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Abstract: This is the Editorial article summarizing the scope and contents of the Special Issue,
Non-Equilibrium Thermodynamics of Micro Technologies.
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1. Second Law of Thermodynamics and Its Importance in Microscale Systems

Advancement of manufacturing techniques has resulted in a significant reduction in the size of the
individual components within many devices. This advancement has put forward micro and nanoscale
devices instead of macroscale counterparts. Miniaturized thermofluidic systems are a subcategory
of this renovation, and has recently gained significant attention. Applications of these systems in
micro manufactured devices is growing steadily. Some emerging applications of micro thermofluidic
systems include, microreactors [5,6], micro heat sinks [7,8], and micro cryocoolers [9,10], to name
a few. The progresses in the design, development and application of micro thermofluidic systems have
resulted in high demand for their heat transfer and thermodynamics analyses. Hence, small-scale
thermofluidic systems have been the subject of both theoretical and experimental investigations [1–4].

Scholars have tried to investigate these systems for years from the heat transfer perspectives and
so far a number of reviews have appeared in connection with these systems [2,11]. With regards to the
first law of thermodynamics and its application to the performances of these systems, temperature
simulation [12] and visualization [13], heat flux investigation and optimization [14,15], and partial or
total design reconfigurations [16–18] have been performed.

Recently, micro thermal systems have gained attention regarding the second law’s performance
and researchers have started to focus on investigating micro thermal systems from the entropy
perspective [19,20]. The second law analysis is a quantitative approach to evaluate the efficiency
of thermofluidic systems [21]. The second law analysis provides scholars a tool to minimize the
irreversibility of the system, and hence results in more environmentally friendly systems [22]. Regarding
small scale thermofluidic systems, the second law investigations range from entropy generation in
micro-channels [20–23] and concentric micro-fin tube heat exchanger [24] to micro combustors [25,26]
and micro reactors [27,28]. To perform the second law analysis, various effects and specifications of
the system including, but not limited to, fluid flow, heat and mass transfer, internal heat generation
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and electromagnetic effects should be included within analyses. There are relatively large number of
textbooks which covers the concept of the second law analysis in thermofluidic systems [21,29–31].
However, because of rapid development of small-scale systems, there is an urgent need to perform
more investigations on more diverse applications such as microreactors, micro-scale thermoelectric
coolers, and new geometries of microchannels. The main motivation for this special issue is to diversify
the available literature regarding the second law of thermodynamics in microscale thermofluidic
system by contributing nine articles.

2. The 9 Contributions Published in This Special Issue

This special issue consists of nine articles that report on investigations dealing with heat and mass
transfer and thermodynamic analysis of thermofluidic systems [32–40]. Most of these investigations
are analytic or numerical [32–40]. Two of the investigations include experiments [36,39]. The main
theme of four articles in this special issue is optimization of microchannels from both energetic and
entropic perspectives [34,36,39,40]. Other areas that have been explored include the analysis and
optimization of microreactors [33], simulation and thermal analysis of micro circular Couette flow [37],
and thermodynamic analysis of various-shaped micro-scale thermoelectric coolers [38]. Moreover,
an interesting concept named virtual entropy generation method has been elaborated by Zhang et al. [35],
which provides a path for the evaluation of leakage in channels using the concept of entropy generation.

Thermodynamic analysis of micro thermofluidic systems is an emerging area. With the
advancement of manufacturing techniques and rapid growth of micro-fabricated devices, design and
optimization of small-scale thermofluidic systems need more attention. This special issue is one step
towards this goal, and it is hoped that it will inspire further investigations.
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