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Abstract: In this paper, we study several distance-based entropy measures on fullerene graphs.
These include the topological information content of a graph Ia(G), a degree-based entropy measure,
the eccentric-entropy I fσ(G), the Hosoya entropy H(G) and, finally, the radial centric information
entropy Hecc. We compare these measures on two infinite classes of fullerene graphs denoted by
A12n+4 and B12n+6. We have chosen these measures as they are easily computable and capture
meaningful graph properties. To demonstrate the utility of these measures, we investigate the
Pearson correlation between them on the fullerene graphs.
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1. Introduction

Graph entropy measures have been used in applied network sciences to characterize networks,
quantitatively [1–3]. Such measures were first introduced in the 1950s in studies of biological and
chemical systems. Seminal work in this area was done by Rashevsky [4] and Mowshowitz [3,5–8],
who investigated mathematical properties of entropy measures. IN particular, Mowshowitz [3]
interpreted the topological information content of a graph as the entropy of the underlying graph
topology. To date, numerous graph entropies have been developed and applied to problems in both
theoretical and applied disciplines (see [1–3]). Examples include problems in biology, computational
biology, mathematical chemistry, web mining, and knowledge engineering concerned with structural
properties of networks (see [1–3,5–16]).

As numerous network measures have been developed so far [3], it is often difficult to choose
an appropriate measure for a given class of graphs. This is so for several reasons including the
following: (1) The graphs in a given class may be characterized by special structural properties such as
symmetry, cyclicity, linearity, and so forth, and not every measure is able to quantify those structural
properties in a meaningful way; (2) a particular graph measure relies on a special graph invariant or
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a combination thereof. For instance, the well-known topological information content Ia [3] has been
used as a symmetry measure as it is based on the automorphism group of a graph. Yet, Ia may not
be a good measure for distinguishing graphs on cyclicity or other structural properties. In short, the
measure one chooses must be appropriate for the structural feature of interest.

A fullerene is a molecule composed of carbon atoms in the form of many shapes such as a
hollow sphere, ellipsoid, tube, etc (see [17]). In the mathematical meaning, a fullerene is a cubic
3-connected planar graph with pentagonal and hexagonal faces. For more details of the mathematical
aspects of fullerenes, see [18–22] . In this paper, we compare the topological information content of a
graph Ia(G), the eccentric-entropy I fσ(G), the Hosoya entropy H(G), the radial centric information
entropy Hecc, and a special degree-based entropy on two infinite classes of fullerene graphs, namely
A12n+4 and B12n+6. We emphasize that these measures have already been explored extensively and
possess a known structural interpretation. In addition, fullerene graphs play an important role in
mathematical chemistry and related disciplines. Therefore, we want to investigate the sensitivity
of these five measures to the structural properties of fullerenes. This study is intended as an aid in
selecting a measure capable of capturing the structural information of fullerenes. On the other hand,
graph measures are at least relevant to the fullerene reactivity [20]. Additionally, entropy-based graph
measures may relate to non-equilibrium physicochemical processes (see [23,24]). As for fullerenes,
there are direct applications of information entropy to rationalizing the processes of fullerene [25] and
endofullerene [26] formation.

2. Concepts and Terminology

All graphs considered in this paper are simple, connected, and finite. Let x and y be two arbitrary
vertices of graph G. The distance between x and y is the length of the shortest path connecting them,
denoted by d(x, y).

Let Γ be a group and Ω be a non-empty set. An action of group Γ on set Ω is a function
ϕ : Γ×Ω→ Ω, where (g, α)→ ϕ(g, α), that satisfies the following two properties (we denote ϕ(g, α)

as αg): αe = α for all α in Ω and (αg)h = αgh for all g, h in Γ. The orbit of an element α ∈ Ω is denoted
by αΓ, and it is defined as the set of all αg, g ∈ Γ.

Let X = (V, E) be a graph with vertex set V and edge set E. A bijection f on V that preserves edge
set E is called an automorphism of X . In other words, the bijection f on V(X) is an automorphism
if and only if f (u) f (v) is an edge in E (the image of vertex u is denoted by f (u)) whenever e = uv
is an edge in E. The set of all automorphisms of X, denoted by Aut(X), forms a group under the
composition of mappings. This group acts transitively on the set of vertices if for any pair of vertices u
and v in V(X), there is an automorphism g ∈ Aut(X) such that g(u) = v. In this case, we say that X is
vertex-transitive. An edge-transitive graph can be defined similarly.

The stabilizer of a vertex v under the action of A = Aut(G) is the set of automorphisms that fix v
and is denoted by Av. A group-theoretic result of special importance regarding the proofs in Section 4
is the orbit-stabilizer theorem, which states that |vA||Av| = |A|.

3. Entropy of Graphs

The general Shannon entropy [27] is defined by I(p) = −
n

∑
i=1

pi log(pi) for finite probability vector

p. Let λ = ∑n
j=1 λj and pi = λi/λ, (i = 1, 2, . . . , n). Generally, the entropy of an n-tuple (λ1, λ2, . . . , λn)

of real numbers is given by

I(λ1, λ2, . . . , λn) = −
n

∑
i=1

pi log(pi) = log

(
n

∑
i=1

λi

)
−

n

∑
i=1

λi

∑n
j=1 λj

log λi. (1)
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There are many different ways to associate an n-tuple (λ1, λ2, . . . , λn) to a graph G
(see [1,2,8,10–16,28]). A classical graph entropy measure, namely the topological information content
due to Mowshowitz [3], is defined by

Ia(G) = −
k

∑
i=1

|Ni|
|V| log

(
|Ni|
|V|

)
, (2)

where Ni (1 ≤ i ≤ k) is a set of similar vertices (which means they are in the same orbit). The collection
of k orbits N1, . . . , Nk defines a finite probability scheme in an obvious way. It is well-known that Ia(G)
reaches its maximum value for an identity graph, i.e., one whose automorphism group consists of the
identity alone [3].

Entropy measures have been applied to networks/graphs extensively (see, e.g., [1–3]). There are
many so-called information functionals that can be used to characterize a graph by means of an entropy
measure defined by Equation (3). Because vertex eccentricity has meaningful properties (see [28,29]),
we will apply this measure in our analysis together with other graph entropies. The eccentricity of
vertex v is σ(v) = maxu∈Vd(u, v), where d(u, v) is the distance between vertices u and v. For a vertex
vi ∈ V, we define f as f (vi) := ciσ(vi) where ci > 0 for 1 ≤ i ≤ n (see [3]). The entropy based on f
denoted by I fσ(G) is defined as follows:

I fσ(G) = log

(
n

∑
i=1

ciσ(vi)

)
−

n

∑
i=1

ciσ(vi)
n

∑
j=1

cjσ(vj)

log(ciσ(vi)). (3)

If c,
is are equal, then

I fσ(G) = log

(
n

∑
i=1

σ(vi)

)
−

n

∑
i=1

σ(vi)
n

∑
j=1

σ(vj)

log(σ(vi)). (4)

For further information about existing graph entropy measures, see [3,10,30–34].
In addition, we apply a special degree-based entropy D(G) defined by [3]

D(G) = log

(
n

∑
i=1

ci deg(vi)

)
−

n

∑
i=1

ci deg(vi)
n

∑
j=1

cj deg(vj)

log(ci deg(vi)). (5)

It is evident that other degree-based entropies can be defined as well (e.g., see [35]). If c,
is are

equal, since ∑n
i=1 deg(vi) = 2m, where m is the number of edges, we obtain

D(G) = log(2m)− 1
2m

n

∑
i=1

deg(vi) log(deg(vi)). (6)

Given a graph G and a vertex u ∈ V(G), let Γi(u) be the number of vertices at distance i from u.
Two vertices u and v are said to be Hosoya-equivalent or H-equivalent [8] if Γi(u) = Γi(v) for 1 ≤ i
≤ d(G). The family of sets of H-equivalent vertices constitutes a partition of the vertices. Let h be the
number of sets of H-equivalent vertices in G. The Hosoya entropy (or H-entropy) of G (introduced
in [8]) is given by

H(G) = −
h

∑
i=1

|Xi|
|V| log

(
|Xi|
|V|

)
. (7)
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Another entropy measure we use here relates to vertex eccentricity. The eccentric-entropy of graph
G denoted by Cec(G) is defined by the number of different eccentricities of vertices [35]. Let Cec(G) = k
and Yi1 , · · · , Yik be the sets of the different eccentricities. For instance, Yij , 1 ≤ j ≤ k is the set of all
vertices with eccentricity equal to ij. Then, the radial centric information entropy (or simply radial
entropy) is defined by [36]

Hecc = −
k

∑
i=1

|Yi|
|V| log

(
|Yi|
|V|

)
. (8)

The eccentric sequence of a connected graph G represents a list of the eccentricities of its vertices
in non-decreasing order. Since there are often many vertices having the same eccentricity, we simplify
the sequence by listing them as {

σ(v1)
m1 , σ(v2)

m2 , · · · , σ(vk)
mk
}

.

σ(vi) is the eccentricity of vi; mi is the multiplicity of σ(vi).

4. Main Results

In this section, we consider two infinite classes of fullerene graphs A12n+4 and B12n+6.
Group-theoretic methods are used to determine the orbits of their respective automorphism groups,
enabling the computation of symmetry-based entropy. Hosoya entropy is also computed using a
method [29] for inferring Hosoya partitions.

In addition, we determine the eccentricity sequence of a fullerene graph, and we calculate the
radial centric entropy. Eccentricity entropy and degree-based entropy, defined in the previous section,
are also computed. Finally, in Section 4, we compare these entropies in relation to properties of
the graphs.

Lemma 1. [37] If G is a vertex-transitive graph, then for all x, y ∈ V(G), σ(x) = σ(y), i.e., all the vertices in
a vertex-transitive graph have the same eccentricity.

Theorem 1. [38] Let G be a vertex-transitive graph on n vertices and σ(x) denote the eccentricity of vertex x.
For all sequences c1 ≥ c2 ≥ · · · ≥ cn

I fσ(G) = log

(
n

∑
i=1

ci

)
−

n

∑
i=1

ci
n

∑
j=1

cj

log(ci). (9)

If ci = cj for all i 6= j, then I fσ(G) = log(n).
Let x1, x2 be positive integers. It is clear that the inequality

(x1 + x2)
(x1+x2) > xx1

1 xx2
2 , (10)

is satisfied. We are aware of the fact that the Hosoya partition is either an orbit or a union of distinct orbits.
Thus, using Equation (10), we conclude that for an arbitrary graph G, we infer

Hecc(G) ≤ H(G) ≤ Ia(G). (11)

It is not difficult to see that the diameter of A12n+4 is d = 2n + 1. Suppose that for 1 ≤ i ≤ n, Ci is the
subset of vertices of A12n+4 at distance 2i− 1 or 2i from the vertex 1, and Cn+1 = {12n, . . . , 12n + 4}. In other
words, for 1 ≤ i ≤ n, Ci = Γ2i−1(1) ∪ Γ2i(1) and Cn+1 = Γ2n+1(1), where Γi(u) is defined in Section 3.

Definition 1. The i-th layer (1 ≤ i ≤ n) of a fullerene graph A12n+4 is the set of vertices contained in Ci.
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Theorem 2. Consider the fullerene graph A12n+4, where n ≥ 4. If n is even, then

Ia(A12n+4) = log(12n + 4)− 1
12n + 4

(
(12n + 3) log 3 + 6n

)
. (12)

If n is odd, then

Ia(A12n+4) = log(12n + 4)− 1
12n + 4

(
(12n + 3) log 3 + 6n + 6

)
. (13)

Proof. Consider the labeling of the fullerene graph A12n+4 as shown in Figure 1, and set α =

(2, 5, 8)(3, 6, 9) . . . (12n + 2, 12n + 4, 12n) and β = (2, 8)(3, 7) . . . (12n + 2, 12n).
Clearly, S3 ∼= 〈α, β〉 ≤ A = Aut(A12n+4). On the other hand, |A| = |1A||A1|. Since each

automorphism that fixes points 1 and 2 must fix {7, 11, 17, · · · 12n− 1, 12n + 2}, |A1| = |A1,2||2A1 | =
2× 3. Moreover, 1A = {1}, and thus |A| = 6, which implies that A ∼= S3.

The vertex 1 constitutes a singleton orbit. The vertices of the first layer of this graph constitute
two orbits,

{2, 5, 8}, {3, 4, 6, 7, 9, 10}.

On the other hand, the i-th layer (2 ≤ i ≤ n) consists of three orbits. The vertices of the i-th layer
of A12n+4 that are the same color (in Figure 2) are in the same orbit.

If n is even, the vertices of the last layer of Figure 1 make up two orbits: the vertices with odd
labels (colors) form one orbit, and the other vertices form a second orbit. If n is odd, the vertices of the
last layer are in the same orbit. Thus, if n is even, the fullerene graph A12n+4 possesses one orbit of
size 1, 2n + 1 orbits of size 3, and n orbits of size 6. Thus,

Ia(A12n+4) =
1

12n + 4
log(12n + 4) +

3(2n + 1)
12n + 4

log
(

12n + 4
3

)
+

6n
12n + 4

log
(

12n + 4
6

)
(14)

= log(12n + 4)−
(

6n + 3
12n + 4

log 3 +
6n

12n + 4
(1 + log 3)

)
(15)

= log(12n + 4)− 1
12n + 4

(
(12n + 3) log 3 + 6n

)
. (16)

If n is odd, the fullerene graph A12n+4 has one orbit of size 1, 2n− 1 orbits of size 3, and n + 1
orbits of size 6. Hence,

Ia(A12n+4) =
1

12n + 4
log(12n + 4) +

3(2n− 1)
12n + 4

log
(

12n + 4
3

)
+

6(n + 1)
12n + 4

log
(

12n + 4
6

)
(17)

= log(12n + 4)−
(

6n− 3
12n + 4

log 3 +
6(n + 1)
12n + 4

(1 + log 3)
)

(18)

= log(12n + 4)− 1
12n + 4

(
(12n + 3) log 3 + 6n + 6

)
. (19)

Theorem 3. The fullerene graph A12n+4 where n ≥ 4 satisfies

H(A12n+4) = log(12n + 4)− 1
12n + 4

(
(12n + 3) log 3 + 6(2n− 4)

)
. (20)
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Proof. Consider the graph shown in Figure 2. Each set of H-equivalent vertices in the i-th
(i = 1, 2, 3, 4, 5) layer forms a distinct orbit. For i = 6, 7, · · · , n, the vertices of each layer constitute
three orbits labeled by the numbers 1, 2, and 3. In all of them, vertices with labels 2 and 3 compose
H-equivalent partitions and the vertices with label 1 compose another H-equivalent partition. Finally,
the vertices of the outer pentagon in A12n+4 are also H-equivalent.

This means that the vertices of fullerene graph A12n+4 are partitioned into 2n + 6 H-equivalence
classes such that there exists an equivalence class of size 1, nine equivalence classes of size 3, and
2n− 4 equivalence classes of size 6. Hence,

H(A12n+4) =
1

12n + 4
log(12n + 4) +

27
12n + 4

log
(

12n + 4
3

)
+

6(2n− 4)
12n + 4

log
(

12n + 4
6

)
(21)

= log(12n + 4)−
(

27
12n + 4

log 3 +
6(2n− 4)
12n + 4

(1 + log 3)
)

(22)

= log(12n + 4)− 1
12n + 4

(
12n− 24 + (12n + 3) log 3

)
. (23)

Carbon nanotubes are members of the fullerene family. A carbon nanotube (Tz[m, n]) consists of a
sheet with m rows and n columns of hexagons (see Figure 3). Nanotubes can be pictured as sheets
of graphite rolled up into a tube, as shown in Figure 4. Combining a nanotube Tz[6, n− 10] with two
copies of B1 and B2 (Figures 5 and 6) yields the fullerene graph A12n+4 (see Figure 7).

The vertices of fullerene graph A12n+4 can be partitioned into three subsets of vertices: the vertices
of B1, B2 and the vertices of the nanotube Tz[6, n− 10] (see Figures 5, 6, and 8). The blocks of the
Hosoya partition and the eccentricities of the vertices of B1 and B2 are given in Table 1.
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Figure 2. The orbits of the i-th layer (2 ≤ i ≤ n) of the fullerene graph A12n+4.

Figure 3. A sheet of hexagons Tz[7, 12].

Figure 4. Zig-zag and nanotube.
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Table 1. The H-partition and eccentricity of fullerene graph.

Partitions Elements ecc

V1 1 2n + 1
V2n+6 12n− 1, 12n, 12n + 1, 12n + 2, 12n + 3, 12n + 4

V2 2, 5, 8 2n
V2n+5 12n− 13, 12n− 11, 12n− 912n− 7, 12n− 5, 12n− 3

V3 3, 4, 6, 7, 9, 10 2n− 1
V2n+4 12n− 12, 12n− 10, 12n− 812n− 6, 12n− 4, 12n− 2

V4 12, 14, 16, 18, 20, 22 2n− 2
V2n+3 12n− 25, 12n− 23, 12n− 21, 12n− 19, 12n− 17, 12n− 15

V5 11, 15, 19 2n− 3
V6 13, 17, 21

V2n+2 12n− 24, 12n− 22, 12n− 20, 12n− 18, 12n− 16, 12n− 14

V7 23, 27, 31 2n− 4
V8 25, 29, 33

V2n+1 12n− 36, 12n− 34, 12n− 32, 12n− 30, 12n− 28, 12n− 26

V9 24, 26, 28, 30, 32, 34 2n− 5
V2n 12n− 37, 12n− 35, 12n− 33, 12n− 31, 12n− 29, 12n− 27

V10 36, 38, 40, 42, 44, 46 2n− 6
V2n−1 12n− 49, 12n− 47, 12n− 45, 12n− 43, 12n− 41, 12n− 39

V11 35, 39, 43 2n− 7
V12 37, 41, 45

V2n−2 12n− 48, 12n− 46, 12n− 44, 12n− 42, 12n− 40, 12n− 38

V13 47, 51, 55 2n− 8
V14 49, 53, 57

V2n−3 12n− 60, 12n− 58, 12n− 56, 12n− 54, 12n− 52, 12n− 50

V15 48, 50, 52, 54, 56, 58 2n− 9
V2n−4 12n− 61, 12n− 59, 12n− 57, 12n− 55, 12n− 55,

12n− 53, 12n− 51

Figure 7. The 3-dimensional structure of fullerene graph A12n+4.
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Figure 8. The Hosoya-partitions of Tz[6, n− 10].
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Now consider the nanotube Tz[6, n − 10] in fullerene graph A12n+4. Each layer of this graph
has two equivalence classes (see Figure 8). Let p1, . . . , pn−10 be the Hosoya-equivalent vertices of
Tz[6, n− 10], i.e., the set pi contains the vertices labeled i. Then ecc(pi) = 2n− i− 9, where for the
subset X ⊆ V(G), ecc(X) = max{ecc(x) : x ∈ X}.

Thus, the eccentricity sequence of fullerene graph A12n+4 is{
(2n− i)12(1 ≤ i ≤ n− 1), (2n)9, (2n + 1)7}. (24)

Theorem 4. The radial entropy of fullerene A12n+4(n ≥ 4) is

Hecc(A12n+4) = log(12n + 4)

− 1
12n + 4

(
24(n− 1) + (12n + 6) log 3 + 7 log 7

)
.

(25)

Proof. From Equation (24), we obtain

Hecc(A12n+4) =
12(n− 1)
12n + 4

log
(

12n + 4
12

)
+

9
12n + 4

log
(

12n + 4
9

)
+

7
12n + 4

log
(

12n + 4
7

)
(26)

= log(12n + 4)− 1
12n + 4

(
12(n− 1) log 12 + 9 log 9 + 7 log 7

)
(27)

= log(12n + 4)− 1
12n + 4

(
24(n− 1) + (12n + 6) log 3 + 7 log 7

)
. (28)

Theorem 5. If ci’s are equal in Equation (5), the entropy of fullerene A12n+4(n ≥ 11) is given by

I fσ(A12n+4) = log(18n2 + 14n + 7)

− 1
18n2 + 14n + 7

(
(14n + 7) log(2n + 1)

)
+ 18n log(2n) + 12A),

(29)

where A =
n−1

∑
i=1

(2n− i) log(2n− i).

Proof. From Table 1, assuming n ≥ 11, it is clear that there are n + 1 types of vertices of the fullerene
graph A12n+4 with distinct eccentricities. From Equation (24), one can see that there exist 7 vertices with
eccentricity 2n+ 1, 9 vertices with eccentricity 2n, and 12 vertices with eccentricity 2n− i(1 ≤ i ≤ n− 1).
From this, we conclude that

I fσ(A12n+4) = log
(
7(2n + 1) + 9(2n) + 12

n−1

∑
i=1

(2n− i)
)

− 1

32n + 7 + 12
n−1

∑
i=1

(2n− i)

(
7(2n + 1) log(2n + 1)

+ 9(2n) log(2n) + 12A)
)
= log(18n2 + 14n + 7)

− 1
18n2 + 14n + 7

(
(14n + 7) log(2n + 1)

)
+ 18n log(2n) + 12A.

(30)
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Theorem 6. The degree-based entropy of fullerene graph A12n+4 is

D(A12n+4) = log(36n + 12)− (36n + 12) log 3
36n + 12

= log(12n + 4). (31)

Theorem 7. Let B12n+6 be the fullerene graph with n ≥ 6. Then

Ia(B12n+6) = log(12n + 6)− 10n + 5
6n + 3

. (32)

Proof. Consider the graph B12n+6 shown in Figure 9. Clearly, α, β are automorphisms of fullerene
graph B12n+6:

α = (1, 5)(2, 4)(6, 8) . . . (12n + 1, 12n + 4)(12n + 2, 12n + 3)(12n + 5, 12n + 6),
β = (2, 8)(3, 7)(4, 6) . . . (12n + 3, 12n + 5)(12n + 2, 12n + 6).

Then G = 〈α, β〉 ≤ A = Aut(B12n+6). Since every automorphism that fixes point 3 also fixes the
points {7, 26, 27, 33, . . . , 12n− 8, 12n− 2}, the orbit-stabilizer property implies that |A| = |3A||A3| =
2× 2. Therefore, A ∼= Z2 ×Z2. The graph B12n+6 has n + 1 layers. The orbits of the first and last layers
are given by

{1, 5}, {2, 4, 6, 8}, {3, 7}, {12, 13, 19, 20}, {12n + 1, 12n + 4},
{12n + 2, 12n + 3, 12n + 5, 12n + 6}.

Moreover, the vertices of the i-th layer (2 ≤ i ≤ n) of B12n+6 that have the same color in Figure 10
are in the same orbit. This means that the graph B12n+6 possesses 2n + 1 orbits of size 2 and 2n + 1
orbits of size 4. Thus,

Ia(B12n+6) =
2(2n + 1)
12n + 6

log
(

12n + 6
2

)
+

4(2n + 1)
12n + 6

log
(

12n + 6
4

)
(33)

=
2n + 1
6n + 3

(
log(12n + 6)− 1

)
+

4n + 2
6n + 3

(
log(12n + 6)− 2

)
(34)

= log(12n + 6)− 10n + 5
6n + 3

. (35)

Theorem 8. Suppose B12n+6 is the fullerene graph with n ≥ 6. Then

H(B12n+6) = log(12n + 6)− 1
12n + 6

(
6(2n− 8)(1 + log 3) + 90

)
. (36)

Proof. In Figure 10 , the sets of Hosoya-equivalent vertices in layers 1, 2, and 3 are precisely the orbits
of the automorphism group. For i ∈ {4, 5, 6}, consider the i-th layer of fullerene B12n+6. The vertices
labeled 2 and 4 form two blocks of the Hosoya partition. The vertices labeled 1 and 3 form two
additional blocks. In the layers i, (7 ≤ i ≤ n), the vertices labeled by 2 and 4 form two blocks,
and the vertices labeled by 1 and 3 form an additional two blocks. Finally, the vertices of the last
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layer are all H-equivalent. Hence, the Hosoya partition of this graph consists of nine blocks of size 2,
nine of size 4, and 2n− 8 of size 6. Thus, we have

H(B12n+6) =
18

12n + 6
log
(

12n + 6
2

)
+

36
12n + 6

log
(

12n + 6
4

)
+

6(2n− 8)
12n + 6

log
(

12n + 6
6

)
=

3
2n + 1

(
log(12n + 6)− 1

)
+

6
2n + 1

(
log(12n + 6)− 2

)
+

2n− 8
2n + 1

log
(
(12n + 6)− log 6

)
(37)

= log(12n + 6)− 1
2n + 1

(
(2n− 8)(1 + log 3) + 15

)
. (38)

Theorem 9. If ci’s are equal in Equation (5), then the entropy of fullerene B12n+6(n ≥ 12) is

I fσ(B12n+6) = log(18n2 + 18n + 8) (39)

− 1
9/2n2 + 9/2 + 2

(
(4n + 2) log(2n + 1) + 5n log(2n) + 3A

)
, (40)

where A =
n−1

∑
i=1

(2n− i) log(2n− i).

Proof. There exist n + 1 types of vertices of fullerene graphs B12n+6 whose eccentricity sequence is{
(2n− i)12(1 ≤ i ≤ n− 1), (2n)10, (2n + 1)8}. (41)

There exist 8 vertices with eccentricity 2n + 1, 10 vertices with eccentricity 2n, and 12 vertices
with eccentricity 2n− i(1 ≤ i ≤ n− 1). We conclude that

I fσ(B12n+6) = log
(
8(2n + 1) + 10(2n) + 12

n−1

∑
i=1

(2n− i)
)

− 1

32n + 7 + 12
n−1

∑
i=1

(2n− i)

(
8(2n + 1) log(2n + 1)

+ 10(2n) log(2n) + 12A)
)

(42)

= log(18n2 + 18n + 8)

− 1
9/2n2 + 9/2n + 2

(
(4n + 2) log(2n + 1)

+ 5n log(2n) + 3A)
)
. (43)

Theorem 10. The radial entropy of fullerene B12n+6(n ≥ 6) is

Hecc(B12n+6) = log(12n + 6)− 1
12n + 6

(
12(n− 1) log 3 + 10 log 5 + 24n + 10

)
. (44)
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Proof. By using Equation (41), we infer

Hecc(B12n+6) =
12(n− 1)
12n + 6

log
(

12n + 6
12

)
+

10
12n + 6

log
(

12n + 6
10

)
+

8
12n + 6

log
(

12n + 6
8

)
(45)

= log(12n + 6)− 1
12n + 6

(
12(n− 1) log 12 + 10 log 10 + 8 log 8

)
(46)

= log(12n + 6)− 1
12n + 6

(
12(n− 1) log 3 + 10 log 5 + 24n + 10

)
. (47)

Theorem 11. The degree-based entropy D(B12n+6) is

D(B12n+6) = log(36n + 18)− (36n + 18) log 3
36n + 18

= log(12n + 6). (48)
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Figure 9. Labeled vertices of the fullerene graph B12n+6.
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Figure 10. The orbits of the i-th layer (2 ≤ i ≤ n) of the fullerene B12n+6.

Correlation Analysis

In Figures 11 and 12, the values of five entropies (introduced in this paper) are compared for 80
fullerene graphs contained in A12n+4 and B12n+6. Here, the X-axis denotes the values of n and the
Y-axis denotes the the values of graph entropies. As a result, one can see that the correlation between
degree-based entropy and eccentric-entropy is approximately equal to one.
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Figure 11. Behavior of graph entropies for the fullerene graph A12n+4.
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Figure 12. Behavior of graph entropies for the fullerene graph B12n+6.

The Pearson correlations between the entropies for the fullerenes A12n+4 and B12n+6 can be found
in Figures 13 and 14.



I fσ H D Ia Hecc

I fσ 0.999871662 1 0.99999826 0.999988517
H 0.999872017 0.999899809 0.999936954
D 0.999998301 0.999988624
Ia 0.999995717
Hecc


Figure 13. The correlations between five graph entropies for A12n+4.



I fσ H D Ia Hecc

I fσ 0.999685891 0.999999999 0.999999999 0.999994057
H 0.999686771 0.999686771 0.999766356
D 1 0.999994177
Ia 0.999994177
Hecc


Figure 14. The correlations between five entropies for B12n+6.

The adjacency energy of G is a graph invariant that was introduced by Gutman [39]. It is defined as

E(G) =
n

∑
i=1
|λi|, (49)

where λis are the eigenvalues of G. In this paper, we computed the energy of a graph and five types
of entropies for A12n+4 (11 ≤ n ≤ 20) fullerene graphs (see Table 2). These results reveal that the
correlation between graph energy and any type of entropy applied to the class of A12n+4 fullerenes
is greater than 0.99 (see Table 3). This means that they capture almost the same kind of structural
information. Finally, we are able to approximate the graph energies of fullerenes by these entropies.
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Table 2. The graph energy and five kinds of entropies applied to A12n+4.

n E D I fσ Ia H Hecc

11 212.87 7.08 7.06 5.02 4.72 3.57

12 231.73 7.2 7.18 5.14 4.82 3.68

13 250.59 7.32 7.29 5.25 4.92 3.79

14 269.46 7.42 7.39 5.36 5.01 3.89

15 288.32 7.52 7.49 5.45 5.09 3.98

16 307.19 7.61 7.58 5.54 5.18 4.07

17 326.05 7.7 7.67 5.63 5.25 4.15

18 344.91 7.78 7.75 5.71 5.33 4.23

19 363.78 7.85 7.83 5.78 5.4 4.31

20 382.64 7.93 7.9 5.86 5.46 4.38

Table 3. The correlation between graph energy and entropies applied to A12n+4.

E, D E, I fσ E, Ia E, H E, Hecc

Cor 0.9964006 0.9972326 0.99673 0.9975728 0.9974525

5. Summary and Conclusions

In this paper, we have examined several known graph entropy measures on fullerene graphs.
In particular, we explored the topological information content of a graph Ia(G), a degree-based
entropy measure, the eccentric-entropy I fσ(G), the Hosoya entropy H(G), and finally, the radial
centric information entropy Hecc. Our results are twofold. First, we obtained concrete expressions for
the graph entropy measures on the defined classes of fullerenes. These results can be useful when
applying the measures on the fullerenes for practical applications. Second, we generated numerical
results to examine the correlations between the measures. We found that almost all measures are
highly correlated. This means that it might be sufficient to use only one measure to quantify the
structural properties of fullerenes. On the one hand, this could be interpreted as a negative result
in that it might not be worthwhile to apply many measures that seem to be different since they rely
on quite different graph invariants. However, it turns out that they capture almost the same kind of
structural information, as measured by the Pearson correlation coefficient. On the other hand, this fact
could be used to approximate other measures that are difficult to determine analytically. In Hückel
theory, the total pi-electron energy of a bipartite molecular graph is defined as the formula given by
Equation (49). Our measure of energy correlates well with the observed heats of formation of the
corresponding conjugated hydrocarbons, and it is related to other relevant chemical invariants [39,40].
We demonstrated this by using the well-known graph energy [41–48].

In the future, we intend to examine these measures on other classes of graphs and to analyze
extremal properties as well as interrelations between the measures.
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