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Abstract: The Jensen–Shannon divergence is a renowned bounded symmetrization of the unbounded
Kullback–Leibler divergence which measures the total Kullback–Leibler divergence to the average
mixture distribution. However, the Jensen–Shannon divergence between Gaussian distributions
is not available in closed form. To bypass this problem, we present a generalization of the
Jensen–Shannon (JS) divergence using abstract means which yields closed-form expressions when
the mean is chosen according to the parametric family of distributions. More generally, we define
the JS-symmetrizations of any distance using parameter mixtures derived from abstract means.
In particular, we first show that the geometric mean is well-suited for exponential families, and
report two closed-form formula for (i) the geometric Jensen–Shannon divergence between probability
densities of the same exponential family; and (ii) the geometric JS-symmetrization of the reverse
Kullback–Leibler divergence between probability densities of the same exponential family. As a
second illustrating example, we show that the harmonic mean is well-suited for the scale Cauchy
distributions, and report a closed-form formula for the harmonic Jensen–Shannon divergence between
scale Cauchy distributions. Applications to clustering with respect to these novel Jensen–Shannon
divergences are touched upon.

Keywords: Jensen–Shannon divergence; Jeffreys divergence; resistor average distance;
Bhattacharyya distance; f -divergence; Jensen/Burbea–Rao divergence; Bregman divergence;
abstract weighted mean; quasi-arithmetic mean; mixture family; statistical M-mixture;
exponential family; Gaussian family; Cauchy scale family; clustering

1. Introduction and Motivations

1.1. Kullback–Leibler Divergence and Its Symmetrizations

Let (X ,A) be a measurable space [1] where X denotes the sample space and A the σ-algebra
of measurable events. Consider a positive measure µ (usually the Lebesgue measure µL with Borel
σ-algebra B(Rd) or the counting measure µc with power set σ-algebra 2X ). Denote by P the set of
probability distributions.

The Kullback–Leibler Divergence [2] (KLD) KL : P × P → [0, ∞] is the most fundamental
distance [2] between probability distributions, defined by:

KL(P : Q):=
∫

p log
p
q

dµ, (1)

where p and q denote the Radon–Nikodym derivatives of probability measures P and Q with respect
to µ (with P, Q � µ). The KLD expression between P and Q in Equation (1) is independent of
the dominating measure µ. Table A1 summarizes the various distances and their notations used
in this paper.

Entropy 2019, 21, 485; doi:10.3390/e21050485 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-5728-0726
http://www.mdpi.com/1099-4300/21/5/485?type=check_update&version=1
http://dx.doi.org/10.3390/e21050485
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 485 2 of 23

The KLD is also called the relative entropy [2] because it can be written as the difference of the
cross-entropy minus the entropy:

KL(p : q) = h×(p : q)− h(p), (2)

where h× denotes the cross-entropy [2]:

h×(p : q):=
∫

p log
1
q

dµ, (3)

and
h(p):=

∫
p log

1
p

dµ = h×(p : p), (4)

denotes the Shannon entropy [2]. Although the formula of the Shannon entropy in Equation (4) unifies
both the discrete case and the continuous case of probability distributions, the behavior of entropy
in the discrete case and the continuous case is very different: When µ = µc, Equation (4) yields the
discrete Shannon entropy which is always positive and upper bounded by log |X |. When µ = µL,
Equation (4) defines the Shannon differential entropy which may be negative and unbounded [2] (e.g.,
the differential entropy of the Gaussian distribution N(m, σ) is 1

2 log(2πeσ2)). See also [3] for further
important differences between the discrete case and the continuous case.

In general, the KLD is an asymmetric distance (i.e., KL(p : q) 6= KL(q : p), hence the argument
separator notation using the delimiter ‘:’) In information theory [2], it is customary to use the double
bar notation ‘‖’ instead of the comma ‘,’ notation to avoid confusion with joint random variables.
The reverse KL divergence or dual KL divergence is:

KL∗(P : Q):=KL(Q : P) =
∫

q log
q
p

dµ. (5)

In general, the reverse distance or dual distance for a distance D is written as:

D∗(p : q):=D(q : p). (6)

One way to symmetrize the KLD is to consider the Jeffreys Divergence [4] (JD, Sir Harold Jeffreys
(1891–1989) was a British statistician.):

J(p; q):=KL(p : q) + KL(q : p) =
∫
(p− q) log

p
q

dµ = J(q; p). (7)

However, this symmetric distance is not upper bounded, and its sensitivity can raise numerical
issues in applications. Here, we used the optional argument separator notation ’;’ to emphasize that
the distance is symmetric but not necessarily a metric distance. This notation matches the notational
convention of the mutual information if two joint random variables in information theory [2].

The symmetrization of the KLD may also be obtained using the harmonic mean instead of the
arithmetic mean, yielding the resistor average distance [5] R(p; q):

1
R(p; q)

=
1
2

(
1

KL(p : q)
+

1
KL(q : p)

)
, (8)

R(p; q) =
2 (KL(p : q) + KL(q : p))

KL(p : q)KL(q : p)
=

2J(p; q)
KL(p : q)KL(q : p)

. (9)
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Another famous symmetrization of the KLD is the Jensen–Shannon Divergence [6] (JSD) defined by:

JS(p; q) :=
1
2

(
KL
(

p :
p + q

2

)
+ KL

(
q :

p + q
2

))
, (10)

=
1
2

∫ (
p log

2p
p + q

+ q log
2q

p + q

)
dµ. (11)

This distance can be interpreted as the total divergence to the average distribution (see Equation (10)).
The JSD can be rewritten as a Jensen divergence (or Burbea–Rao divergence [7]) for the negentropy
generator −h (called Shannon information):

JS(p; q) = h
(

p + q
2

)
− h(p) + h(q)

2
. (12)

An important property of the Jensen–Shannon divergence compared to the Jeffreys divergence is
that this distance is always bounded:

0 ≤ JS(p : q) ≤ log 2. (13)

This follows from the fact that

KL
(

p :
p + q

2

)
=
∫

p log
2p

p + q
dµ ≤

∫
p log

2p
p

dµ = log 2. (14)

Finally, the square root of the JSD (i.e.,
√

JS) yields a metric distance satisfying the triangular
inequality [8,9]. The JSD has found applications in many fields such as bioinformatics [10] and social
sciences [11], just to name a few. Recently, the JSD has gained attention in the deep learning community
with the Generative Adversarial Networks (GANs) [12]. In computer vision and pattern recognition,
one often relies on information-theoretic techniques to perform registration and recognition tasks.
For example, in [13], the authors use a mixture of Principal Axes Registrations (mPAR) whose parameters
are estimated by minimizing the KLD between the considered two-point distributions. In [14], the authors
parameterize both shapes and deformations using Gaussian Mixture Models (GMMs) to perform
non-rigid shape registration. The lack of closed-form formula for the KLD between GMMs [15] spurred
the use of other statistical distances which admit a closed-form expression for GMMs. For example, in [16],
shape registration is performed by using the Jensen-Rényi divergence between GMMs. See also [17] for
other information-theoretic divergences that admit closed-form formula for some statistical mixtures
extending GMMs.

In information geometry [18], the KLD, JD and JSD are invariant divergences which satisfy the
property of information monotonicity [18]. The class of (separable) distances satisfying the information
monotonicity are exhaustively characterized as Csiszár’s f -divergences [19]. A f -divergence is defined
for a convex generator function f strictly convex at 1 (with f (1) = f ′(1) = 0) by:

I f (p : q) =
∫

p f
(

q
p

)
dµ. (15)

The Jeffreys and Jensen–Shannon f -generators are:

f J(u) := (u− 1) log u, (16)

fJS(u) := −(u + 1) log
1 + u

2
+ u log u. (17)
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1.2. Statistical Distances and Parameter Divergences

In information and probability theory, the term “divergence” informally means a statistical
distance [2]. However in information geometry [18], a divergence has a stricter meaning of being
a smooth parametric distance (called a contrast function in [20]) from which a dual geometric structure
can be derived [21,22].

Consider parametric distributions pθ belonging to a parametric family of distributions {pθ : θ ∈ Θ}
(e.g., Gaussian family or Cauchy family), where Θ denotes the parameter space. Then a statistical distance
D between distributions pθ and pθ′ amount to an equivalent parameter distance:

P(θ : θ′):=D(pθ : pθ′). (18)

For example, the KLD between two distributions belonging to the same exponential family
(e.g., Gaussian family) amount to a reverse Bregman divergence for the cumulant generator F of the
exponential family [23]:

KL(pθ : pθ′) = B∗F(θ : θ′) = BF(θ
′ : θ). (19)

A Bregman divergence BF is defined for a strictly convex and differentiable generator F as:

BF(θ : θ′):=F(θ)− F(θ′)− 〈θ − θ′,∇F(θ′)〉, (20)

where 〈·, ·〉 is an inner product (usually the Euclidean dot product for vector parameters).
Similar to the interpretation of the Jensen–Shannon divergence (statistical divergence) as a Jensen

divergence for the negentropy generator, the Jensen–Bregman divergence [7] JBF (parametric divergence
JBD) amounts to a Jensen divergence JF for a strictly convex generator F : Θ→ R:

JBF(θ : θ′) :=
1
2

(
BF

(
θ :

θ + θ′

2

)
+ BF

(
θ′ :

θ + θ′

2

))
, (21)

=
F(θ) + F(θ′)

2
− F

(
θ + θ′

2

)
=: JF(θ : θ′), (22)

Let us introduce the notation (θpθq)α:=(1− α)θp + αθq to denote the linear interpolation (LERP) of
the parameters. Then we have more generally that the skew Jensen–Bregman divergence JBα

F(θ : θ′)

amounts to a skew Jensen divergence Jα
F(θ : θ′):

JBα
F(θ : θ′) := (1− α)BF

(
θ : (θθ′)α

)
+ αBF

(
θ′ : (θθ′)α)

)
, (23)

= (F(θ)F(θ′))α − F
(
(θθ′)α

)
=: Jα

F(θ : θ′), (24)

1.3. J-Symmetrization and JS-Symmetrization of Distances

For any arbitrary distance D(p : q), we can define its skew J-symmetrization for α ∈ [0, 1] by:

Jα
D(p : q):=(1− α)D (p : q) + αD (q : p) , (25)

and its JS-symmetrization by:

JSα
D(p : q) := (1− α)D (p : (1− α)p + αq) + αD (q : (1− α)p + αq) , (26)

= (1− α)D (p : (pq)α) + αD (q : (pq)α) . (27)

Usually, α = 1
2 , and for notational brevity, we drop the superscript: JSD(p : q) := JS

1
2
D(p : q).

The Jeffreys divergence is twice the J-symmetrization of the KLD, and the Jensen–Shannon divergence
is the JS-symmetrization of the KLD.
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The J-symmetrization of a f -divergence I f is obtained by taking the generator

f J
α(u) = (1− α) f (u) + α f �(u), (28)

where f �(u) = u f ( 1
u ) is the conjugate generator:

I f �(p : q) = I∗f (p : q) = I f (q : p). (29)

The JS-symmetrization of a f -divergence

Iα
f (p : q):=(1− α)I f (p : (pq)α) + αI f (q : (pq)α), (30)

with (pq)α = (1− α)p + αq is obtained by taking the generator

f JS
α (u):=(1− α) f (αu + 1− α) + α f

(
α +

1− α

u

)
. (31)

We check that we have:

Iα
f (p : q) = (1− α)I f (p : (pq)α) + αI f (q : (pq)α) = I1−α

f (q : p) = I f JS
α
(p : q). (32)

A family of symmetric distances unifying the Jeffreys divergence with the Jensen–Shannon
divergence was proposed in [24]. Finally, let us mention that once we have symmetrized a distance D,
we may also metrize this symmetric distance by choosing (when it exists) the largest exponent δ > 0
such that Dδ becomes a metric distance [8,25–28].

1.4. Contributions and Paper Outline

The paper is organized as follows:
Section 2 reports the special case of mixture families in information geometry [18] for which the

Jensen–Shannon divergence can be expressed as a Bregman divergence (Theorem 1), and highlight
the lack of closed-form formula when considering exponential families. This fact precisely motivated
this work.

Section 3 introduces the generalized Jensen–Shannon divergences using statistical mixtures
derived from abstract weighted means (Definitions 2 and 5), presents the JS-symmetrization of
statistical distances, and report a sufficient condition to get bounded JS-symmetrizations (Property 1).

In Section 4.1, we consider the calculation of the geometric JSD between members of the same
exponential family (Theorem 2) and instantiate the formula for the multivariate Gaussian distributions
(Corollary 1). We discuss about applications for k-means clustering in Section 4.1.2. In Section 4.2,
we illustrate the method with another example that calculates in closed form the harmonic JSD between
scale Cauchy distributions (Theorem 4).

Finally, we wrap up and conclude this work in Section 5.

2. Jensen–Shannon Divergence in Mixture and Exponential Families

We are interested to calculate the JSD between densities belonging to parametric families
of distributions.

A trivial example is when p = (p0, . . . , pD) and q = (q0, . . . , qD) are categorical distributions:
The average distribution p+q

2 is a again categorical distribution, and the JSD is expressed plainly as:

JS(p, q) =
1
2

D

∑
i=0

(
pi log

2pi
pi + qi

+ qi log
2qi

pi + qi

)
. (33)
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Another example is when p = mθp and q = mθq both belong to the same mixture family [18]M:

M:=

{
mθ(x) =

(
1−

D

∑
i=1

θi pi(x)

)
p0(x) +

D

∑
i=1

θi pi(x) : θi > 0, ∑
i

θi < 1

}
, (34)

for linearly independent component distributions p0, p1, . . . , pD. We have [29]:

KL(mθp : mθq) = BF(θp : θq), (35)

where BF is a Bregman divergence defined in Equation (20) obtained for the convex negentropy
generator [29] F(θ) = −h(mθ). The proof that F(θ) is a strictly convex function is not trivial [30].

The mixture families include the family of categorical distributions over a finite alphabet
X = {E0, . . . , ED} (the D-dimensional probability simplex) since those categorical distributions
form a mixture family with pi(x):=Pr(X = Ei) = δEi (x). Beware that mixture families impose to
prescribe the component distributions. Therefore, a density of a mixture family is a special case of
statistical mixtures (e.g., GMMs) with prescribed component distributions.

The mathematical identity of Equation (35) that does not yield a practical formula since F(θ) is
usually not itself available in closed form. Worse, the Bregman generator can be non-analytic [31].
Nevertheless, this identity is useful for computing the right-sided Bregman centroid (left KL
centroid of mixtures) since this centroid is equivalent to the center of mass, and independent of
the Bregman generator [29].

Since the mixture of mixtures is also a mixture, specifically

mθp + mθq

2
= m θp+θq

2
∈ M, (36)

it follows that we get a closed-form expression for the JSD between mixtures belonging toM.

Theorem 1 (JSD between mixtures). The Jensen–Shannon divergence between two distributions p = mθp

and q = mθq belonging to the same mixture familyM is expressed as a Jensen–Bregman divergence for the
negentropy generator F:

JS(mθp , mθq) =
1
2

(
BF

(
θp :

θp + θq

2

)
+ BF

(
θq :

θp + θq

2

))
. (37)

This amounts to calculate the Jensen divergence:

JS(mθp , mθq) = JF(θ1; θ2) = (F(θ1)F(θ2)) 1
2
− F((θ1θ2) 1

2
), (38)

where (v1v2)α:=(1− α)v1 + αv2.

Now, consider distributions p = eθp and q = eθq belonging to the same exponential family [18] E :

E :=
{

eθ(x) = exp
(

θ>x− F(θ)
)

: θ ∈ Θ
}

, (39)

where

Θ:=
{

θ ∈ RD :
∫

exp(θ>x)dµ < ∞
}

, (40)

denotes the natural parameter space. We have [18]:

KL(eθp : eθq) = BF(θq : θp), (41)

where F denotes the log-normalizer or cumulant function of the exponential family [18].
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However,
eθp+eθq

2 does not belong to E in general, except for the case of the categorical/multinomial
family which is both an exponential family and a mixture family [18].

For example, the mixture of two Gaussian distributions with distinct components is not a Gaussian
distribution. Thus, it is not obvious to get a closed-form expression for the JSD in that case. This
limitation precisely motivated the introduction of generalized JSDs defined in the next section.

Notice that in [32,33], it is shown how to express or approximate the f -divergences using
expansions of power χ pseudo-distances. These power chi distances can all be expressed in closed form
when dealing with isotropic Gaussians. This result holds for the JSD since the JSD is a f -divergence [33].

3. Generalized Jensen–Shannon Divergences

We first define abstract means M, and then generic statistical M-mixtures from which generalized
Jensen–Shannon divergences are built thereof.

Definitions

Consider an abstract mean [34] M. That is, a continuous bivariate function M(·, ·) : I × I → I on
an interval I ⊂ R that satisfies the following in-betweenness property:

inf{x, y} ≤ M(x, y) ≤ sup{x, y}, ∀x, y ∈ I. (42)

Using the unique dyadic expansion of real numbers, we can always build a corresponding weighted
mean Mα(p, q) (with α ∈ [0, 1]) following the construction reported in [34] (page 3) such that M0(p, q) = p
and M1(p, q) = q. In the remainder, we consider I = (0, ∞).

Examples of common weighted means are:

• the arithmetic mean Aα(x, y) = (1− α)x + αy,
• the geometric mean Gα(x, y) = x1−αyα, and
• the harmonic mean Hα(x, y) = xy

(1−α)y+αx .

These means can be unified using the concept of quasi-arithmetic means [34] (also called
Kolmogorov–Nagumo means):

Mh
α(x, y):=h−1 ((1− α)h(x) + αh(y)) , (43)

where h is a strictly monotonous function. For example, the geometric mean Gα(x, y) is obtained as
Mh

α(x, y) for the generator h(u) = log(u). Rényi used the concept of quasi-arithmetic means instead of
the arithmetic mean to define axiomatically the Rényi entropy [35] of order α in information theory [2].

For any abstract weighted mean, we can build a statistical mixture called a M-mixture as follows:

Definition 1 (M-mixture). The Mα-interpolation (pq)M
α (with α ∈ [0, 1]) of densities p and q with respect

to a mean M is a α-weighted M-mixture defined by:

(pq)M
α (x):=

Mα(p(x), q(x))
ZM

α (p : q)
, (44)

where
ZM

α (p : q) =
∫

t∈X
Mα(p(t), q(t))dµ(t) =: 〈Mα(p, q)〉 . (45)

is the normalizer function (or scaling factor) ensuring that (pq)M
α ∈ P . (The bracket notation 〈 f 〉 denotes the

integral of f over X .)

The A-mixture (pq)A
α (x) = (1− α)p(x) + αq(x) (‘A’ standing for the arithmetic mean) represents

the usual statistical mixture [36] (with ZA
α (p : q) = 1). The G-mixture (pq)G

α (x) = p(x)1−αq(x)α

ZG
α (p:q)

of
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two distributions p(x) and q(x) (’G’ standing for the geometric mean G) is an exponential family of
order [37] 1:

(pq)G
α (x) = exp

(
(1− α)p(x) + αq(x)− log ZG

α (p : q)
)

. (46)

The two-component M-mixture can be generalized to a k-component M-mixture with α ∈ ∆k−1,
the (k− 1)-dimensional standard simplex:

(p1 . . . pk)
M
α :=

p1(x)α1 × . . .× pk(x)αk

Zα(p1, . . . , pk)
, (47)

where Zα(p1, . . . , pk):=
∫
X p1(x)α1 × . . .× pk(x)αk dµ(x).

For a given pair of distributions p and q, the set {Mα(p(x), q(x)) : α ∈ [0, 1]} describes a path in
the space of probability density functions. This density interpolation scheme was investigated for
quasi-arithmetic weighted means in [38–40]. In [41], the authors study the Fisher information matrix
for the α-mixture models (using α-power means).

We call (pq)M
α the α-weighted M-mixture, thus extending the notion of α-mixtures [42] obtained

for power means Pα. Notice that abstract means have also been used to generalize Bregman divergences
using the concept of (M, N)-convexity [43].

Let us state a first generalization of the Jensen–Shannon divergence:

Definition 2 (M-Jensen–Shannon divergence). For a mean M, the skew M-Jensen–Shannon divergence
(for α ∈ [0, 1]) is defined by

JSMα(p : q):=(1− α)KL
(

p : (pq)M
α

)
+ αKL

(
q : (pq)M

α

)
(48)

When Mα = Aα, we recover the ordinary Jensen–Shannon divergence since Aα(p : q) = (pq)α

(and ZA
α (p : q) = 1).

We can extend the definition to the JS-symmetrization of any distance:

Definition 3 (M-JS symmetrization). For a mean M and a distance D, the skew M-JS symmetrization of D
(for α ∈ [0, 1]) is defined by

JSMα
D (p : q):=(1− α)D

(
p : (pq)M

α

)
+ αD

(
q : (pq)M

α

)
(49)

By notation, we have JSMα(p : q) = JSMα
KL (p : q). That is, the arithmetic JS-symmetrization of the

KLD is the JSD.
Let us define the α-skew K-divergence [6,44] Kα(p : q) as

Kα (p : q) :=KL(p : (1− α)p + αq) = KL(p : (pq)α), (50)

where (pq)α(x):=(1 − α)p(x) + αq(x). Then the Jensen–Shannon divergence and the Jeffreys
divergence can be rewritten [24] as

JS (p; q) =
1
2

(
K 1

2
(p : q) + K 1

2
(q : p)

)
, (51)

J (p; q) = K1(p : q) + K1(q : p), (52)

since KL(p : q) = K1(p : q). Then JSα(p : q) = (1− α)Kα(p : q) + αK1−α(q : p). Similarly, we can
define the generalized skew K-divergence:

KMα
D (p : q):=D

(
p : (pq)M

α

)
. (53)
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The success of the JSD compared to the JD in applications is partially due to the fact that the
JSD is upper bounded by log 2. So, one question to ask is whether those generalized JSDs are upper
bounded or not?

To report a sufficient condition, let us first introduce the dominance relationship between means:
We say that a mean M dominates a mean N when M(x, y) ≥ N(x, y) for all x, y ≥ 0, see [34]. In that
case we write concisely M ≥ N. For example, the Arithmetic-Geometric-Harmonic (AGH) inequality
states that A ≥ G ≥ H.

Consider the term

KL(p : (pq)M
α ) =

∫
p(x) log

p(x)ZM
α (p, q)

Mα(p(x), q(x))
dµ(x), (54)

= log ZM
α (p, q) +

∫
p(x) log

p(x)
Mα(p(x), q(x))

dµ(x). (55)

When mean Mα dominates the arithmetic mean Aα, we have∫
p(x) log

p(x)
Mα(p(x), q(x))

dµ(x) ≤
∫

p(x) log
p(x)

Aα(p(x), q(x))
dµ(x),

and ∫
p(x) log

p(x)
Aα(p(x), q(x))

dµ(x) ≤
∫

p(x) log
p(x)

(1− α)p(x)
dµ(x) = − log(1− α).

Notice that ZA
α (p : q) = 1 (when M = A is the arithmetic mean), and we recover the fact that the

α-skew Jensen–Shannon divergence is upper bounded by − log(1− α) (e.g., log 2 when α = 1
2 ).

We summarize the result in the following property:

Property 1 (Upper bound on M-JSD). The M-JSD is upper bounded by log ZM
α (p,q)
1−α when M ≥ A.

Let us observe that dominance of means can be used to define distances: For example,
the celebrated α-divergences

Iα(p : q) =
∫ (

αp(x) + (1− α)q(x)− p(x)αq(x)1−α
)

dµ(x), α 6∈ {0, 1} (56)

can be interpreted as a difference of two means, the arithmetic mean and the geometry mean:

Iα(p : q) =
∫

(Aα(q(x) : p(x))− Gα(q(x) : p(x)))dµ(x). (57)

We can also define the generalized Jeffreys divergence as follows:

Definition 4 (N-Jeffreys divergence). For a mean N, the skew N-Jeffreys divergence (for β ∈ [0, 1])
is defined by

JNβ(p : q) := Nβ(KL (p : q) , KL (q : p)). (58)

This definition includes the (scaled) resistor average distance [5] R(p; q), obtained for the harmonic
mean N = H for the KLD with skew parameter β = 1

2 :

1
R(p; q)

=
1
2

(
1

KL(p : q)
+

1
KL(q : p)

)
, (59)

R(p; q) =
2J(p; q)

KL(p : q)KL(q : p)
. (60)
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In [5], the factor 1
2 is omitted to keep the spirit of the original Jeffreys divergence.

We can further extend this definition for any arbitrary divergence D as follows:

Definition 5 (Skew (M, N)-D divergence). The skew (M, N)-divergence with respect to weighted means
Mα and Nβ as follows:

JS
Mα ,Nβ

D (p : q):=Nβ

(
D
(

p : (pq)M
α

)
, D
(

q : (pq)M
α

))
. (61)

We now show how to choose the abstract mean according to the parametric family of distributions
to obtain some closed-form formula for some statistical distances.

4. Some Closed-Form Formula for the M-Jensen–Shannon Divergences

Our motivation to introduce these novel families of M-Jensen–Shannon divergences is to obtain
closed-form formula when probability densities belong to some given parametric families PΘ. We shall
illustrate the principle of the method to choose the right abstract mean for the considered parametric
family, and report corresponding formula for the following two case studies:

1. The geometric G-Jensen–Shannon divergence for the exponential families (Section 4.1), and
2. the harmonic H-Jensen–Shannon divergence for the family of Cauchy scale distributions (Section 4.2).

Recall that the arithmetic A-Jensen–Shannon divergence is well-suited for mixture families
(Theorem 1).

4.1. The Geometric G-Jensen–Shannon Divergence

Consider an exponential family [37] EF with log-normalizer F:

EF =
{

pθ(x)dµ = exp(θ>x− F(θ))dµ : θ ∈ Θ
}

, (62)

and natural parameter space

Θ =

{
θ :

∫
X

exp(θ>x)dµ < ∞
}

. (63)

The log-normalizer (a log-Laplace function also called log-partition or cumulant function) is a
real analytic convex function.

We seek for a mean M such that the weighted M-mixture density (pθ1 pθ2)
M
α of two densities pθ1

and pθ2 of the same exponential family yields another density of that exponential family (e.g., p(θ1θ2)α
).

When considering exponential families, choose the weighted geometric mean Gα for the abstract mean
Mα(x, y): Mα(x, y) = Gα(x, y) = x1−αyα, for x, y > 0. Indeed, it is well-known that the normalized
weighted product of distributions belonging to the same exponential family also belongs to this
exponential family [45]:

∀x ∈ X , (pθ1 pθ2)
G
α (x) :=

Gα(pθ1(x), pθ2(x))∫
Gα(pθ1(t), pθ2(t))dµ(t)

=
p1−α

θ1
(x)pα

θ2
(x)

ZG
α (p : q)

, (64)

= p(θ1θ2)α
(x), (65)

where the normalization factor is

ZG
α (p : q) = exp(−Jα

F(θ1 : θ2)), (66)

for the skew Jensen divergence Jα
F defined by:

Jα
F(θ1 : θ2):=(F(θ1)F(θ2))α − F((θ1θ2)α). (67)
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Notice that since the natural parameter space Θ is convex, the distribution p(θ1θ2)α
∈ EF

(since (θ1θ2)α ∈ Θ).
Thus, it follows that we have:

KL
(

pθ : (pθ1 pθ2)
G
α

)
= KL

(
pθ : p(θ1θ2)α

)
, (68)

= BF((θ1θ2)α : θ). (69)

This allows us to conclude that the G-Jensen–Shannon divergence admits the following closed-form
expression between densities belonging to the same exponential family:

JSG
α (pθ1 : pθ2) := (1− α)KL(pθ1 : (pθ1 pθ2)

G
α ) + αKL(pθ2 : (pθ1 pθ2)

G
α ), (70)

= (1− α)BF((θ1θ2)α : θ1) + αBF((θ1θ2)α : θ2). (71)

Please note that since (θ1θ2)α − θ1 = α(θ2 − θ1) and (θ1θ2)α − θ2 = (1− α)(θ1 − θ2), it follows
that (1− α)BF(θ1 : (θ1θ2)α) + αBF(θ2 : (θ1θ2)α) = Jα

F(θ1 : θ2).
The dual divergence [46] D∗ (with respect to the reference argument) or reverse divergence of a

divergence D is defined by swapping the calling arguments: D∗(θ : θ′):=D(θ′ : θ).
Thus, if we defined the Jensen–Shannon divergence for the dual KL divergence KL∗(p : q):=KL(q : p)

JSKL∗(p : q) :=
1
2

(
KL∗

(
p :

p + q
2

)
+ KL∗

(
q :

p + q
2

))
, (72)

=
1
2

(
KL
(

p + q
2

: p
)
+ KL

(
p + q

2
: q
))

, (73)

then we obtain:

JSGα
KL∗(pθ1 : pθ2) := (1− α)KL((pθ1 pθ2)

G
α : pθ1) + αKL((pθ1 pθ2)

G
α : pθ2), (74)

= (1− α)BF(θ1 : (θ1θ2)α) + αBF(θ2 : (θ1θ2)α) = JBα
F(θ1 : θ2), (75)

= (1− α)F(θ1) + αF(θ2)− F((θ1θ2)α), (76)

= Jα
F(θ1 : θ2). (77)

Please note that JSD∗ 6= JSD
∗.

In general, the JS-symmetrization for the reverse KL divergence is

JSKL∗(p; q) =
1
2

(
KL
(

p + q
2

: p
)
+ KL

(
p + q

2
: q
))

, (78)

=
∫

m log
m
√

pq
dµ =

∫
A(p, q) log

A(p, q)
G(p, q)

dµ, (79)

where m = p+q
2 = A(p, q) and G(p, q) =

√
pq. Since A ≥ G (arithmetic-geometric inequality),

it follows that JSKL∗(p; q) ≥ 0.

Theorem 2 (G-JSD and its dual JS-symmetrization in exponential families). The α-skew
G-Jensen–Shannon divergence JSGα between two distributions pθ1 and pθ2 of the same exponential family
EF is expressed in closed form for α ∈ (0, 1) as:

JSGα(pθ1 : pθ2) = (1− α)BF ((θ1θ2)α : θ1) + αBF ((θ1θ2)α : θ2) , (80)

JSGα
KL∗(pθ1 : pθ2) = JBα

F(θ1 : θ2) = Jα
F(θ1 : θ2). (81)
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4.1.1. Case Study: The Multivariate Gaussian Family

Consider the exponential family [18,37] of multivariate Gaussian distributions [47–49]

{N(µ, Σ) : µ ∈ Rd, Σ � 0}. (82)

The multivariate Gaussian family is also called the multivariate normal family in the literature,
or MVN family for short.

Let λ:=(λv, λM) = (µ, Σ) denote the composite (vector,matrix) parameter of an MVN.
The d-dimensional MVN density is given by

pλ(x; λ) :=
1

(2π)
d
2
√
|λM|

exp
(
−1

2
(x− λv)

>λ−1
M (x− λv)

)
, (83)

where | · | denotes the matrix determinant. The natural parameters θ are also expressed using both a
vector parameter θv and a matrix parameter θM in a compound object θ = (θv, θM). By defining the
following compound inner product on a composite (vector,matrix) object

〈θ, θ′〉:=θ>v θ′v + tr
(

θ′M
>

θM

)
, (84)

where tr(·) denotes the matrix trace, we rewrite the MVN density of Equation (83) in the canonical
form of an exponential family [37]:

pθ(x; θ) := exp (〈t(x), θ〉 − Fθ(θ)) = pλ(x; λ(θ)), (85)

where

θ = (θv, θM) =

(
Σ−1µ,−1

2
Σ−1

)
= θ(λ) =

(
λ−1

M λv,−1
2

λ−1
M

)
, (86)

is the compound natural parameter and
t(x) = (x,−xx>) (87)

is the compound sufficient statistic. The function Fθ is the strictly convex and continuously differentiable
log-normalizer defined by:

Fθ(θ) =
1
2

(
d log π − log |θM|+

1
2

θ>v θ−1
M θv

)
, (88)

The log-normalizer can be expressed using the ordinary parameters, λ = (µ, Σ), as:

Fλ(λ) =
1
2

(
λ>v λ−1

M λv + log |λM|+ d log 2π
)

, (89)

=
1
2

(
µ>Σ−1µ + log |Σ|+ d log 2π

)
. (90)

The moment/expectation parameters [18,49] are

η = (ηv, ηM) = E[t(x)] = ∇F(θ). (91)
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We report the conversion formula between the three types of coordinate systems (namely the
ordinary parameter λ, the natural parameter θ and the moment parameter η) as follows:{

θv(λ) = λ−1
M λv = Σ−1µ

θM(λ) = 1
2 λ−1

M = 1
2 Σ−1 ⇔

{
λv(θ) =

1
2 θ−1

M θv = µ

λM(θ) = 1
2 θ−1

M = Σ
(92){

ηv(θ) =
1
2 θ−1

M θv

ηM(θ) = − 1
2 θ−1

M −
1
4 (θ
−1
M θv)(θ

−1
M θv)>

⇔
{

θv(η) = −(ηM + ηvη>v )−1ηv

θM(η) = − 1
2 (ηM + ηvη>v )−1 (93){

λv(η) = ηv = µ

λM(η) = −ηM − ηvη>v = Σ
⇔

{
ηv(λ) = λv = µ

ηM(λ) = −λM − λvλ>v = −Σ− µµ>
(94)

The dual Legendre convex conjugate [18,49] is

F∗η (η) = −
1
2

(
log(1 + η>v η−1

M ηv) + log | − ηM|+ d(1 + log 2π)
)

, (95)

and θ = ∇η F∗η (η).
We check the Fenchel-Young equality when η = ∇F(θ) and θ = ∇F∗(η):

Fθ(θ) + F∗η (η)− 〈θ, η〉 = 0. (96)

The Kullback–Leibler divergence between two d-dimensional Gaussians distributions p(µ1,Σ1)
and

p(µ2,Σ2)
(with ∆µ = µ2 − µ1) is

KL(p(µ1,Σ1)
: p(µ2,Σ2)

) =
1
2

{
tr(Σ−1

2 Σ1) + ∆>µ Σ−1
2 ∆µ + log

|Σ2|
|Σ1|
− d
}

= KL(pλ1 : pλ2). (97)

We check that KL(p(µ,Σ) : p(µ,Σ)) = 0 since ∆µ = 0 and tr(Σ−1Σ) = tr(I) = d. Notice that when
Σ1 = Σ2 = Σ, we have

KL(p(µ1,Σ) : p(µ2,Σ)) =
1
2

∆>µ Σ−1∆µ =
1
2

D2
Σ−1(µ1, µ2), (98)

that is half the squared Mahalanobis distance for the precision matrix Σ−1 (a positive-definite matrix:
Σ−1 � 0), where the Mahalanobis distance is defined for any positive matrix Q � 0 as follows:

DQ(p1 : p2) =
√
(p1 − p2)>Q(p1 − p2). (99)

The Kullback–Leibler divergence between two probability densities of the same exponential
families amount to a Bregman divergence [18]:

KL(p(µ1,Σ1)
: p(µ2,Σ2)

) = KL(pλ1 : pλ2) = BF(θ2 : θ1) = BF∗(η1 : η2), (100)

where the Bregman divergence is defined by

BF(θ : θ′):=F(θ)− F(θ′)− 〈θ − θ′,∇F(θ′)〉, (101)

with η′ = ∇F(θ′). Define the canonical divergence [18]

AF(θ1 : η2) = F(θ1) + F∗(η2)− 〈θ1, η2〉 = AF∗(η2 : θ1), (102)

since F∗∗ = F. We have BF(θ1 : θ2) = AF(θ1 : η2).
Now, observe that pθ(0, θ) = exp(−F(θ)) when 〈t(0), θ〉 = 0. In particular, this holds for the

multivariate normal family. Thus, we have the following proposition.
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Proposition 1. For the MVN family, we have

pθ(x; (θ1θ2)α) =
pθ(x, θ1)

1−α pθ(x, θ2)
α

ZG
α (pθ1 : pθ2)

, (103)

with the scaling normalization factor:

ZG
α (pθ1 : pθ2) = exp(−Jα

F(θ1 : θ2)) =
pθ(0; θ1)

1−α pθ(0; θ2)
α

pθ(0; (θ1θ2)α)
. (104)

More generally, we have for a k-dimensional weight vector α belonging to the (k− 1)-dimensional
standard simplex:

ZG
α (pθ1 , . . . pθk ) =

∏k
i=1 pθ(0, θi)

αi

pθ(0; θ̄)
, (105)

where θ̄ = ∑k
i=1 αiθi.

Finally, we state the formulas for the G-JS divergence between MVNs for the KL and
reverse KL, respectively:

Corollary 1 (G-JSD between Gaussians). The skew G-Jensen–Shannon divergence JSG
α and the dual skew

G-Jensen–Shannon divergence JS∗G
α between two multivariate Gaussians N(µ1, Σ1) and N(µ2, Σ2) is

JSGα(p(µ1,Σ1)
: p(µ2,Σ2)

) = (1− α)KL(p(µ1,Σ1)
: p(µα,Σα))+ αKL(p(µ2,Σ2)

: p(µα,Σα)), (106)

= (1− α)BF((θ1θ2)α : θ1)+ αBF((θ1θ2)α : θ2), (107)

=
1
2

(
tr
(

Σ−1
α ((1− α)Σ1 + αΣ2)

)
+ log

|Σα|
|Σ1|1−α|Σ2|α

+

(1− α)(µα−µ1)
>Σ−1

α (µα−µ1)+ α(µα−µ2)
>Σ−1

α (µα−µ2)− d
)

(108)

JSGα
∗ (p(µ1,Σ1)

: p(µ2,Σ2)
) = (1− α)KL(p(µα,Σα) : p(µ1,Σ1)

)+ αKL(p(µα,Σα) : p(µ2,Σ2)
), (109)

= (1− α)BF(θ1 : (θ1θ2)α)+ αBF(θ2 : (θ1θ2)α), (110)

= JF(θ1 : θ2), (111)

=
1
2

(
(1− α)µ>1 Σ−1

1 µ1 + αµ>2 Σ−1
2 µ2−µ>α Σ−1

α µα + log
|Σ1|1−α|Σ2|α
|Σα|

)
, (112)

where

Σα = (Σ1Σ2)
Σ
α =

(
(1− α)Σ−1

1 + αΣ−1
2

)−1
, (113)

(matrix harmonic barycenter) and

µα = (µ1µ2)
µ
α = Σα

(
(1− α)Σ−1

1 µ1 + αΣ−1
2 µ2

)
. (114)

Notice that the α-skew Bhattacharyya distance [7]:

Bα(p : q) = − log
∫
X

p1−αqαdµ (115)

between two members of the same exponential family amounts to a α-skew Jensen divergence between
the corresponding natural parameters:

Bα(pθ1 : pθ2) = Jα
F(θ1 : θ2). (116)



Entropy 2019, 21, 485 15 of 23

A simple proof follows from the fact that

∫
p(θ1θ2)α

(x)dµ(x) = 1 =
∫ p1−α

θ1
(x)pα

θ2
(x)

ZG
α (pθ1 : pθ2)

dµ(x). (117)

Therefore, we have

log 1 = 0 = log
∫

p1−α
θ1

(x)pα
θ2
(x)dµ(x)− log ZG

α (pθ1 : pθ2), (118)

with ZG
α (pθ1 : pθ2) = exp(−JF(pθ1 : pθ2)). Thus, it follows that

Bα(pθ1 : pθ2) = − log
∫

p1−α
θ1

(x)pα
θ2
(x)dµ(x), (119)

= − log ZG
α (pθ1 : pθ2), (120)

= JF(pθ1 : pθ2). (121)

Corollary 2. The JS-symmetrization of the reverse Kullback–Leibler divergence between densities of the
same exponential family amount to calculate a Jensen/Burbea–Rao divergence between the corresponding
natural parameters.

4.1.2. Applications to k-Means Clustering

Let P = {p1, . . . , pn} denote a point set, and C = {c1, . . . , ck} denote a set of k (cluster) centers.
The generalized k-means objective [23] with respect to a distance D is defined by:

ED(P, C) =
1
n

n

∑
i=1

min
j∈{1,...,k}

D(pi : cj). (122)

By defining the distance D(p, C) = minj∈{1,...,k} D(p : cj) of a point to a set of points, we can
rewrite compactly the objective function as ED(P, C) = 1

n ∑n
i=1 D(pi, C). Denote by E∗D(P, k) the

minimum objective loss for a set of k = |C| clusters: E∗D(P, k) = min|C|=k ED(P, C). It is NP-hard [50]
to compute E∗D(P, k) when k > 1 and the dimension d > 1. The most common heuristic is Lloyd’s
batched k-means [23] that yields a local minimum.

The performance of the probabilistic k-means++ initialization [51] has been extended to arbitrary
distances in [52] as follows:

Theorem 3 (Generalized k-means++ performance, [53]). Let κ1 and κ2 be two constants such that κ1 defines
the quasi-triangular inequality property:

D(x : z) ≤ κ1 (D(x : y) + D(y : z)) , ∀x, y, z ∈ ∆d, (123)

and κ2 handles the symmetry inequality:

D(x : y) ≤ κ2D(y : x), ∀x, y ∈ ∆d. (124)

Then the generalized k-means++ seeding guarantees with high probability a configuration C of cluster
centers such that:

ED(P, C) ≤ 2κ2
1(1 + κ2)(2 + log k)E∗D(P, k). (125)

To bound the constants κ1 and κ2, we rewrite the generalized Jensen–Shannon divergences using
quadratic form expressions: That is, using a squared Mahalanobis distance:

DQ(p : q) =
√
(p− q)>Q(p− q), (126)
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for a positive-definite matrix Q � 0. Since the Bregman divergence can be interpreted as the tail of a
first-order Taylor expansion, we have:

BF(θ1 : θ2) =
1
2
(θ1 − θ2)

>∇2F(ξ)(θ1 − θ2), (127)

for ξ ∈ Θ (open convex). Similarly, the Jensen divergence can be interpreted as a Jensen–Bregman
divergence, and thus we have

JF(θ1 : θ2)
1
2
(θ1 − θ2)

>∇2F(ξ ′)(θ1 − θ2), (128)

for ξ ′ ∈ Θ. More precisely, for a prescribed point set {θ1, . . . , θn}, we have ξ, ξ ′ ∈ CH({θ1, . . . , θn}),
where CH denotes the closed convex hull. We can therefore upper bound κ1 and κ2 using the ratio
maxθ∈CH({θ1,...,θn}) ‖∇

2F(θ)‖
maxθ∈CH({θ1,...,θn}) ‖∇2F(θ)‖ . See [54] for further details.

A centroid for a set of parameters θ1, . . . , θn is defined as the minimizer of the functional

ED(θ) =
1
n ∑

i
D(θi : θ). (129)

In particular, the symmetrized Bregman centroids have been studied in [55] (for JSGα ), and the Jensen
centroids (for JSGα

∗ ) have been investigated in [7] using the convex-concave iterative procedure.

4.2. The Harmonic Jensen–Shannon Divergence (H-JS)

The principle to get closed-form formula for generalized Jensen–Shannon divergences between
distributions belonging to a parametric family PΘ = {pθ : θ ∈ Θ} consists of finding an abstract mean
M such that the M-mixture (pθ1 pθ2)

M
α belongs to the family PΘ. In particular, when Θ is a convex

domain, we seek a mean M such that (pθ1 pθ2)
M
α = p(θ1θ2)α

with (θ1θ2)α ∈ Θ.
Let us consider the weighted harmonic mean [34] (induced by the harmonic mean) H:

Hα(x, y):=
1

(1− α) 1
x + α 1

y
=

xy
(1− α)y + αx

=
xy

(xy)1−α
, α ∈ [0, 1]. (130)

The harmonic mean is a quasi-arithmetic mean Hα(x, y) = Mh
α(x, y) obtained for the monotone

(decreasing) function h(u) = 1
u (or equivalently for the increasing monotone function h(u) = − 1

u ).
This harmonic mean is well-suited for the scale family C of Cauchy probability distributions (also

called Lorentzian distributions):

CΓ:=
{

pγ(x) =
1
γ

pstd

(
x
γ

)
=

γ

π(γ2 + x2)
: γ ∈ Γ = (0, ∞)

}
, (131)

where γ denotes the scale and pstd(x) = 1
π(1+x2)

the standard Cauchy distribution.
Using the computer algebra system Maxima (http://maxima.sourceforge.net/) we find that

(see Appendix B)

(pγ1 pγ2)
H
1
2
(x) =

Hα(pγ1(x) : pγ2(x))
ZH

α (γ1, γ2)
= p(γ1γ2)α

(132)

where the normalizing coefficient is

ZH
α (γ1, γ2):=

√
γ1γ2

(γ1γ2)α(γ1γ2)1−α
=

√
γ1γ2

(γ1γ2)α(γ2γ1)α
, (133)

since we have (γ1γ2)1−α = (γ2γ1)α.

http://maxima.sourceforge.net/
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The H-Jensen–Shannon symmetrization of a distance D between distributions writes as:

JSHα
D (p : q) = (1− α)D(p : (pq)H

α ) + αD(q : (pq)H
α ), (134)

where Hα denote the weighted harmonic mean. When D is available in closed form for distributions
belonging to the scale Cauchy distributions, so is JSHα

D (p : q).
For example, consider the KL divergence formula between two scale Cauchy distributions:

KL(pγ1 : pγ2) = 2 log
A(γ1, γ2)

G(γ1, γ2)
= 2 log

γ1 + γ2

2
√

γ1γ2
, (135)

where A and G denote the arithmetic and geometric means, respectively. The formula initially reported
in [56] has been corrected by the authors. Since A ≥ G (and A

G ≥ 1), it follows that KL(pγ1 : pγ2) ≥ 0.
Notice that the KL divergence is symmetric for Cauchy scale distributions. We note in passing that for
exponential families, the KL divergence is symmetric only for the location Gaussian family (since the
only symmetric Bregman divergences are the squared Mahalanobis distances [57]). The cross-entropy

between scale Cauchy distributions is h×(pγ1 : pγ2) = log π
(γ1+γ2)

2

γ2
, and the differential entropy is

h(pγ) = h×(pγ : pγ) = log 4πγ.
Then the H-JS divergence between p = pγ1 and q = pγ2 is:

JSH(p : q) =
1
2

(
KL
(

p : (pq)H
1
2

)
+ KL

(
q : (pq)H

1
2

))
, (136)

JSH(pγ1 : pγ2) =
1
2

(
KL
(

pγ1 : p γ1+γ2
2

)
+ KL

(
pγ2 : p γ1+γ2

2

))
, (137)

= log
(3γ1 + γ2)(3γ2 + γ1)

8
√

γ1γ2(γ1 + γ2)
. (138)

We check that when γ1 = γ2 = γ, we have JSHα(pγ : pγ) = 0.

Theorem 4 (Harmonic JSD between scale Cauchy distributions). The harmonic Jensen–Shannon
divergence between two scale Cauchy distributions pγ1 and pγ2 is JSH(pγ1 : pγ2) = log (3γ1+γ2)(3γ2+γ1)

8
√

γ1γ2(γ1+γ2)
.

Let us report some numerical examples: Consider pγ1 = 0.1 and pγ1 = 0.5, we find that
JSH(pγ1 : pγ2) ' 0.176. When pγ1 = 0.2 and pγ1 = 0.8, we find that JSH(pγ1 : pγ2) ' 0.129.

Notice that KL formula is scale-invariant, and this property holds for any scale family:

Lemma 1. The Kullback–Leibler divergence between two distributions ps1 and ps2 belonging to
the same scale family {ps(x) = 1

s p( x
s )}s∈(0,∞) with standard density p is scale-invariant:

KL(pλs1 : pλs2) = KL(ps1 : ps2) = KL(p : p s2
s1
) = KL(p s1

s2
: p) for any λ > 0.

A direct proof follows from a change of variable in the KL integral with y = x
λ and dx = λdy.

Please note that although the KLD between scale Cauchy distributions is symmetric, it is not the
case for all scale families: For example, the Rayleigh distributions form a scale family with the KLD
amounting to compute a Bregman asymmetric Itakura–Saito divergence between parameters [37].

Instead of the KLD, we can choose the total variation distance for which a formula has been
reported in [38] between two Cauchy distributions. Notice that the Cauchy distributions are
alpha-stable distributions for α = 1 and q Gaussian distributions for q = 2 ([58], p. 104). A closed-form
formula for the divergence between two q-Gaussians is given in [58] when q < 2. The definite integral
hq(p) =

∫ +∞
−∞ p(x)qdµ is available in closed form for Cauchy distributions. When q = 2, we have

h2(pγ) =
1

2πγ .
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We refer to [38] for yet other illustrative examples considering the family of Pearson type VII
distributions and central multivariate t-distributions which use the power means (quasi-arithmetic
means Mh induced by h(u) = uα for α > 0) for defining mixtures.

Table 1 summarizes the various examples introduced in the paper.

Table 1. Summary of the weighted means M chosen according to the parametric family in order to
ensure that the family is closed under M-mixturing: (pθ1 pθ2 )

M
α = p(θ1θ2)α

.

JSMα Mean M Parametric Family ZM
α (p : q)

JSAα arithmetic A mixture family ZM
α (θ1 : θ2) = 1

JSGα geometric G exponential family ZG
α (θ1 : θ2) = exp(−Jα

F(θ1 : θ2))

JSHα harmonic H Cauchy scale family ZH
α (θ1 : θ2) =

√
θ1θ2

(θ1θ2)α(θ1θ2)1−α

4.3. The M-Jensen–Shannon Matrix Distances

In this section, we consider distances between matrices which play an important role in quantum
computing [59,60]. We refer to [61] for the matrix Jensen–Bregman logdet divergence. The Hellinger
distance can be interpreted as the difference of an arithmetic mean A and a geometric mean G:

DH(p, q) =
√

1−
∫
X

√
p(x)

√
q(x)dµ(x) =

√∫
X
(A(p(x), q(x))− G(p(x), q(x)))dµ(x). (139)

Notice that since A ≥ G, we have DH(p, q) ≥ 0. The scaled and squared Hellinger distance is
an α-divergence Iα for α = 0. Recall that the α-divergence can be interpreted as the difference of a
weighted arithmetic minus a weighted geometry mean.

In general, if a mean M1 dominates a mean M2, we may define the distance as

DM1,M2(p, q) =
∫
X
(M1(p, q)−M2(p, q))dµ(x). (140)

When considering matrices [62], there is not a unique definition of a geometric matrix mean,
and thus we have different notions of matrix Hellinger distances [62], some of them are divergences
(smooth distances defining a dualistic structure in information geometry).

We define the matrix M-Jensen–Shannon divergence for a matrix divergence [63,64] D as follows:

JSM
D (X1, X2) =

1
2
(D(X1 : M(X1, X2)) + D(X2 : M(X1, X2))) = JSM

D (X2, X1). (141)

For example, we can choose the von Neumann matrix divergence [63]:

DvN(X1 : X2):=tr (X1 log X1 − X1 log X2 − X1 + X2) , (142)

or the LogDet matrix divergence [63]:

Dld(X1 : X2):=tr(X1X−1
2 )− log |X1X−1

2 | − d, (143)

where square matrices X1 and X2 have dimension d.

5. Conclusions and Perspectives

We introduced a generalization of the celebrated Jensen–Shannon divergence [6], termed the
(M, N)-Jensen–Shannon divergences, based on M-mixtures derived from abstract means M. This new
family of divergences includes the ordinary Jensen–Shannon divergence when both M and N are set
to the arithmetic mean. We reported closed-form expressions of the M Jensen–Shannon divergences
for mixture families and exponential families in information geometry by choosing the arithmetic
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and geometric weighted mean, respectively. The α-skewed geometric Jensen–Shannon divergence
(G-Jensen–Shannon divergence) between densities pθ1 and pθ2 of the same exponential family with
cumulant function F is

JSGα
KL[pθ1 : pθ2 ] = JSAα

BF
∗(θ1 : θ2).

Here, we used the bracket notation to emphasize that the statistical distance JSGα
KL is between

densities, and the parenthesis notation to emphasize that the distance JSAα
BF
∗ is between parameters.

We also have JSGα
KL∗ [pθ1 : pθ2 ] = Jα

F(θ1 : θ2). We also show how to get a closed-form formula for the
harmonic Jensen–Shannon divergence of Cauchy scale distributions by taking harmonic mixtures.

For an arbitrary distance D, we define the skew N-Jeffreys symmetrization:

J
Nβ

D (p1 : p2) = Nβ(D(p1 : p2), D(p2 : p1)), (144)

and the skew (M, N)-JS-symmetrization:

JS
Mα ,Nβ

D (p1 : p2) = Nβ(D(p1 : (p1 p2)
M
α ), D(p2 : (p1 p2)

M
α )). (145)

A JavaTM source code for computing the geometric Jensen–Shannon divergence between
multivariate Gaussian distributions is available online at https://franknielsen.github.io/M-JS/.

Funding: This research received no external funding.

Conflicts of Interest: The author declare no conflict of interest.

Appendix A. Summary of Distances and Their Notations

Table A1 lists the main distances with their notations.

https://franknielsen.github.io/M-JS/
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Table A1. Summary of Distances and Their Notations.

Weighted mean Mα, α ∈ (0, 1)
Arithmetic mean Aα(x, y) = (1− α)x + αy
Geometric mean Gα(x, y) = x1−αyα

Harmonic mean Hα(x, y) = xy
(1−α)y+αx

Power mean Pp
α (x, y) = ((1− α)xp + αyp)

1
p , p ∈ R\{0}, limp→0 Pp

α = G
Quasi-arithmetic mean M f

α(x, y) = f−1((1− α) f (x) + α f (y)), f strictly monotonous
M-mixture ZM

α (p, q) =
∫

t∈X Mα(p(t), q(t))dµ(t)
with ZM

α (p, q) =
∫

t∈X Mα(p(t), q(t))dµ(t)
Statistical distance D(p : q)
Dual/reverse distance D∗ D∗(p : q):=D(q : p)
Kullback-Leibler divergence KL(p : q) =

∫
p(x) log p(x)

q(x) dµ(x)

reverse Kullback-Leibler divergence KL∗(p : q) = KL(q : p) =
∫

q(x) log q(x)
p(x)dµ(x)

Jeffreys divergence J(p; q) = KL(p : q) + KL(q : p) =
∫
(p(x)− q(x)) log p(x)

q(x) dµ(x)

Resistor divergence 1
R(p;q) =

1
2

(
1

KL(p:q) +
1

KL(q:p)

)
. R(p; q) = 2J(p;q)

KL(p:q)KL(q:p)

skew K-divergence Kα(p : q) =
∫

p(x) log p(x)
(1−α)p(x)+αq(x)dµ(x)

Jensen-Shannon divergence JS(p, q) = 1
2

(
KL
(

p : p+q
2

)
+ KL

(
q : p+q

2

))
skew Bhattacharrya divergence Bα(p : q) = − log

∫
X p(x)1−αq(x)αdµ(x)

Hellinger distance DH(p, q) =
√

1−
∫
X
√

p(x)
√

q(x)dµ(x)
α-divergences Iα(p : q) =

∫ (
αp(x) + (1− α)q(x)− p(x)αq(x)1−α

)
dµ(x), α 6∈ {0, 1}

Iα(p : q) = Aα(q : p)− Gα(q : p)

Mahalanobis distance DQ(p : q) =
√
(p− q)>Q(p− q) for a positive-definite matrix Q � 0

f -divergence I f (p : q) =
∫

p(x) f
(

q(x)
p(x)

)
dµ(x), with f (1) = f ′(1) = 0

f strictly convex at 1
reverse f -divergence I∗f (p : q) =

∫
q(x) f

(
p(x)
q(x)

)
dµ(x) = I f � (p : q)

for f �(u) = u f ( 1
u )

J-symmetrized f -divergence J f (p; q) = 1
2 (I f (p : q) + I f (q : p))

JS-symmetrized f -divergence Iα
f (p; q):=(1− α)I f (p : (pq)α) + αI f (q : (pq)α) = I f JS

α
(p : q)

for f JS
α (u):=(1− α) f (αu + 1− α) + α f

(
α + 1−α

u

)
Parameter distance
Bregman divergence BF(θ : θ′):=F(θ)− F(θ′)− 〈θ − θ′,∇F(θ′)〉
skew Jeffreys-Bregman divergence Sα

F = (1− α)BF(θ : θ′) + αBF(θ
′ : θ)

skew Jensen divergence Jα
F(θ : θ′):=(F(θ)F(θ′))α − F((θθ′)α)

Jensen-Bregman divergence JBF(θ; θ′) = 1
2

(
BF

(
θ : θ+θ′

2

)
+ BF

(
θ′ : θ+θ′

2

))
= JF(θ; θ′).

Generalized Jensen-Shannon divergences
skew J-symmetrization Jα

D(p : q):=(1− α)D (p : q) + αD (q : p)
skew JS-symmetrization JSα

D(p : q):=(1− α)D (p : (1− α)p + αq) + αD (q : (1− α)p + αq)
skew M-Jensen-Shannon divergence JSMα (p : q):=(1− α)KL

(
p : (pq)M

α

)
+ αKL

(
q : (pq)M

α

)
skew M-JS-symmetrization JSMα

D (p : q):=(1− α)D
(

p : (pq)M
α

)
+ αD

(
q : (pq)M

α

)
N-Jeffreys divergence JNβ (p : q):=Nβ(KL (p : q) , KL (q : p))

N-J D divergence J
Nβ

D (p : q) = Nβ(D(p : q), D(q : p))

skew (M, N)-D JS divergence JS
Mα ,Nβ

D (p : q):=Nβ

(
D
(

p : (pq)M
α

)
, D
(
q : (pq)M

α

))
Appendix B. Symbolic Calculations in MAXIMA

The program below calculates the normalizer Z for the harmonic H-mixtures of Cauchy
distributions (Equation (133)).

assume(gamma>0);
Cauchy(x,gamma) := gamma/(%pi*(x**2+gamma**2));
assume(alpha>0);
assume(alpha<1);
h(x,y,alpha) := (x*y)/((1-alpha)*y+alpha*x);
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assume(gamma1>0);
assume(gamma2>0);
m(x,alpha) := ratsimp(h(Cauchy(x,gamma1),Cauchy(x,gamma2),alpha));
/* calculate Z */
integrate(m(x,alpha),x,-inf,inf);
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