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Abstract: Fluctuation theorems are a class of equalities that express universal properties of the probability
distribution of a fluctuating path functional such as heat, work or entropy production over an ensemble of
trajectories during a non-equilibrium process with a well-defined initial distribution. Jinwoo and Tanaka
(Jinwoo, L.; Tanaka, H. Sci. Rep. 2015, 5, 7832) have shown that work fluctuation theorems hold even
within an ensemble of paths to each state, making it clear that entropy and free energy of each microstate
encode heat and work, respectively, within the conditioned set. Here we show that information that is
characterized by the point-wise mutual information for each correlated state between two subsystems in
a heat bath encodes the entropy production of the subsystems and heat bath during a coupling process.
To this end, we extend the fluctuation theorem of information exchange (Sagawa, T.; Ueda, M. Phys. Rev.
Lett. 2012, 109, 180602) by showing that the fluctuation theorem holds even within an ensemble of paths
that reach a correlated state during dynamic co-evolution of two subsystems.

Keywords: local non-equilibrium thermodynamics; fluctuation theorem; mutual information; entropy
production; local mutual information; thermodynamics of information; stochastic thermodynamics

1. Introduction

Thermal fluctuations play an important role in the functioning of molecular machines: fluctuations
mediate the exchange of energy between molecules and the environment, enabling molecules to overcome
free energy barriers and to stabilize in low free energy regions. They make positions and velocities random
variables, and thus make path functionals such as heat and work fluctuating quantities. In the past two
decades, a class of relations called fluctuation theorems have shown that there are universal laws that
regulate fluctuating quantities during a process that drives a system far from equilibrium. The Jarzynski
equality, for example, links work to the change of equilibrium free energy [1], and the Crooks fluctuation
theorem relates the probability of work to the dissipation of work [2] if we mention a few. There are
many variations on these basic relations. Seifert has extended the second-law to the level of individual
trajectories [3], and Hatano and Sasa have considered transitions between steady states [4]. Experiments on
single molecular levels have verified the fluctuation theorems, providing critical insights on the behavior
of bio-molecules [5–13].

Information is an essential subtopic of fluctuation theorems [14–16]. Beginning with pioneering
studies on feedback controlled systems [17,18], unifying formulations of information thermodynamics
have been established [19–23]. Especially, Sagawa and Ueda have introduced information to the realm
of fluctuation theorems [24]. They have established a fluctuation theorem of information exchange,
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unifying non-equilibrium processes of measurement and feedback control [25]. They have considered
a situation where a system, say X, evolves in such a manner that depends on state y of another system
Y the state of which is fixed during the evolution of the state of X. In this setup, they have shown that
establishing a correlation between the two subsystems accompanies an entropy production. Very recently,
we have released the constraint that Sagawa and Ueda have assumed, and proved that the same form of
the fluctuation theorem of information exchange holds even when both subsystems X and Y co-evolve
in time [26].

In the context of fluctuation theorems, external control λt defines a process by varying the parameter
in a predetermined manner during 0 ≤ t ≤ τ. One repeats the process according to initial probability
distribution P0, and then, a system generates as a response an ensemble of microscopic trajectories {xt}.
Jinwoo and Tanaka [27,28] have shown that the Jarzynski equality and the Crooks fluctuation theorem hold
even within an ensemble of trajectories conditioned on a fixed microstate at final time τ, where the local
form of non-equilibrium free energy replaces the role of equilibrium free energy in the equations, making
it clear that free energy of microstate xτ encodes the amount of supplied work for reaching xτ during
processes λt. Here local means that a term is related to microstate x at time τ considered as an ensemble.

In this paper, we apply this conceptual framework of considering a single microstate as an ensemble
of trajectories to the fluctuation theorem of information exchange (see Figure 1a). We show that mutual
information of a correlated-microstates encodes the amount of entropy production within the ensemble of
paths that reach the correlated-states. This local version of the fluctuation theorem of information exchange
provides much more detailed information for each correlated-microstates compared to the results in [25,26].
In the existing approaches that consider the ensemble of all paths, each point-wise mutual information does
not provide specific details on a correlated-microstates, but in this new approach of focusing on a subset of
the ensemble, local mutual information provides detailed knowledge on particular correlated-states.

We organize the paper as follows: In Section 2, we briefly review some fluctuation theorems that
we have mentioned. In Section 3, we prove the main theorem and its corollary. In Section 4, we provide
illustrative examples, and in Section 5, we discuss the implication of the results.
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Figure 1. Ensemble of conditioned paths and dynamic information exchange: (a) Γ and Γxτ ,yτ denote
respectively the set of all trajectories during process λt for 0 ≤ t ≤ τ and that of paths that reach (xτ , yτ) at
time τ. Red curves schematically represent some members of Γxτ ,yτ . (b) We magnified a single trajectory in
the left panel to represent a detailed view of dynamic coupling of (xτ , yτ) during process λt. The point-wise
mutual information It(xt, yt) may vary not necessarily monotonically.
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2. Conditioned Nonequilibrium Work Relations and Sagawa–Ueda Fluctuation Theorem

We consider a system in contact with a heat bath of inverse temperate β := 1/(kBT) where kB is the
Boltzmann constant, and T is the temperature of the heat bath. External parameter λt drives the system
away from equilibrium during 0 ≤ t ≤ τ. We assume that the initial probability distribution is equilibrium
one at control parameter λ0. Let Γ be the set of all microscopic trajectories, and Γxτ be that of paths
conditioned on xτ at time τ. Then, the Jarzynski equality [1] and end-point conditioned version [27,28] of
it read as follows:

Feq(λτ) = Feq(λ0)−
1
β

ln
〈

e−βW
〉

Γ
and (1)

F (xτ , τ) = Feq(λ0)−
1
β

ln
〈

e−βW
〉

Γxτ

, (2)

respectively, where brackets 〈·〉Γ indicates the average over all trajectories in Γ and 〈·〉Γxτ
indicates the

average over trajectories reaching xτ at time τ. Here W indicates work done on the system through λt,
Feq(λt) is equilibrium free energy at control parameter λt, and F (xτ , τ) is local non-equilibrium free energy
of xτ at time τ. Work measurement over a specific ensemble of paths gives us equilibrium free energy as
a function of λτ through Equation (1) and local non-equilibrium free energy as a micro-state function of xτ

at time τ through Equation (2). The following fluctuation theorem links Equations (1) and (2):〈
e−βF (xτ ,τ)

〉
xτ

= e−βFeq(λτ), (3)

where brackets 〈·〉xτ
indicates the average over all microstates xτ at time τ [27,28]. Defining the reverse

process by λ′t := λτ−t for 0 ≤ t ≤ τ, the Crooks fluctuation theorem [2] and end-point conditioned
version [27,28] of it read as follows:

PΓ(W)

P′Γ(−W)
= exp

(
W − ∆Feq

kBT

)
and (4)

PΓxτ
(W)

P′Γxτ
(−W)

= exp
(

W − ∆F
kBT

)
, (5)

respectively, where PΓ(W) and PΓxτ
(W) are probability distributions of work W normalized over all

paths in Γ and Γxτ , respectively. Here P′ indicates corresponding probabilities for the reverse process.
For Equation (4), the initial probability distribution of the reverse process is an equilibrium one at control
parameter λτ . On the other hand, for Equation (5), the initiail probability distribution for the reverse process
should be non-equilibrium probability distribution p(xτ , τ) of the forward process at control parameter
λτ . By identifying such W that PΓ(W) = P′Γ(−W), one obtains ∆Feq := Feq(λτ)− Feq(λ0), the difference in
equilibrium free energy between λ0 and λτ , through Equation (4) [9]. Similar identification may provide
∆F := F (xτ , τ)− Feq(λ0) through Equation (5).

Now we turn to the Sagawa–Ueda fluctuation theorem of information exchange [25]. Specifically,
we discuss the generalized version [26] of it. To this end, we consider two subsystems X and Y in the
heat bath of inverse temperature β. During process λt, they interact and co-evolve with each other.
Then, the fluctuation theorem of information exchange reads as follows:〈

e−σ+∆I
〉

Γ
= 1, (6)
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where brackets indicate the ensemble average over all paths of the combined subsystems, and σ is the
sum of entropy production of system X, system Y, and the heat bath, and ∆I is the change in mutual
information between X and Y. We note that in the original version of the Sagawa–Ueda fluctuation
theorem, only system X is in contact with the heat bath and Y does not evolve during the process [25,26].
In this paper, we prove an end-point conditioned version of Equation (6):

Iτ(xτ , yτ) = − ln
〈

e−(σ+I0)
〉

xτ , yτ

, (7)

where brackets indicate the ensemble average over all paths to xτ and yτ at time τ, and It (0 ≤ t ≤ τ) is
local form of mutual information between microstates of X and Y at time t (see Figure 1b). If there is no
initial correlation, i.e., I0 = 0, Equation (7) clearly indicates that local mutual information Iτ as a function of
correlated-microstates (xτ , yτ) encodes entropy production σ within the end-point conditioned ensemble
of paths. In the same vein, we may interpret initial correlation I0 as encoded entropy production for the
preparation of the initial condition.

3. Results

3.1. Theoretical Framework

Let X and Y be finite classical stochastic systems in the heat bath of inverse temperate β. We allowed
external parameter λt drives one or both subsystems away from equilibrium during time 0 ≤ t ≤ τ [29–31].
We assumed that classical stochastic dynamics describes the time evolution of X and Y during process
λt along trajectories {xt} and {yt}, respectively, where xt (yt) denotes a specific microstate of X (Y) at
time t for 0 ≤ t ≤ τ on each trajectory. Since trajectories fluctuate, we repeated process λt with initial
joint probability distribution P0(x, y) over all microstates (x, y) of systems X and Y. Then the subsystems
may generate a joint probability distribution Pt(x, y) for 0 ≤ t ≤ τ. Let Pt(x) :=

∫
Pt(x, y) dy and

Pt(y) :=
∫

Pt(x, y) dx be the corresponding marginal probability distributions. We assumed

P0(x, y) 6= 0 for all (x, y), (8)

so that we have Pt(x, y) 6= 0, Pt(x) 6= 0, and Pt(y) 6= 0 for all x and y during 0 ≤ t ≤ τ. Now we consider
entropy production σ of system X along {xt}, system Y along {yt}, and heat bath Qb during process λt for
0 ≤ t ≤ τ as follows

σ := ∆s + βQb, (9)

where

∆s := ∆sx + ∆sy,

∆sx := − ln Pτ(xτ) + ln P0(x0),

∆sy := − ln Pτ(yτ) + ln P0(y0).

(10)

We remark that Equation (10) is different from the change of stochastic entropy of combined
super-system composed of X and Y, which reads ln P0(x0, y0)− ln Pτ(xτ , yτ) that reduces to Equation (10)
if processes {xt} and {yt} are independent. The discrepancy leaves room for correlation Equation (11)
below [25]. Here the stochastic entropy s[Pt(◦)] := − ln Pt(◦) of microstate ◦ at time t is uncertainty of ◦
at time t: the more uncertain that microstate ◦ occurs, the greater the stochastic entropy of ◦ is. We also
note that in [25], system X was in contact with the heat reservoir, but system Y was not. Nor did system Y
evolve. Thus their entropy production reads σsu := ∆sx + βQb.
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Now we assume, during process λt, that system X exchanged information with system Y. By this,
we mean that trajectory {xt} of system X evolved depending on the trajectory {yt} of system Y
(see Figure 1b). Then, the local form of mutual information It at time t between xt and yt is the reduction
of uncertainty of xt due to given yt [25]:

It(xt, yt) := s[Pt(xt)]− s[Pt(xt|yt)]

= ln
Pt(xt, yt)

Pt(xt)Pt(yt)
,

(11)

where Pt(xt|yt) is the conditional probability distribution of xt given yt. The more information was being
shared between xt and yt for their occurrence, the larger the value of It(xt, yt) was. We note that if xt and
yt were independent at time t, It(xt, yt) became zero. The average of It(xt, yt) with respect to Pt(xt, yt)

over all microstates is the mutual information between the two subsystems, which was greater than or
equal to zero [32].

3.2. Proof of Fluctuation Theorem of Information Exchange Conditioned on a Correlated-Microstates

Now we are ready to prove the fluctuation theorem of information exchange conditioned on
a correlated-microstates. We define reverse process λ′t := λτ−t for 0 ≤ t ≤ τ, where the external
parameter is time-reversed [33,34]. The initial probability distribution P′0(x, y) for the reverse process
should be the final probability distribution for the forward process Pτ(x, y) so that we have

P′0(x) =
∫

P′0(x, y) dy =
∫

Pτ(x, y) dy = Pτ(x),

P′0(y) =
∫

P′0(x, y) dx =
∫

Pτ(x, y) dx = Pτ(y).
(12)

Then, by Equation (8), we have P′t (x, y) 6= 0, P′t (x) 6= 0, and P′t (y) 6= 0 for all x and y during 0 ≤ t ≤ τ.
For each trajectories {xt} and {yt} for 0 ≤ t ≤ τ, we define the time-reversed conjugate as follows:

{x′t} := {x∗τ−t},
{y′t} := {y∗τ−t},

(13)

where ∗ denotes momentum reversal. Let Γ be the set of all trajectories {xt} and {yt}, and Γxτ ,yτ be that
of trajectories conditioned on correlated-microstates (xτ , yτ) at time τ. Due to time-reversal symmetry
of the underlying microscopic dynamics, the set Γ′ of all time-reversed trajectories was identical to Γ,
and the set Γ′x′0,y′0

of time-reversed trajectories conditioned on x′0 and y′0 was identical to Γxτ ,yτ . Thus we
may use the same notation for both forward and backward pairs. We note that the path probabilities PΓ

and PΓxτ ,yτ
were normalized over all paths in Γ and Γxτ ,yτ , respectively (see Figure 1a). With this notation,

the microscopic reversibility condition that enables us to connect the probability of forward and reverse
paths to dissipated heat reads as follows [2,35–37]:

PΓ({xt}, {yt}|x0, y0)

P′Γ({x′t}, {y′t}|x′0, y′0)
= eβQb , (14)

where PΓ({xt}, {yt}|x0, y0) is the conditional joint probability distribution of paths {xt} and {yt}
conditioned on initial microstates x0 and y0, and P′Γ({x′t}, {y′t}|x′0, y′0) is that for the reverse process.
Now we restrict our attention to those paths that are in Γxτ ,yτ , and divide both numerator and denominator
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of the left-hand side of Equation (14) by Pτ(xτ , yτ). Since Pτ(xτ , yτ) is identical to P′0(x′0, y′0), Equation (14)
becomes as follows:

PΓxτ ,yτ
({xt}, {yt}|x0, y0)

P′Γxτ ,yτ
({x′t}, {y′t}|x′0, y′0)

= eβQb , (15)

since the probability of paths is now normalized over Γxτ ,yτ . Then we have the following:

P′Γxτ ,yτ
({x′t}, {y′t})

PΓxτ ,yτ
({xt}, {yt})

=
P′Γxτ ,yτ

({x′t}, {y′t}|x′0, y′0)

PΓxτ ,yτ
({xt}, {yt}|x0, y0)

·
P′0(x′0, y′0)
P0(x0, y0)

(16)

=
P′Γxτ ,yτ

({x′t}, {y′t}|x′0, y′0)

PΓxτ ,yτ
({xt}, {yt}|x0, y0)

·
P′0(x′0, y′0)

P′0(x′0)p′0(y
′
0)
· P0(x0)P0(y0)

P0(x0, y0)
(17)

×
P′0(x′0)
P0(x0)

·
P′0(y

′
0)

P0(y0)

= exp{−βQb + Iτ(xτ , yτ)− I0(x0, y0)− ∆sx − ∆sy} (18)

= exp{−σ + Iτ(xτ , yτ)− I0(x0, y0)}. (19)

To obtain Equation (17) from Equation (16), we multiply Equation (16) by P′0(x′0)P′0(y
′
0)

P′0(x′0)P′0(y
′
0)

and P0(x0)P0(y0)
P0(x0)P0(y0)

,
which are 1. We obtain Equation (18) by applying Equations (10)–(12) and (15) to Equation (17). Finally,
we use Equation (9) to obtain Equation (19) from Equation (18). Now we multiply both sides of
Equation (19) by e−Iτ(xτ ,yτ) and PΓxτ ,yτ

({xt}, {yt}), and take integral over all paths in Γxτ ,yτ to obtain
the fluctuation theorem of information exchange conditioned on a correlated-microstates:〈

e−(σ+I0)
〉

xτ ,yτ

:=
∫
{xt},{yt}∈Γ{xτ},{yτ}

e−(σ+I0)PΓxτ ,yτ
({xt}, {yt}) d{xt}d{yt}

=
∫
{xt},{yt}∈Γ{xτ},{yτ}

e−Iτ(xτ ,yτ)P′Γxτ ,yτ
({x′t}, {y′t}) d{x′t}d{y′t}

= e−Iτ(xτ ,yτ)
∫
{xt},{yt}∈Γ{xτ},{yτ}

P′Γxτ ,yτ
({x′t}, {y′t}) d{x′t}d{y′t}

= e−Iτ(xτ ,yτ).

(20)

Here we use the fact that e−Iτ(xτ ,yτ) is constant for all paths in Γxτ ,yτ , probability distribution P′Γxτ ,yτ

is normalized over all paths in Γxτ ,yτ , and d{xt} = d{x′t} and d{yt} = d{y′t} due to the time-reversal
symmetry [38]. Equation (20) clearly shows that just as local free energy encodes work [27], and local
entropy encodes heat [28], the local form of mutual information between correlated-microstates (xτ , yτ)

encodes entropy production, within the ensemble of paths that reach each microstate. The following
corollary provides more information on entropy production in terms of energetic costs.

3.3. Corollary

To discuss entropy production in terms of energetic costs, we define local free energy Fx of xt and Fy

of yt at control parameter λt as follows:

Fx(xt, t) := Ex(xt, t)− kBTs[Pt(xt)]

Fy(yt, t) := Ey(yt, t)− kBTs[Pt(yt)],
(21)



Entropy 2019, 21, 477 7 of 12

where T is the temperature of the heat bath, kB is the Boltzmann constant, Ex and Ey are internal energy of
systems X and Y, respectively, and s[Pt(◦)] := − ln Pt(◦) is stochastic entropy [2,3]. Work done on either
one or both systems through process λt is expressed by the first law of thermodynamics as follows:

W := ∆E + Qb, (22)

where ∆E is the change in internal energy of the total system composed of X and Y. If we assume that
systems X and Y are weakly coupled, in that interaction energy between X and Y is negligible compared
to the internal energy of X and Y, we may have

∆E := ∆Ex + ∆Ey, (23)

where ∆Ex := Ex(xτ , τ)− Ex(x0, 0) and ∆Ey := Ey(yτ , τ)− Ey(y0, 0) [39]. We rewrite Equation (18) by
adding and subtracting the change of internal energy ∆Ex of X and ∆Ey of Y as follows:

P′Γxτ ,yτ
({x′t}, {y′t})

PΓxτ ,yτ
({xt}, {yt})

= exp{−β(Qb + ∆Ex + ∆Ey) + β∆Ex − ∆sx + β∆Ey − ∆sy} (24)

× exp{Iτ(xτ , yτ)− I0(x0, y0)}
= exp{−β(W − ∆Fx − ∆Fy) + Iτ(xτ , yτ)− I0(x0, y0)}, (25)

where we have applied Equations (21)–(23) consecutively to Equation (24) to obtain Equation (25).
Here ∆Fx := Fx(xτ , τ) − Fx(x0, 0) and ∆Fy := Fy(yτ , τ) − Fy(y0, 0). Now we multiply both sides
of Equation (25) by e−Iτ(xτ ,yτ) and PΓxτ ,yτ

({xt}, {yt}), and take integral over all paths in Γxτ ,yτ to obtain
the following:〈

e−β(W−∆Fx−∆Fy)−I0
〉

xτ ,yτ

:=
∫
{xt},{yt}∈Γ{xτ},{yτ}

e−β(W−∆Fx−∆Fy)−I0 PΓxτ ,yτ
({xt}, {yt}) d{xt}d{yt}

=
∫
{xt},{yt}∈Γ{xτ},{yτ}

e−Iτ(xτ ,yτ)P′Γxτ ,yτ
({x′t}, {y′t}) d{x′t}d{y′t}

= e−Iτ(xτ ,yτ),

(26)

which generalizes known relations in the literature [24,39–43]. We note that Equation (26) holds under the
weak-coupling assumption between systems X and Y during process λt, and ∆Fx +∆Fy in Equation (26) is
the difference in non-equilibrium free energy, which is different from the change in equilibrium free energy
that appears in similar relations in the literature [24,40–43]. If there is no initial correlation, i.e., I0 = 0,
Equation (26) indicates that local mutual information Iτ as a state function of correlated-microstates (xτ , yτ)

encodes entropy production, β(W − ∆Fx − ∆Fy), within the ensemble of paths in Γxτ ,yτ . In the same
vein, we may interpret initial correlation I0 as encoded entropy-production for the preparation of the
initial condition.

In [25], they showed that the entropy of X can be decreased without any heat flow due to the negative
mutual information change under the assumption that one of the two systems does not evolve in time.
Equation (20) implies that the negative mutual information change can decrease the entropy of X and that
of Y simultaneously without any heat flow by the following:〈

∆sx + ∆sy
〉

xτ ,yτ
≥ ∆Iτ(xτ , yτ), (27)
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provided 〈Qb〉xτ ,yτ
= 0. Here ∆Iτ(xτ , yτ) := Iτ(xτ , yτ) − 〈I0(x0, y0)〉x0,y0

. In terms of energetics,
Equation (26) implies that the negative mutual information change can increase the free energy of X
and that of Y simultaneously without any external-supply of energy by the following:

− ∆Iτ(xτ , yτ) ≥ β
〈
∆Fx + ∆Fy

〉
xτ ,yτ

(28)

provided 〈W〉xτ ,yτ
= 0.

4. Examples

4.1. A Simple One

Let X and Y be two systems that weakly interact with each other, and be in contact with the heat
bath of inverse temperature β. We may think of X and Y, for example, as bio-molecules that interact with
each other or X as a device which measures the state of other system and Y be a measured system. We
consider a dynamic coupling process as follows: Initially, X and Y are separately in equilibrium such that
the initial correlation I0(x0, y0) is zero for all x0 and y0. At time t = 0, system X starts (weak) interaction
with system Y until time t = τ. During the coupling process, external parameter λt for 0 ≤ t ≤ τ may
exchange work with either one or both systems (see Figure 1b). Since each process fluctuates, we repeat
the process many times to obtain probability distribution Pt(x, y) for 0 ≤ t ≤ τ. We allow both systems
co-evolve interactively and thus It(xt, yt) may vary not necessarily monotonically. Let us assume that the
final probability distribution Pτ(xτ , yτ) is as shown in Table 1.

Table 1. The joint probability distribution of x and y at final time τ: Here we assume that both systems X
and Y have three states, 0, 1, and 2.

X\Y 0 1 2

0 1/6 1/9 1/18
1 1/18 1/6 1/9
2 1/9 1/18 1/6

Then, a few representative mutual information read as follows:

Iτ(xτ = 0, yτ = 0) = ln
1/6

(1/3) · (1/3)
= ln(3/2),

Iτ(xτ = 0, yτ = 1) = ln
1/9

(1/3) · (1/3)
= 0,

Iτ(xτ = 0, yτ = 2) = ln
1/18

(1/3) · (1/3)
= ln(1/2).

(29)

By Jensen’s inequality [32], Equation (20) implies

〈σ〉xτ ,yτ
≥ Iτ(xτ , yτ). (30)

Thus coupling xτ = 0, yτ = 0 accompanies on average entropy production of at least ln(3/2) which
is greater than 0. Coupling xτ = 0, yτ = 1 may not produce entropy on average. Coupling xτ = 0, yτ = 2
on average may produce negative entropy by ln(1/2) = − ln 2. Three individual inequalities provide
more detailed information than that from 〈σ〉Γ ≥ 〈Iτ(xτ , yτ)〉Γ ≈ 0.0872 currently available from [25,26].
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4.2. A “Tape-Driven” Biochemical Machine

In [44], McGrath et al. proposed a physically realizable device that exploits or creates mutual
information, depending on system parameters. The system is composed of an enzyme E in a chemical
bath, interacting with a tape that is decorated with a set of pairs of molecules (see Figure 2a). A pair is
composed of substrate molecule X (or phosphorylated X∗) and activator Y of the enzyme (or Y which
denotes the absence of Y). The binding of molecule Y to E converts the enzyme into active mode E†, which
catalyzes phosphate exchange between ATP and X:

X + ATP + E† ⇀↽ E†-X-ADP-Pi ⇀↽ E† + X∗ + ADP. (31)

The tape is prepared in a correlated manner through a single parameter Ψ:

p0(Y|X∗) = p0(Y|X) = Ψ,

p0(Y|X∗) = p0(Y|X) = 1−Ψ.
(32)

If Ψ < 0.5, a pair of Y and X∗ is abundant so that the interaction of enzyme E with molecule Y
activates the enzyme, causing the catalytic reaction of Equation (31) from the right to the left, resulting
in the production of ATP from ADP. If the bath were prepared such that [ATP] > [ADP], the reaction
corresponds to work on the chemical bath against the concentration gradient. Note that this interaction
causes the conversion of X∗ to X, which reduces the initial correlation between X∗ and Y, resulting in the
conversion of mutual information into work. If E interacts with a pair of Y and X which is also abundant
for Ψ < 0.5, the enzyme becomes inactive due to the absence of Y, preventing the reaction Equation (31)
from the left to the right, which plays as a ratchet that blocks the conversion of X and ATP to X∗ and ADP,
which might happen otherwise due to the the concentration gradient of the bath.

b

c

d

𝐼 "

𝐼 "
(𝑋
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𝐼 "
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X (X*) Y 
(Y
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a

Figure 2. Analysis of a “tape-driven” biochemical machine: (a) a schematic illustration of enzyme E, pairs
of X(X∗) and Y(Y) in the chemical bath including ATP and ADP. (b) The graph of 〈It〉Γ as a function of
time t, which shows the non-monotonicity of 〈It〉Γ. (c) The graph of It(X, Y) which decreases monotonically
and composed of trajectories that harness mutual information to work against the chemical bath. (d) The
graph of It(X∗, Y) that increases monotonically and composed of paths that create mutual information
between X∗ and Y.
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On the other hand, if Ψ > 0.5, a pair of Y and X is abundant which allows the enzyme to convert X
into X∗ using the pressure of the chemical bath, creating the correlation between Y and X∗. If E interacts
with a pair of Y and X∗ which is also abundant for Ψ > 0.5, the enzyme is again inactive, preventing the
de-phosphorylation of X∗, keeping the created correlation. In this regime, the net effect is the conversion
of work (due to the chemical gradient of the bath) to mutual information. The concentration of ATP and
ADP in the chemical bath is adjusted via α ∈ (−1, 1) such that

[ATP] = 1 + α and [ADP] = 1− α (33)

relative to a reference concentration C0. For the analysis of various regimes of different parameters, we
refer the reader to [44].

In this example, we concentrate on the case with α = 0.99 and Ψ = 0.69, where Ref. [44] pays a special
attention. They analyzed the dynamics of mutual information 〈It〉Γ during 10−2 ≤ t ≤ 102. Due to the
high initial correlation, the enzyme converts the mutual information between X∗ and Y into work against
the pressure of the chemical bath with [ATP] > [ADP]. As the reactions proceed, correlation 〈It〉Γ drops
until the minimum reaches, which is zero. Then, eventually the reaction is inverted, and the bath begins
with working to create mutual information between X∗ and Y as shown in Figure 2b.

We split the ensemble Γt of paths into Γt
X,Y composed of trajectories reaching (X, Y) at each t and

Γt
X∗ ,Y composed of those reaching (X∗, Y) at time t. Then, we calculate It(X, Y) and It(X∗, Y) using the

analytic form of probability distributions that they derived. Figure 2c,d show It(X, Y) and It(X∗, Y),
respectively, as a function of time t. During the whole process, mutual information It(X, Y) monotonically
decreases. For 10−2 ≤ t ≤ 101/3, it keeps positive, and after that, it becomes negative which is possible for
local mutual information. Trajectories in ΓX,Y harness mutual information between X∗ and Y, converting
X∗ to X and ADP to ATP against the chemical bath. Contrary to this, It(X∗, Y) increases monotonically.
It becomes positive after t > 101/3, indicating that the members in Γt

X∗ ,Y create mutual information between
X∗ and Y by converting X to X∗ using the excess of ATP in the chemical bath. The effect accumulates,
and the negative values of It(X∗, Y) turn to the positive after t > 101/3.

5. Conclusions

We have proved the fluctuation theorem of information exchange conditioned on correlated-microstates,
Equation (20), and its corollary, Equation (26). Those theorems make it clear that local mutual information
encodes as a state function of correlated-states entropy production within an ensemble of paths that reach
the correlated-states. Equation (20) also reproduces lower bound of entropy production, Equation (30),
within a subset of path-ensembles, which provides more detailed information than the fluctuation theorem
involved in the ensemble of all paths. Equation (26) enables us to know the exact relationship between
work, non-equilibrium free energy, and mutual information. This end-point conditioned version of the
theorem also provides more detailed information on the energetics for coupling than current approaches
in the literature. This robust framework may be useful to analyze thermodynamics of dynamic molecular
information processes [44–46] and to analyze dynamic allosteric transitions [47,48].
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