bit-level properties of digital images are investigated, and
the following suggestions are provided. (1) The bit-level permutation algorithm should allow each
bit to freely move to any position in any bit plane of any color channel. (2) From the perspective of
the bit constitution of an image, the bit distributions (the numbers of 0 s or 1 s) of the plain image
and cipher image do not significantly change. On average, only 3.3% of the bits of a plain image are
modified during the encryption operations, and most of them only change locations. According to these
suggestions, we design a new image-encryption algorithm using lightweight bit-level permutation
and bit-level diffusion based on the cellular automata strategy to achieve a balance between efficiency
and security.

4.1. Confusion of the Proposed Scheme

In the confusion stage, bit-level permutations are employed due to their superior features to
relocate bit information of plain images. During the confusion operations, the LBM system defined by
Equation (5) is used as the pseudorandom number generator.

At the bit level, the image can be considered as a natural three-dimensional matrix, and the three
dimensions are the width, height, and bit length, as shown in Figure 4.

As Figure 4 shows, in the first step, the pixel-level image is transformed into a three-dimensional
(3D) matrix, on which the bit-level permutations are performed. The x and y coordinates of the 3D bit
matrix correspond to the width and height of the plain image, respectively, while the z coordinate is
the bit length of each pixel. Here, the width, height, and bit length are denoted by w1, w2, and w3.
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In the second step, three random sequences are generated by LBM. When iterating the chaotic
system, the generated random numbers are further quantified by Equation (13), and if the output
random number is the same as a previously generated one, the number will be discarded.

x′i = qu(xi) = (xi × 105)modw1;
y′j = qu(y j) = (y j × 105)modw2;

z′k = qu(yk) = (zk × 105)modw3.
(13)

In Equation (13), i ∈ [0, w1), j ∈ [0, w2), and k ∈ [0, w3).
In the third step, the three random sequences obtained in Step 2 are sorted, and the three sorted

sequences are denoted as sx’, sy’, and sz’, as shown in Equation (14).
sx′ = sort(x′);
sy′ = sort(y′);
sz′ = sort(z′).

(14)

By comparing x’ with its sorted sequence sx’, y’ with sy’, z’ with sz’, the three mapping rules can be
obtained and applied on the three-dimensional bit matrix, as shown in Figure 7, and the permuted 3D
bit matrix can be obtained.

4.2. Bit-Level Diffusion Using Cellular Automata

In our cryptosystem, Rule 90 is used due to its simple structure and high efficiency when updating
the random sequence. When calculating the first and last numbers, Equations (8) and (9) are employed.

In the first step of the diffusion stage, the permuted 3D bit matrix is divided into several diffusion
bit planes for further diffusion operations. Let the size of the permuted 3D bit matrix be m × n × l,
where m and n are the width and height of the image and l is the bit length of each pixel; l equals
24 when the plain image is an RGB color image. Since the diffusion bit planes have the same width
and height as the plain image, the size of each can be defined as m × n × sl, where sl is the bit length of
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each unit (or pixel) in the diffusion bit plane. For example, if sl equals 1, there are 24 diffusion planes.
The variable pn is the number of diffusion planes, which is defined by Equation (15).

pn =
24
sl

(15)

As Equation (15) shows, if each unit or pixel in a diffusion plane has 4 bits (sl = 4), the number of
diffusion planes is 6. In the diffusion phase of the cryptosystem, sl can be randomly selected from
among 1, 2, 4, 8, and 12.

In the second step of the diffusion process, the proposed LBM defined in Equation (5) is used
to generate two random sequences f 1(x) and f 2(x), where x ∈ [0, N ×N − 1]. The two sequences are
further quantified by Equations (16) and (17).

rdm f1(i) =
⌊
( f1(i) × 100)

⌋
mod2sl, (16)

rdm1(i) =
⌊
( f2(i) × 100)

⌋
mod2sl, (17)

where i ∈ [0, N ×N − 1].
The diffusion operations are shown in Figure 5 and defined by Equation (18).

cps(i) = dps(i) ⊕ rdm fs(i);
ts(i) = cps(i) ⊕ rdms(i);
rdm fs+1 = δ90(ts);
rdms+1 = δ90(rdms).

(18)

In Equation (18), dps(i) is the ith pixel in the sth diffusion plane of the permuted image, while
rdmfs(i) is the ith random number in the sth random sequence, where s ∈

{
1, 2, . . . , pn

}
. cps(i) denotes

the ith pixel in the ciphered sth plane. ts is a temporary value sequence. In the 3rd and 4th equations
of (18), we evolve the states of cells from

{
ts(i)

∣∣∣i ∈ [0, N ×N − 1]
}

to
{
rdm fs+1(i)

∣∣∣i ∈ [0, N ×N − 1]
}
, and

from
{
rdms(i)

∣∣∣i ∈ [0, N ×N − 1]
}

to
{
rdms+1(i)

∣∣∣i ∈ [0, N ×N − 1]
}
, respectively, according to CA rule 90,

as shown in Equation (10).
In the diffusion phase, different diffusion planes are treated as different generations for CA, and

the bit-level diffusion structure is as shown in Figure 5.
In Figure 5, if we consider each row of quadrangles (including two XOR (exclusive-OR) operations

and two CA δ90 updating operations) as one step in the diffusion phase and let sl equal 1, there are a
total of 24 diffusion planes and 24 steps in the diffusion phase. If sl equals 12, there are three steps in
the diffusion phase. In Figure 5, the ciphered bit planes are marked by blue quadrangles. Taking the
2nd diffusion plane dp2 as an example, dp2 is firstly XORed with a random bit plane rdmf 2, which is
obtained by cellular automata with 90 update rules applied on t1, as shown in Figure 5. After that, the
corresponding cipher diffusion plane cp2 is obtained. To calculate t2 for the next step of the diffusion
phase, the obtained cp2 is further XORed with another random plane rdm2. rdm2 is calculated by
cellular automata with 90 update rules applied on rdm1. With the help of ti, rdmi, rdmfi, and the δ90

updating rule, the current ciphered plane cpi has a strong relation with the previous encrypted cipher
plane cpi−1, which makes the cryptosystem more sensitive and secure to the slight modification of the
plain image during a differential attack.
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5. Simulation Results and Security Analysis

The proposed image-encryption algorithm can be applied on both color images and grey-level
images. When encrypting a grey-level image, it can be considered as one color channel of the color
image. In this section, results of the simulations and security analysis are reported. All experiments are
performed on a personal computer with Windows 7 Ultimate, Intel 3.4 GHz Dual-core CPU, and 8 GB
memory, and the compiling environment is Visual C++ 2010. Some graphics are plotted in MATLAB
2009a. In this section, sl in Equation (15) is set to 8.

5.1. Simulation Results and Statistical Data Analysis

The cipher images obtained by the proposed cryptosystem and their corresponding histograms
are as shown in Figure 6.
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encrypted by the proposed scheme, and their cipher images are shown in Figure 6b. We can see that 
the cipher image and the three corresponding color channels are all noisy, and the histograms of the 
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Figure 6. Simulation results and histogram analysis, figures in (a) are the plain images, figures in
(b) are the cipher images, figures in (c) are the RGB channels of plain image Lena, figures in (d) are the
histograms of plain image Lena, figures in (e) are the RGB channels of cipher image Lena, figures in
(f) are the histograms of cipher image Lena, figures in (g) are the RGB channels of plain image house,
figures in (h) are the histograms of plain image house, figures in (i) are the RGB channels of cipher
image house, figures in (j) are the histograms of cipher image house, figures in (k) are the RGB channels
of plain image peppers, figures in (l) are the histograms of plain image peppers, figures in (m) are the
RGB channels of cipher image peppers, figures in (n) are the histograms of cipher image peppers.

The histogram of an image illustrates the pixel-value distribution information. For a meaningful
image, the histogram always fluctuates and exhibits some gathering effects in some domains, while
in a cipher image, all pixel values should be evenly distributed and completely different from those
of the plain image. As Figure 6 shows, three test images, namely Lena, a house, and peppers, are
encrypted by the proposed scheme, and their cipher images are shown in Figure 6b. We can see that
the cipher image and the three corresponding color channels are all noisy, and the histograms of the
three color channels in the cipher images are all in ideal situations, which indicates the high security of
the proposed scheme through the statistical analysis.

In his masterpiece, Shannon noted that many ciphers can be cryptoanalyzed using statistical
information, including histograms and correlation analysis [30]. For a good cipher, not only should the
histogram of the cipher image be in the ideal situation, but the correlation coefficients of the cipher
image should also be significantly reduced. Therefore, an important part of the statistical analysis is
the correlation analysis.

The adjacent pixel values in the plain image are quite similar, and the correlation coefficients in
any direction are all very close to 1. However, in the cipher image, there is no meaningful pattern
and the correlation among adjacent pixels should be significantly reduced. In an ideal situation, the
correlation coefficients should be close to 0. The correlation coefficients are calculated according to
Equations (19)–(21). The correlation coefficients of the cipher image obtained by the proposed scheme
are listed in Table 4.
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rx,y =
E
{
[x− E(x)][y− E(y)]

}√
D(x)

√
D(y)

(19)

E(x) =
1
S

S∑
i=1

xi (20)

D(x) =
1
S

S∑
i=1

[xi − E(x)]2 (21)

In Table 4, the correlation coefficients in the horizontal, vertical, and diagonal directions of Lena,
house, and peppers are very close to 1, indicating high correlations between the adjacent pixels in
the plain image. However, the correlation coefficients of the cipher image are all close to 0; thus,
the encryption operations have significantly reduced the correlation relationships. In Table 4, the
correlation coefficients of the cipher image obtained by the proposed scheme are compared with those
obtained by [10]; better values are marked in bold. The average absolute value of the correlation
coefficients of the cipher image obtained by the proposed scheme is 0.002405, while the average
absolute value for the comparison scheme is 0.005851.

To graphically illustrate that the encryption operations significantly reduced the correlation
relationships, the correlation distributions are plotted in Figure 7.
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Table 4. Correlation coefficients of the proposed scheme.

Test Image Color Channel Direction Plain Image Cipher Image Cipher Image Obtained by [10]

Lena

R channel
Horizontal 0.980042 −0.006439 0.009238

Vertical 0.989399 −0.001656 0.001778

Diagonal 0.969445 0.007549 0.004084

G channel
Horizontal 0.968884 −0.002014 0.0062322

Vertical 0.982293 0.000549 0.0076567

Diagonal 0.955277 0.001466 0.0053490

B channel
Horizontal 0.933162 0.000000 0.0073123

Vertical 0.958172 −0.001465 0.0067766

Diagonal 0.918504 −0.001098 −0.0051781

House

R channel
Horizontal 0.954274 −0.000549 0.004812

Vertical 0.953098 0.000916 0.000535

Diagonal 0.918540 −0.004959 0.001604

G channel
Horizontal 0.933637 −0.006428 0.012478

Vertical 0.927962 0.001653 0.006774

Diagonal 0.871893 0.000917 0.006414

B channel
Horizontal 0.975040 −0.002933 0.011060

Vertical 0.959132 −0.002566 0.007135

Diagonal 0.938001 −0.001280 −0.001784

Peppers

R channel
Horizontal 0.958355 0.003853 0.005328

Vertical 0.964731 0.001284 0.004085

Diagonal 0.949474 −0.001832 0.006211

G channel
Horizontal 0.977986 −0.000912 0.008552

Vertical 0.977363 0.001460 0.009086

Diagonal 0.961298 0.002366 0.000178

B channel
Horizontal 0.964817 −0.001647 0.008550

Vertical 0.960795 0.006770 0.009263

Diagonal 0.940662 −0.000366 −0.000534

Average absolute value 0.002405 0.005851
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5.2. Differential-Attack Analysis

In a differential attack, the opponent will perform a series of encryption rounds with different
plain images. In each round of the attack, the plain image will be slightly modified by one bit or one
pixel, and after encryption, one pair consisting of the modified plain image and corresponding cipher
image can be obtained. By analyzing several pairs of modified plain image with the corresponding
cipher image, the equivalent key of the cryptosystem can be obtained. Therefore, to resist a differential
attack, the cryptosystem should provide sufficient sensitivity to tiny modifications of the plain image.
In other words, one slight modification to the plain image should lead to a completely different cipher
image. Two measures are usually used in differential-attack analysis. They are NPCR (number of
pixels change rate) and UACI (unified average changing intensity). NPCR and UACI are defined
by Equations (22) and (23). In the simulations, the last pixel of the G channel of the plain image is
modified. The NPCR and UACI data are listed in Tables 5 and 6.

NPCR =

∑
i, j D(i, j)

M×N
× 100%, (22)

where D(i, j) is defined as

D(i, j) =
{

1, c1(i, j) , c2(i, j)
0, otherwise

,

and c1 and c2 are the two cipher images.

UACI =
1

M×N

∑
i, j

∣∣∣c1(i, j) − c2(i, j)
∣∣∣

255

× 100% (23)

Table 5. The number of pixels change rate (NPCR) performances of proposed scheme and a
comparable scheme.

Encryption Round Proposed Scheme NPCR of [10]

1 97.4969 0.0002543

2 99.6085 0.0005086

3 99.5963 0.0005086

4 99.6042 0.0005086

5 99.6033 0.0010173
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Table 6. The unified average changing intensity (UACI) performances of proposed scheme and a
comparable scheme.

Encryption Round Proposed Scheme UACI of [10]

1 32.6231 0.0001865

2 33.4585 0.0002314

3 33.4285 0.0002164

4 33.4867 0.0001157

5 33.4933 0.0005256

5.3. Information-Entropy Analysis

Information entropy is a significant criterion for measuring the security strength of a symmetric
cryptosystem. The definition of the information entropy H(m) of a source m is given in Equation (24).

H(m) =
2N
−1∑

i=0

p(mi) log
1

p(mi)
(24)

In Equation (24), p(mi) is the probability of symbol mi and log denotes the base 2 logarithm. If
each symbol in the message source m is an eight-bit symbol and the 256 possible outcomes each have
equal probability, the message can be considered random information, and in this case, the information
entropy should be 8, which is the ideal situation of a cipher text obtained by a cryptosystem.

The information entropies of the proposed scheme and a comparable scheme are reported in
Table 7.

Table 7. Information entropies of the proposed scheme and a comparable scheme.

Encryption
Round

Color
Channel

Entropy (Lena) Entropy (House) Entropy (Peppers)

Proposed [10] Proposed [10] Proposed [10]

1
R 7.999323 7.996066 7.999322 7.996852 7.999212 7.996819

G 7.999260 7.996701 7.999304 7.996157 7.999331 7.996416

B 7.999418 7.997363 7.999249 7.996136 7.999314 7.996867

Table 7 shows that the information entropies of the cipher image obtained by the proposed scheme
are larger than those of the comparison scheme, and are very close to the ideal value of 8. This indicates
that the cipher image does not leak any of the information in the original plain image.

5.4. Speed Test

Computational efficiency is another significant issue for a cryptosystem. To evaluate the encryption
speed of the proposed scheme, the test image “Lena” is encrypted 10 times, and the average encryption
times are listed in Table 8.

Table 8. Speed performance.

Encryption Algorithm Average Confusion
Time (ms)

Average Diffusion Time
(ms) Average Total Time (ms)

Proposed scheme 82 30 112

The scheme in [10] - - 200 ms
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As there are no apparent confusion and diffusion stages in [10], only the total time of the
encryption algorithm in [10] is provided in Table 8. The results show that our scheme is faster than the
comparable one.

6. Conclusions

A new one-dimensional chaotic logistic–Bernoulli map is proposed and investigated. The new
map shows superior features in chaotic behavior and efficiency. In addition, a new diffusion structure
using a cellular automata strategy is proposed. Based on the new chaotic map and diffusion structure,
a new image-encryption algorithm is proposed. Simulation results show that the proposed scheme
leads to a higher level of security and is computationally efficient.
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