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Abstract: The rolling bearings often suffer from compound fault in practice. Compared with single
fault, compound fault contains multiple fault features that are coupled together and make it difficult
to detect and extract all fault features by traditional methods such as Hilbert envelope demodulation,
wavelet transform and empirical node decomposition (EMD). In order to realize the compound
fault diagnosis of rolling bearings and improve the diagnostic accuracy, we developed negentropy
spectrum decomposition (NSD), which is based on fast empirical wavelet transform (FEWT) and
spectral negentropy, with cyclic extraction as the extraction method. The infogram is constructed by
FEWT combined with spectral negentropy to select the best band center and bandwidth for band-pass
filtering. The filtered signal is used as a new measured signal, and the fast empirical wavelet transform
combined with spectral negentropy is used to filter the new measured signal again. This operation is
repeated to achieve cyclic extraction, until the signal no longer contains obvious fault features. After
obtaining the envelope of all extracted components, compound fault diagnosis of rolling bearings
can be realized. The analysis of the simulation signal and the experimental signal shows that the
method can realize the compound fault diagnosis of rolling bearings, which verifies the feasibility
and effectiveness of the method. The method proposed in this paper can detect and extract all the
fault features of compound fault completely, and it is more reliable for the diagnosis of compound
fault. Therefore, the method has practical significance in rolling bearing compound fault diagnosis.

Keywords: rolling bearing; compound fault; negentropy spectrum decomposition; fast empirical
wavelet transform; spectral negentropy

1. Introduction

Rolling bearings are among the most common and yet critical parts in rotating mechanical
equipment. The working state of rolling bearings directly affects the performance of mechanical
equipment. The fault of the rolling bearings is one of the main reasons leading to failures of mechanical
equipment during operation. Bearing faults, which often occur gradually, represent one of the foremost
causes of failures in the industry. Therefore, detection of their faults in the early stage is quite important
to assure reliable and efficient operation [1]. Thus, it is of great significance to study the fault diagnosis
technology of rolling bearings [2–4]. For the single fault diagnosis of rolling bearings, researchers
have proposed Fourier transform [5], envelope analysis [6], empirical mode decomposition (EMD) [7],
wavelet transform [8] and fast kurtogram [9], and they achieved good application results. In recent
years, fault diagnosis methods based on intelligent classifier and machine learning have attracted
the attention of scholars and made good progress [10,11]. Due to the complexity of equipment and
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the correlation of structures, engineering practice mightily indicates that faults emerged in rotating
machinery usually shows, as the compound faults [12]. Dhamande et al. [13] proposed new compound
fault features, extracted from the continuous and discrete wavelet transform of the vibration signal.
It is found that these features have excellent diagnostic potential. This paper provides a new idea for
composite fault diagnosis, but due to the limitations of the wavelet transform, it has not achieved ideal
results. Yu et al. [14] proposed an improved morphological component analysis (MCA) method for the
compound fault diagnosis of gearboxes. This method selects the optimal dictionary from the limited
wavelet candidates, which restricts the generalizability of this method. Compound fault diagnosis is a
difficult problem in the field of fault diagnosis, and it is also an urgent problem to be addressed [15].

Compound fault refers to failures in rotating machinery, where multiple faults occur simultaneously
in rotating machinery and all the fault features are coupled together. Previous attempts to detect
compound fault adopted intelligent classifiers, such as artificial neural network (ANN) [16], support
vector machine (SVM) [17], and fuzzy inference [18]. Traditional machine learning methods require
a large amount of labeled data to ensure the generalization of the algorithm. However, in practical
problems, most of the samples are unlabeled, which results in unsatisfactory results of trained learning
models in practical applications, and makes a large number of unlabeled samples useless [19]. In order
to make compound fault diagnosis more efficient, decoupling technologies were developed. The
measured signal is decomposed into sub-signals by wavelet transform or EMD, and the sub-signals
are analyzed to diagnose compound fault. Xu et al. [20] proposed the compound fault diagnosis of
rolling bearings based on dual-tree complex wavelet transform (DT-CWT). The compound fault signal
is decomposed into several components of different frequency bands by DT-CWT, and ICA was used to
separate the mixed signal, which consists of each component to eliminate the frequency aliasing, so that
the detection and extraction of the fault features of compound fault are enabled. However, the wavelet
transform is essentially a rigid method, corresponding to use prescribed wavelet basis function to
process signals. So it cannot adaptively process a signal based on the information contained in the signal.
Wang et al. [21] replaced wavelet transform with ensemble empirical mode decomposition (EEMD),
and adaptively decomposed the compound fault signal into several intrinsic mode functions (IMF). The
compound fault diagnosis can be realized by analyzing the IMF. However, due to the lack of sufficient
theoretical support, the problems of modal aliasing, endpoint effect and over envelope in EMD method
cannot be solved. Empirical wavelet transform (EWT), proposed by Gilles [22], can divide the signals
adaptively and restrain modal aliasing to get more reasonable components. Kedadouche et al. [23]
compared EWT with EMD and concluded that EWT is superior to EMD in mode estimates, and can
reduce computation time. Yu et al. [24] applied EWT to compound fault diagnosis, and proved that the
method has more attractive performance than wavelet transform and EMD. Scholars have studied that
the EWT method causes modal aliasing due to the unreasonable boundary partition in the processing
of noisy signals, which will increase the computational time and obtain more invalid components.
Feng et al. [25] proposed a method for applying Adaptive Average Spectral Negentropy (AASN) to
EWT analysis (AEWT), to accurately determine the optimal resonant demodulation frequency band,
but this method cannot solve the problem of unreasonable boundary partition of EWT in essence.
Xu et al. [26] proposed a novel method for selecting the more reasonable band to improve empirical
wavelet transform. The fast empirical wavelet transform (FEWT) is proposed, replacing the boundary
division method in EWT. Compared with EWT, FEWT can divide the frequency band more reasonably
and extract the effective empirical modes, and improve the operation speed. Xu et al. used FEWT
combined with kurtosis to construct kurtogram, and achieved good results. Since experiments show
that this method is not effective in the presence of impulsive noise.

In fault diagnosis, the main challenge is to find the most suitable frequency band for demodulation.
Antoni [9] proposed spectral kurtosis (SK) to solve this problem. The SK is a statistical tool which can
indicate the presence of a series of transients and their locations in the frequency domain. Antoni et al.
applied SK to vibration monitoring of rotating machinery and proposed the concept of kurtogram [27].
Additionally, the proposal of fast kurtogram [28] makes up for the shortcoming of kurtogram. However,
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fast kurtogram often fails in the presence of impulsive noise, as the SK cannot recognize whether a series
of transients are repetitive or not. In order to remedy this defect, Antoni [29] introduced the concept
of spectral negentropy, and used the squared envelope (SE) to characterize the pulse features caused
by repetitive faults, and the squared envelope spectrum (SES) to characterize the cyclostationality.
Spectral negentropy can characterize the periodicity and cyclostationality of the signal, as well as
accurately extract the fault feature of the signal in the presence of impulsive noise [30,31]. The method
based on FEWT and spectral negentropy can accurately extract fault features. However, due to the
complexity of compound fault signals, this method cannot diagnose compound fault.

In this paper, a compound fault diagnosis method based on negentropy spectrum decomposition
(NSD) is proposed. By presupposing the initial reconstructed points and accumulating them, a series
of empirical modes are obtained by reconstructing the key functions. Infogram is constructed by
combining spectral negentropy. The filtered signal is used as a new measured signal, and the above
operation is repeated until the signal no longer contains obvious fault feature information. The paper
is organized as follows. Section 2 introduces FEWT and its combination with SK; Section 3 proposes
the NSD method and its application in the compound fault diagnosis of rolling bearings; Section 4
verifies that the method can diagnose compound fault of rolling bearings through simulation signals;
Section 5 verifies the effectiveness of the method through experiments.

2. Exposition of Fast Empirical Wavelet Transform

2.1. FEWT Method

Gilles proposed EWT based on EMD and wavelet analysis. FFT is used to get the spectrum. The
spectrum is normalized to [0, π], then divided into N continuous intervals, and N− 1 boundaries are
obtained. With the boundary of the interval as the center, the transition phase is defined to establish
the window base.

According to the definition of empirical wavelet, it is necessary to construct an appropriate
band-pass filter for each frequency band to extract the corresponding signals for signal reconstruction.
Gilles constructed empirical wavelet according to the Meyer wavelet construction method. In the
transitional section of two boundaries in the frequency band, a set of orthogonal triangular functions
are designed, and an invariant constant is set within the frequency band. The empirical scaling function
φ̂n(ω) and the empirical wavelets ψ̂n(ω) can be respectively defined as:

∅̂n(ω) =


1; |ω| ≤ (1− γ)ωn

cos [π2 β(
1

2γωn
(|ω| − (1− γ)ωn))]

0; others
; (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn (1)

ψ̂n(ω) =


1; (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[
π
2 β

(
1

2γωn+1
(|ω| − (1− γ)ωn+1)

)]
; (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn

sin
[
π
2 β

(
1

2γωn
(|ω| − (1− γ)ωn+1)

)]
; (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0; others

(2)

where the transition function β(x), the coefficient γ, and the transition phase τn are:

β(x) = x4
(
35− 84x + 70x2

− 20x3
)

(3)

γ < min
(
ωn+1 −ωn

ωn+1 +ωn

)
(4)

τn = γωn, 0 < γ < 1 (5)
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The detail coefficients of EWT is expressed as:

Wε
f (n, t) = < f (t), Ψn(t) > =

∫
f(τ)Ψn(τ− t)dτ = F−1(f̂(ω)Ψ̂n(ω)) (6)

In which, F(·) is the Fourier transform and F−1(·) is the inverse Fourier transform. The
approximation coefficients is expressed as:

Wε
f (0, t) = < f (t),∅1(t) > =

∫
f(τ)∅1(τ− t)dτ = F−1(f̂(ω)∅̂1(ω)) (7)

The signal f can be reconstructed by:

f(t) = Wε
f (0, t) ∗φ1(t) +

N∑
n=1

Wε
f (0, t) ∗ψn(t)= F−1

Ŵ
ε
f (0,ω)φ̂1(ω) +

N∑
n=1

Ŵ
ε
f (n,ω) ∗ ψ̂n(ω)

 (8)

The empirical modes can be obtained by:{
f0(t) = Wε

f (0, t) ∗φ1(t)
fk(t) = Wε

f (k, t) ∗ψk(t)
(9)

After obtaining the empirical mode of the signal, the Hilbert envelope method is used to calculate
the instantaneous frequency, and then the fault diagnosis can be realized.

The disadvantage of EWT is that while a large number of parameters are set to divide the
boundary adaptively, an appropriate boundary cannot be obtained in most cases. FEWT proposes
a new boundary partitioning method to replace the boundary partitioning method in EWT. Specific
steps of FEWT are described in Reference [26]:

Step 1: The Fast Fourier Transform (FFT) is used to obtain the spectrum Y(f) of the measured
signal Y(t). The key function K(f) is obtained by FFT again.

Step 2: A part of the key function is extracted, the inverse Fourier transform is performed
and the trend component in the spectrum is obtained. The degree of trend is related to the key
function extracted.

Step 3: The wavelet threshold method is used to optimize the trend, reduce the noise interference,
and get more reasonable boundaries.

Step 4: Empirical wavelet is constructed to decompose and reconstruct signals.
A simulation signal is constructed to verify that FEWT can divide the boundary more reasonably.

First, a series of transient are constructed to simulate the fault signals of bearing outer rings and the
inherent frequency of the signals is set as fn1 = 2000 Hz, the damping coefficient is set as g = 0.08,
and the repeated cycle is set as T = 0.01 s. So the characteristic frequency is 100 Hz. Second, the
non-impact and non-fault modulation signals s2 in rotating machinery operation are simulated: the
inherent frequency of the signal is fn2 = 5000 Hz, the width of the side band is 100 Hz, and the noise is
η = SNR(−0.03 dB).

s1 = 4e−g×2πfn1t
× sin

(
2πfn1t×

√
1− g2

)
s2 = sin(100πt)sin (2πfn2t + sin(100πt)) + 0.5 cos(4πt) cos(100πt)
s = s1 + s2 + η

(10)

Figure 1a,b show the components of the signal. The signal-to-noise ratio signal is shown in
Figure 1c and its spectrum in Figure 1d. Two methods are used to process signals and the following
results can be obtained. Figure 2a is the result of EWT. As can be seen in part A, the EWT method
incorrectly divides the resonance frequency band of the 2000 Hz pulse signal; part B divides up too
many invalid components. The shortcomings of the above EWT partitioning methods negatively
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affect the analysis of components and increase the calculation time. Figure 2b is the result of FEWT.
Compared with EWT by results, FEWT can find more reasonable boundaries.Entropy 2019, 21, 490 5 of 18 
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(c) the signal-to-noise ratio (SNR) signal; (d) the spectrum of (c).
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Figure 2. The boundaries divided by (a) the empirical wavelet transform (EWT) method and (b) the
fast empirical wavelet transform (FEWT) method (purple line: trend component).

2.2. FEWT Combined with Kurtogram

In the fast kurtogram proposed by Antoni [27], the SK is calculated after decomposing the signal
using the 1/3-binary tree filter bank. Reference [26] draws on the fast kurtogram to obtain a new
kurtogram based on FEWT. This method can set up the calculation speed and find the position of
periodic shock in the frequency domain. Specific steps of the method are described in Reference [26]:

Step 1: Set the initial number of reconstructed points to five and named ResCot.
Step 2: A series of signal components can be obtained by FEWT with ResCot as the

reconstructed points.
Step 3: If ResCot < 60, set ResCot = ResCot + 5 and repeat step 2 until ResCot > 60. Kurtogram

is constructed by calculating the SK of all signal components.
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Step 4: Extract the components with the maximum kurtosis in the kurtogram; calculate envelope
spectrum and extract faults.

Reference [26] shows that the method based on FEWT and kurtogram has certain advantages
over fast kurtogram. However, this method has its shortcomings: when there is impulse noise
interference, impulse noise will conceal fault features in the kurtogram. The following example shows
the shortcomings of SK in the presence of impulsive noise. A series of transients is synthesized
according to the model of Reference [32] and the inherent frequency of the series of transients is 100 Hz,
the damping coefficient is g = 0.08. Adding impulsive noise at t = 1, the inherent frequency of the
impulsive noise is 300 Hz, the damping coefficient is g = 0.02. Figure 3a shows a series of transients
produced by a faulty rolling element bearing and further corrupted by impulsive noise at time instant
t = 1. Figure 3b shows the SNR signal. The method based on FEWT and kurtogram is used to process
the signal in Figure 3b, and the kurtogram obtained is shown in Figure 4a. It can be seen that the
impulsive noise with an inherent frequency of 300 Hz dominates the kurtogram, and conceals a series
of transients with inherent frequency of 100 Hz.
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In addition, when the method based on FEWT and kurtogram is used to process compound
fault signals, only obvious fault features can be found in the signals by extracting a single feature
component for analysis, but other faults cannot be identified. The following example shows that
the method cannot diagnose and identify the compound fault of rolling bearings. According to the
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model of References [33,34], the compound fault signals of inner and outer rings of rolling bearings are
simulated. The simulation signals of rolling bearing outer ring fault are constructed as:

xo(t) = s(t) + n(t) =
∑

i AiH(t− iT1 − τi) + n(t)
Ai = constant

H(t) = exp(−gt) cos(2πfn1t +φω)

(11)

The simulation signals of rolling bearing inner ring fault are constructed as:
xi(t) = s(t) + n(t) =

∑
i AiH(t− iT2 − τi) + n(t)

Ai = A0 cos 2(2πfrt +φA)

H(t) = exp(−gt) cos(2πfn2t +φω)

(12)

Simulated signals of compound fault can be obtained from:

x(t) = xo(t) + xi(t) (13)

where n(t) = SNR, g is the damping coefficient, and τi represents slight fluctuations in the impact
process. The inherent frequency of the outer ring is fn1 = 1000 Hz, the fault characteristic frequency
of outer ring is fout =

1
T1

= 100 Hz; The inherent frequency of the inner ring is fn2 = 5000 Hz, the

fault characteristic frequency of inner ring is fin = 1
T2

= 150 Hz. The rotation frequency is fr = 15 Hz.
Figure 5a shows the simulated signal of the outer ring fault, Figure 5b shows the simulated signal of
inner ring fault, Figure 5c shows the compound fault signal, and Figure 5d shows the SNR signal. The
method based on FEWT and kurtogram is used to process the signal in Figure 5d, the kurtogram is
shown in Figure 6a. When the CotPoint = 45, the maximum component of kurtosis appears. Its kurtosis
is Kmax = 16.39, the center frequency is fc = 4985.7939 Hz; the boundaries are [4664.8 Hz; 5306.8 Hz],
the bandwidth is Bw = 642 Hz. Figure 6b shows the extracted signal and its envelope spectrum. There
are obvious characteristic frequencies and frequency doubling in the envelope spectrum, which are
similar to the fault characteristic frequency of the inner ring, but the fault characteristic of the outer
ring cannot be found in envelope spectrum. Therefore, the method based on FEWT and kurtogram
cannot identify the compound fault signal.
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Figure 6. (a) Kurtogram based on FEWT; (b) component with ResPoint = 45 and its envelope. 
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Figure 5. (a) The simulated signal of outer ring fault; (b) the simulated signal of inner ring fault; (c) the
compound fault signal; (d) the SNR signal.
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Figure 6. (a) Kurtogram based on FEWT; (b) component with ResPoint = 45 and its envelope. 

0 0.05 0.1 0.15 0.2
-5
0
5

a) Time[s] - Outer

A
m

pl
itu

de
[m

/s2 ] 0 0.05 0.1 0.15 0.2

-10
0

10

b) Time[s] - Inner

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20

0

20

c) Time[s] - Outer&inner

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20

0

20

d) Time[s] - SNR signal

Figure 6. (a) Kurtogram based on FEWT; (b) component with ResPoint = 45 and its envelope.

3. Proposed Method of Fast Negentropy Spectrum Decomposition

Rolling bearings are among the most common and yet critical parts in rotating mechanical
equipment, so the research on the fault diagnosis technology of rolling bearings has far-reaching
significance. The single fault characteristics of the outer ring, inner ring and rolling body of rolling
bearings are similar to those of the unilateral oscillation attenuation waveform, while the compound
fault features are the coupling of two or more single fault features, so the single fault diagnosis method
cannot diagnose the compound fault. In this section, combined with FEWT and spectral negentropy, a
compound fault diagnosis method based on NSD is proposed.

3.1. Exposition of Spectral Negentropy

Entropy is a multifunctional concept for measuring system disorders. The appearance of fault
impulse means that the equilibrium state of the system is broken and the entropy of the system has
been changed. The spectral entropy is defined as the entropy in the signal frequency band. When the
bearing is in normal condition, the energy fluctuation of the signal is constant and the spectral entropy
value is the maximum. On the other hand, when the energy fluctuation caused by fault pulse changes,
the spectral entropy value is the minimum, which is contrary to the change of kurtosis index. In order
to let it have the same physical meaning as spectral kurtosis, the negative value of spectral entropy is
defined as spectral negentropy.

Formally, consider a discrete-time signal x(n), n = 0, . . . , L− 1, of length L, and the square envelope
of its frequency band [f− ∆f

2 ; f + ∆f
2 ] is

SEX = |x(n; f, ∆f) + jH(x(n; f, ∆f))|2 (14)

where H(·) is a Hilbert transformation. Spectral negentropy in time domain reads

∆Ie(f; ∆f) = 〈
SEx(n; f, ∆f)2

〈SEx(n; f, ∆f)2
〉

〉 ln〈
SEx(n; f, ∆f)2

〈SEx(n; f, ∆f)2
〉

〉 (15)

where 〈·〉 is the mean operation. Similar to SK, spectral negentropy in time domain can characterize
the pulse feature caused by repetitive faults. Note that repetitive faults are not periodic in general, but
rather cyclostationary, and they can be defined by spectral negentropy in the frequency domain

∆IE(f; ∆f) = 〈

∣∣∣SESx(α; f, ∆f)
∣∣∣2

〈

∣∣∣SESx(α; f, ∆f)
∣∣∣2〉 〉 ln


∣∣∣SESx(α; f, ∆f)

∣∣∣2
〈

∣∣∣SESx(α; f, ∆f)
∣∣∣2〉

 (16)
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In which,
∣∣∣SESx(α; f, ∆f)

∣∣∣2 is the square envelope spectrum in the frequency band

SESx(α; f, ∆f) = F(SEx(n; f, ∆f)) (17)

where F(·) is the Fourier transform, and α is the change of the frequency. The weighted average of
∆Ie(f; ∆f) and ∆Ie(f; ∆f) is used to obtain the average spectral negentropy, and the periodicity and
cyclostationality of the signal are measured simultaneously. Mean spectral negativity is seen that

∆I1/2(f; ∆f) =
∆Ie(f; ∆f)

2
+

∆IE(f; ∆f)
2

(18)

Compared with spectral kurtosis, spectral negentropy can identify fault features in the presence of
impulsive noise. Similar to the combination of FEWT and spectral kurtosis, a method based on FEWT
and spectral negentropy is used to analyze the signal in Figure 3b, and the infogram is displayed in
Figure 4b–d. It can be seen that the impulsive noise at frequency 300 Hz dominates the SE infogram.
However, SES infogram and average infogram show radically different behavior: it is insensitive to the
impulsive noise and clearly reveals the series of transients at 100 Hz. Therefore, the method based on
FEWT and spectral negentropy can identify fault features in the presence of impulsive noise.

3.2. Negentropy Spectrum Decomposition Method

When compound faults occur in rolling bearings, they are coupled with each other and have
their own resonance frequency. The resonance frequencies of faults are often different, that is, the
resonance frequency bands exist in different frequency bands. By filtering based on FEWT and spectral
negentropy, obvious fault features can be extracted. However, the extracted frequency band often does
not contain other fault features. The compound fault simulation signal in Figure 7a shows this situation,
and its spectrum is shown in Figure 7b. The inherent frequency of the outer ring is fn1 = 1000 Hz, and
the inherent frequency of the inner ring is fn2 = 6000 Hz. The infogram is shown in Figure 8a. When
the CotPoint = 60, the maximum component of spectral negentropy appears. Its spectral negentropy
is Infomax = 3.23, the centre frequency is fc = 5995.7774 Hz; the boundaries are [5790.3 Hz; 6201.3 Hz],
the bandwidth is Bw = 411 Hz. Figure 8b shows the extracted signal and its envelope spectrum, and
only the inner fault features can be seen in the envelope spectrum.
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Figure 8. (a) Infogram based on FEWT; (b) component with ResPoint = 60 and its envelope. 
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Figure 7. (a) Signal in the first case; (b) spectrum of (a); (c) signal in the second case; (d) spectrum of (a).
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Figure 8. (a) Infogram based on FEWT; (b) component with ResPoint = 60 and its envelope.

In another case, when the inherent frequencies of the two faults are close to each other, the extracted
components contain a small number of features of secondary faults. Therefore, weak characteristic
frequency of secondary faults can be seen in the envelope spectrum, but they are seriously disturbed by
noise and cannot be used as a basis for judgment. The compound fault simulation signal in Figure 7c
shows this situation, and its spectrum is shown in Figure 7d. The inherent frequency of the outer ring
is fn1 = 5000 Hz, and the inherent frequency of the inner ring is fn2 = 6000 Hz. The infogram is shown
in Figure 9a. When the CotPoint = 55, the maximum component of spectral negentropy appears. Its
spectral negentropy is Infomax = 3.38, the center frequency is fc = 5938.1534 Hz; the boundaries are
[5563.7 Hz; 6312.7 Hz], the bandwidth is Bw = 749 Hz. Figure 9b shows the extracted signal and its
envelope spectrum. In the envelope spectrum, the inner ring fault features are obvious, while the outer
ring fault features are seriously disturbed by noise and therefore are not obvious. Thus, the method
based on FEWT and infogram cannot diagnose compound fault.Entropy 2019, 21, 490 10 of 18 
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A novel method of compound fault diagnosis based on NSD is proposed to solve the problem
that extracting a single component cannot diagnose compound fault. FEWT is used to decompose the
signal adaptively, and combining the spectral negentropy to construct the infogram, the frequency
band with the maximum spectral negentropy in the infogram can be extracted. After the extraction of
the frequency band, the signal repeats the above operation and extracts the characteristic components
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cyclically, which can diagnose compound fault. Figure 10 shows the process of the proposed method.
The specific steps are as follows:

Step 1: A series of boundaries in frequency domain can be obtained by presupposing initial
reconstruction points and accumulating them. Empirical wavelet and adaptive filter are constructed to
decompose the signal into a series of components.

Step 2: The spectral negentropy of each component is calculated and the infogram is constructed
to determine the parameters of the band-pass filter.

Step 3: Extract the components with the maximum spectral negentropy in the infogram; calculate
envelope spectrum and extract faults.

Step 4: The signal after component extraction is used as a new measured signal to determine
whether it contains obvious faults. If it does, return to the first step; else, proceed to the next step.

Step 5: All the components extracted are analyzed to diagnose compound fault.Entropy 2019, 21, 490 11 of 18 
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3.3. Cyclic Cutoff Conditions

The NSD method extracts a series of transients in turn, and stops extraction when there are no
obvious fault features in the signal. It can be considered that the extracted signal contains only noise,
modulation and a series of residual transients. In order to explore the spectral negentropy of noise with
different SNR, modulated signals with different frequencies and a series of transients, the following
simulation signals are constructed and their spectral negentropy is calculated.

(A) s1 = η, SNR = [−20, −15,−10,−5,−3,−2,−1, 0], the spectral negentropy of noise with different
SNR is calculated.

(B) s2 = 2 cos(2πft), the spectral negentropy of cosine signals with different frequencies
is calculated.
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(C) 
s3 = 2e−g×2πf1t

× sin
(
2πf1t×

√
1− g2

)
s4 = 2e−g×2πf2t

× sin
(
2πf2t×

√
1− g2

)
s5 = 2e−g×2πf3t

× sin
(
2πf3t×

√
1− g2

) (19)

C = [60, 70, 80, 90, 100, 110, 120, 130], repetition period T = 1/C, f1 = 1000 Hz, f2 = 2000 Hz,
f3 = 3000 Hz, the spectral negentropy of a series of transient with inherent frequencies of 1000 Hz,
2000 Hz and 3000 Hz are calculated for different repetition periods.

Figure 11 shows the results of the experiment. The blue line is the spectral negentropy of noise
signals with different SNR. The fluctuation of the line is very small. It can be seen that noise has
little effect on the spectral negentropy. The black line is the spectral negentropy of cosine signals
with different frequencies, and the line is close to a straight line. It can be seen that the frequency
of modulated signal has little effect on the spectral negentropy. Green, cyan and purple lines show
the spectral negentropy of a series of transient with inherent frequencies of 1000 Hz, 2000 Hz and
3000 Hz at different repetition periods, respectively. It can be seen that when the inherent frequency is
unchanged, the greater the repetition period, the greater the spectral negentropy; when the repetition
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Figure 11. Spectral negentropy of noise signal, modulation signal and a series of transients.

Spectral negentropy of the modulated signal with Gaussian noise is determined by a large number
of experiments. The simulation signal s = s1 + s2 is constructed, the SNR and cosine frequency are
randomly selected from a certain range, SNR = [−20; 0], f = [10; 300]. A thousand simulation signals
are randomly constructed and the spectral negentropy is calculated. Figure 12 shows the distribution
range of spectral negentropy. Spectral negentropy is mainly concentrated in the range of [0.7; 0.75].
The maximum and minimum spectral negentropy are 0.8083 and 0.5281, respectively. The number of
spectral negentropy greater than 0.8 in all simulation signals is 3. A series of residual transients in the
signal that no longer have periodicity and have little influence on the spectral negentropy. Therefore, it
can be determined that when the spectral negentropy is less than 0.8, the signal no longer contains
obvious fault characteristics. In the NSD method, the cyclic cutoff condition is set to the spectral
negentropy less than 0.8, which can extract all the fault features in the signal, avoid excessive cycles
and improve the diagnostic efficiency.
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4. Simulated Signal Verification

The compound fault simulated signal in Figure 5d is decomposed by FEWT, and a series of
components is obtained. The spectral negentropy of each component is calculated and the infogram is
constructed, as shown in Figure 13a. When the CotPoint = 60, the maximum component of spectral
negentropy appears. Its Spectral negentropy is Infomax = 4.04, the centre frequency is fc = 996.3588 Hz,
close to outer ring’s inherent frequency of fn1 = 1000 Hz; the boundaries are [852.4 Hz; 1140.4 Hz], the
bandwidth is Bw = 288 Hz. Figure 13b shows the extracted signal C1 and its envelope spectrum. The
characteristic frequency of the outer ring fault can be seen in the envelope spectrum. This suggests the
existence of the outer race bearing fault.
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Figure 13. (a) Infogram based on FEWT; (b) component with ResPoint = 60 and its envelope. 
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Figure 13. (a) Infogram based on FEWT; (b) component with ResPoint = 60 and its envelope.

C1 is extracted from the measured signal and a new measured signal is obtained. Figure 14a
shows the measured signal and Figure 14b is the spectrum of a. Figure 14c shows the new measured
signal and Figure 14d is the spectrum of c. It can be seen from the spectrum of the new measured
signal that the fault features of the outer ring have been extracted, leaving only the residual resonance
frequency band. The new measured signal is decomposed by FEWT, and a series of components are
obtained. Spectral negentropy of each component is calculated and infogram is constructed, as shown
in Figure 15a. When the CotPoint = 25, the maximum component of spectral negentropy appears.
Its Spectral negentropy is Infomax = 3.25, the centre frequency is fc = 4951.7944 Hz, close to inner
ring’s inherent frequency of fn2 = 5000 Hz; the boundaries are [4641.3 Hz; 5262.3 Hz], the bandwidth is
Bw = 621 Hz. In Figure 15b, the characteristic frequency of 150 Hz of the simulated signal is extracted
effectively, and its sideband and frequency doubling of 300 Hz are also very obvious. This suggests the
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existence of an inner race bearing fault. It can be concluded that the bearing has a compound fault
of inner and outer rings. That is, the proposed method can avoid misdiagnosis, and can separate all
compound fault characteristic frequencies of the simulated signal x(t).
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calculated and the infogram is constructed, as shown in Figure 18a. When the CotPoint = 10, the 
maximum component of spectral negentropy appears. Its Spectral negentropy is Info = 1.76, the 
centre frequency is f = 5172.5 Hz; the boundaries are [4345 Hz; 6000 Hz], the bandwidth is Bw =1655 Hz. Figure 18b shows the extracted signal C1 and its envelope spectrum. As shown in Figure 
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5. Applications

This experiment uses the fault bearing test data collected by the laboratory at Xi’an Jiaotong
University. The Spectra Quest, Inc test bench is shown in Figure 16. The actual motor frequency is
33.6 Hz, the motor speed is 1450 r/min, and the sampling frequency is Fs = 12, 000 Hz. The sensor is
connected to the outer ring of the motor end bearing. After the calculation, the fault characteristic
frequency of the inner ring of the bearing can be obtained as fin = 165.03 Hz, the fault characteristic
frequency of the outer ring of the bearing can be obtained as fout = 102.22 Hz
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Figure 16. The Spectra Quest, Inc. test bench.

Figure 17a shows the measured signal and its spectrum, Figure 17b shows the envelope of the
signal, the type of bearing failure cannot be determined. The measured signal is decomposed by FEWT,
and a series of components is obtained. The spectral negentropy of each component is calculated
and the infogram is constructed, as shown in Figure 18a. When the CotPoint = 10, the maximum
component of spectral negentropy appears. Its Spectral negentropy is Infomax = 1.76, the centre
frequency is fc = 5172.5 Hz; the boundaries are [4345 Hz; 6000 Hz], the bandwidth is Bw = 1655 Hz.
Figure 18b shows the extracted signal C1 and its envelope spectrum. As shown in Figure 18b, there
are obvious peak values at the fault characteristic frequency fout = 102.22 Hz of the outer race and its
harmonics (i.e., 204.44 Hz), and the spectra are extremely explicit. This suggests the existence of the
outer race bearing fault.
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shows the new measured signal after C1 extraction and its spectrum. In the spectrum, there is no 
frequency component of the frequency band  f = (4345 Hz, 6000 Hz) . Figure 19b shows the 
envelope of the signal. The new measured signal is decomposed by FEWT, and a series of 
components are obtained. The spectral negentropy of each component is calculated and infogram is 
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20b shows the extracted signal C2 and its envelope spectrum. The characteristic frequency of inner 
ring fault can be seen in the envelope spectrum. This suggests the existence of the inner race bearing 
fault.  C2 is extracted from the measured signal and a new measured signal is obtained. Figure 21a 
shows the new measured signal after C2′s extraction and its spectrum. In the spectrum, there is 
hardly any frequency component of the frequency band  (2806.2 Hz, 6000 Hz). Figure 19b shows the 
envelope of the signal. The spectral negentropy of the new measured signal is 0.76, so the cyclic 
extraction is stopped. It can be concluded that the bearing has a compound fault of inner and outer 
rings, which is consistent with the simulated bearing fault. Thus, the NSD method can effectively 
diagnose compound fault of rolling bearings. 
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Figure 17. (a) The measured signal and its spectrum; (b) the envelope of the signal. 
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frequency component of the frequency band  f = (4345 Hz, 6000 Hz) . Figure 19b shows the 
envelope of the signal. The new measured signal is decomposed by FEWT, and a series of 
components are obtained. The spectral negentropy of each component is calculated and infogram is 
constructed, as shown in Figure 20a. When the CotPoint = 15, the maximum component of spectral 
negentropy appears. Its Spectral negentropy is Info = 1.28 , the centre frequency is f =3806.6667 Hz; the boundaries are [2806.2 Hz; 4753.2 Hz], the bandwidth is Bw = 1893 Hz. Figure 
20b shows the extracted signal C2 and its envelope spectrum. The characteristic frequency of inner 
ring fault can be seen in the envelope spectrum. This suggests the existence of the inner race bearing 
fault.  C2 is extracted from the measured signal and a new measured signal is obtained. Figure 21a 
shows the new measured signal after C2′s extraction and its spectrum. In the spectrum, there is 
hardly any frequency component of the frequency band  (2806.2 Hz, 6000 Hz). Figure 19b shows the 
envelope of the signal. The spectral negentropy of the new measured signal is 0.76, so the cyclic 
extraction is stopped. It can be concluded that the bearing has a compound fault of inner and outer 
rings, which is consistent with the simulated bearing fault. Thus, the NSD method can effectively 
diagnose compound fault of rolling bearings. 
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Figure 18. (a) Infogram based on FEWT; (b) component with ResPoint = 10 and its envelope. Figure 18. (a) Infogram based on FEWT; (b) component with ResPoint = 10 and its envelope.

C1 is extracted from the measured signal and a new measured signal is obtained. Figure 19a shows
the new measured signal after C1 extraction and its spectrum. In the spectrum, there is no frequency
component of the frequency band fC1 = (4345 Hz, 6000 Hz). Figure 19b shows the envelope of the
signal. The new measured signal is decomposed by FEWT, and a series of components are obtained.
The spectral negentropy of each component is calculated and infogram is constructed, as shown in
Figure 20a. When the CotPoint = 15, the maximum component of spectral negentropy appears. Its
Spectral negentropy is Infomax = 1.28, the centre frequency is fc = 3806.6667 Hz; the boundaries are
[2806.2 Hz; 4753.2 Hz], the bandwidth is Bw = 1893 Hz. Figure 20b shows the extracted signal C2 and
its envelope spectrum. The characteristic frequency of inner ring fault can be seen in the envelope
spectrum. This suggests the existence of the inner race bearing fault.Entropy 2019, 21, 490 16 of 18 
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Figure 19. (a) The new measured signal and its spectrum after C1 extraction; (b) the envelope of
the signal.
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Figure 20. (a) Infogram based on FEWT; (b) component with ResPoint = 15 and its envelope.

C2 is extracted from the measured signal and a new measured signal is obtained. Figure 21a
shows the new measured signal after C2′s extraction and its spectrum. In the spectrum, there is hardly
any frequency component of the frequency band (2806.2 Hz, 6000 Hz). Figure 19b shows the envelope
of the signal. The spectral negentropy of the new measured signal is 0.76, so the cyclic extraction is
stopped. It can be concluded that the bearing has a compound fault of inner and outer rings, which is
consistent with the simulated bearing fault. Thus, the NSD method can effectively diagnose compound
fault of rolling bearings.
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Figure 21. (a) The new measured signal and its spectrum after C2 extraction; (b) the envelope of
the signal.

6. Conclusions

In practice, the faults of rotating machinery are usually compound fault. Compound fault contains
multiple fault features and all the fault features are coupled together, making it difficult to diagnose
compound fault. Therefore, exploring a reliable compound fault diagnosis method is one of the most
urgent problems in the field of mechanical condition monitoring and fault diagnosis (CMFD). To
overcome this challenge, a novel compound fault diagnosis method based on NSD is proposed in
this paper. Combining FEWT and spectral negentropy to construct the infogram, the fault feature
information in the signal can be extracted accurately in the presence of impulsive noise. The filtered
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signal is used as a new measured signal, and the above operation is repeated until the signal no longer
contains obvious fault feature information. All fault features contained in the signal can be extracted
sequentially. Compound fault diagnosis can be realized by envelope demodulation.

The method applies to the compound fault diagnosis of rolling bearings, and the feasibility and
effectiveness of the method are verified. Compared with EWT, FEWT can divide more reasonable
boundaries and has better adaptability. Compared with spectral kurtosis, spectral negentropy can
extract fault features more accurate in the presence of impulsive noise. When it is used to detect
whether there are obvious faults in the signal, the spectral negentropy is more stable and reliable.
Therefore, the method based on FEWT and spectral negentropy can accurately extract fault features in
signals. Through the extraction method of cyclic extraction, all the fault features in the composite fault
signal can be extracted in turn, thus ensuring the accuracy of the compound fault diagnosis.
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