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Abstract: In this paper, a support vector machine (SVM) technique has been applied to an antenna
allocation system with multiple antennas in multiuser downlink communications. Here, only the
channel magnitude information is available at the transmitter. Thus, a subset of transmit antennas
that can reduce multiuser interference is selected based on such partial channel state information
to support multiple users. For training, we generate the feature vectors by fully utilizing the
characteristics of the interference-limited setup in the multiuser downlink system and determine
the corresponding class label by evaluating a key performance indicator, i.e., sum rate in multiuser
communications. Using test channels, we evaluate the performance of our antenna allocation
system invoking the SVM-based allocation and optimization-based allocation, in terms of sum-rate
performance and computational complexity. Rigorous testing allowed for a comparison of a SVM
algorithm design between one-vs-one (OVO) and one-vs-all (OVA) strategies and a kernel function: (i)
OVA is preferable to OVO since OVA can achieve almost the same sum rate as OVO with significantly
reduced computational complexity, (ii) a Gaussian function is a good choice as the kernel function
for the SVM, and (iii) the variance (kernel scale) and penalty parameter (box constraint) of an SVM
kernel function are determined by 21.56 and 7.67, respectively. Further simulation results revealed
that the designed SVM-based approach can remarkably reduce the time complexity compared to a
traditional optimization-based approach, at the cost of marginal sum rate degradation. Our proposed
framework offers some important insights for intelligently combining machine learning techniques
and multiuser wireless communications.

Keywords: antenna allocation systems; multiuser communication systems; multiclass classification;
supervised machine learning; support vector machine

1. Introduction

Recently, machine learning has been attracting much research interest from various fields
due to numerous successful applications to solve significant practical problems [1–11]. Most of
the conventional approaches in communication system design rely on maximizing or minimizing
the objective functions, i.e., optimization-driven approaches. However, for some problems, one
has to resort to algorithms with fast-increasing complexity, e.g., the antenna selection/allocation
problem in multiuser communication systems [12–15]. Hence, for future application scenarios with
large-scale configurations, such as massive multiple-input and multiple-output (MIMO) systems and
machine learning-based methods, a data-driven approach seems to be more promising because it is
possible to provide near-optimal communication performance with relatively low online prediction
complexity, leaving the high complexity part to the offline training phase in machine learning. In the
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research fields of communication and signal processing, different types of machine learning methods
including (i) unsupervised learning, (ii) reinforcement learning, and (iii) supervised learning find
suitable application areas in many areas [16–19]. In this study, we attempt to explore the possibility
of applying supervised learning techniques (switching the optimization-driven thinking to the
data-driven thinking) to solve a specific antenna allocation problem in multiuser communication
systems. Even compared to the optimization-driven antenna selection algorithms with reduced
complexity [13,20–25], our proposed supervised learning-based approach is a promising alternative
since it demonstrates almost optimal performance while greatly reducing complexity. Moreover, our
supervised learning-based approach can also provide design flexibility based on a trade-off between
computational complexity and sum-rate performance by adjusting the number of effective classes, i.e.,
computational complexity can be further reduced by using a smaller number of effective classes, with
tolerable sum-rate performance degradation.

1.1. Related Work

An early study investigated dynamic channel assignment for cellular systems by using neural
networks [26]. One of the most popular unsupervised learning methods, k-means clustering, was
used to jointly optimize both the gateway partitioning and the virtual-channel allocation in hybrid
optical/wireless networks [27], to group distributed users in networks [28], and to blindly detect
symbols [29]. Decision trees and neural networks were applied to enhance the routing performance [30].

Reinforcement learning techniques have also been found to be helpful in solving multi-armed
bandit problems in wireless communications [31,32], link adaptation [33], and to autonomously
manage heterogeneous networks [34]. Other reinforcement learning methods, such as Markov decision
processes and Q-learning, have been applied to energy harvesting sensor networks [35], cognitive radio
networks [36], and opportunistic access of macro/femtocell heterogeneous networks [37]. Accelerated
reinforcement learning algorithms have been used to predict spectrum opportunities in opportunistic
spectrum access networks, resulting in improved secondary sum-rate performance [38].

Supervised learning methods, such as the k-nearest neighbors algorithm (k-NN) and the
support vector machine (SVM), have been employed to design link adaptation methods for wireless
communication networks [39–41]. There have been extensive studies on not only improving the accuracy
or complexity of SVMs [42], but also applying SVM to various classification fields such as signal
detection in visible light communications [43]. The efficiency of k-NN-based beam allocation [44]
was also demonstrated in multiuser massive MIMO systems. The whole communication system was
interpreted as a machine learning system, i.e., mapping major components in the communication
system including the transmitters, channels, and receivers to different layers in a neural network [45,46].
In [47], the communication system was considered as an autoencoder and the optimization of the
communication system was accomplished by training the corresponding neural network.

Among the attempts to apply machine learning to the communication and signal processing fields,
and specifically to the antenna allocation problem considered here, a recent work has applied supervised
machine learning-based methods for antenna allocation in multi-antenna point-to-point (single-user)
wireless networks [48]. It was shown that the antenna allocation in wireless communications can be
converted to a multiclass classification problem. Compared to the conventional optimization-driven
methods in [12–14], the multiclass classification, learning-based method in [48] provided near-optimal
communication performance with relatively low online computational complexity.

It is worth noting that computational complexity is one of the bottlenecks for traditional
optimization-driven antenna selection approaches because of the rapidly increasing complexity of
exhaustive search algorithms for the larger number of antennas [13,20]. To reduce computational
complexity, seminal studies have proposed optimization-driven antenna selection methods in
single-user communication systems [21,22]. For multiuser communication systems, there have also
been many studies attempting to reduce the complexity of antenna selection [23–25].
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1.2. Motivations and Contributions

Inspired by the pioneering work on learning-based antenna allocation for a single-user
system [48], we focus on a wireless downlink multiuser communication system with antenna allocation.
Extending the single-user system to multiuser networks, it is important to properly determine one or
more communication performance metrics, such as sum rate and bit error rate (BER) [49]. For multiuser
communication systems, maximizing the system sum rate might be a proper design target rather than
minimizing the BER, due to the presence of interference among multiple users. Moreover, it is easy to
obtain a rather trivial solution to the BER minimization problem for a multiuser communication system
by selecting only one user (but not multiple users). In [41], learning-based link adaptation methods
were designed for multiuser communication networks, where a greedy algorithm was employed for
user selection. However, rather than improving fairness by user scheduling, our aim is to maximize the
sum rate of all the users in the network by allocating the proper antenna to each user. Hence, we first
formulate antenna allocation in the multiuser network as a multiuser sum rate maximization problem
and solve it by using multiclass classification algorithms. To the best of our knowledge, this study is
the first attempt at machine learning-based antenna allocation for multiuser wireless networks.

The main contributions of this study are summarized as follows:

• We interpret the antenna allocation system for multiuser communication as a multiclass
classification learning system. For the components of the learning system, such as the training
data and the corresponding class labels, we first model the counterparts in the conventional
communication system, and we then construct them with a proper format for the learning system.

• We establish a communication system with an SVM module that allocates transmit antennas
to each user in multiuser communication networks with partial channel state information at
the transmitter (CSIT), as shown in Figure 1. The antenna allocation method is designed for
a frequency-division duplex (FDD) system, where only quantized channel gain information
is available.

• The parameters of the designed SVM are tuned based on extensive numerical experiments in
order to improve the sum-rate performance of the communication system. For the designed SVM,
we find that a Gaussian function is a good choice for the kernel function, which is one of the
most important parameters for tuning SVMs. (Artificial neural networks (ANNs) can also be
employed in our learning system, which may result in a slightly better sum-rate performance
at the expense of both higher computational complexity and a larger training dataset than for
k-NN and SVM. Thus, ANNs are not considered in this study as our main focus is on the design
of learning systems showing a significant reduction in complexity from the optimization-based
approach with marginal sum rate reduction.) From our rigorous simulation, the variance (kernel
scale) and penalty parameter (box constraint) of an SVM kernel function are determined by 21.56
and 7.67, respectively.

• Numerical experiments are extensively performed for various configurations of communication
systems in order to evaluate the proposed SVM-based antenna allocation method. We find that
with lower online computational complexity, the designed SVM method achieves near-optimal
performance, as is obtained from the conventional optimization approach. Compared to the
k-NN method, the SVM method is superior not only in terms of sum-rate performance but also
prediction complexity performance.

1.3. Organization

The rest of the paper is organized as follows. In Section 2, the system model, optimization
problem formulation, and corresponding optimization-driven solutions are described. In Section 3, we
introduce the proposed machine learning-based antenna allocation method from overall framework
structure to implementation details. In Section 4, the proposed method is evaluated to determine
the parameters of the designed learning system, and its performance is compared to that of the
conventional optimization-driven method. Finally, we conclude this paper in Section 5.
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Figure 1. System model of the considered multiuser communication network consisting of one
transmitter with Nt antennas and U users with a single antenna.

2. System Model and Conventional Optimization Approach

2.1. System Model

As illustrated in Figure 1, we consider a multiuser communication network consisting of one
multi-antenna transmitter (Tx) and U selected/scheduled single-antenna receivers (Rxs or users). Let
Nt ≥ U denote the number of antennas at the Tx. We use hi ∈ CNt×1 to denote the channel coefficient
vector from the transmitter to receiver i, where i ∈ {1, 2, · · · , U}. Let H ∈ CU×Nt be an overall channel
coefficient matrix from the transmitter to all the receivers, where the ith row of H is given by hT

i and
the (i, j)th entry of H is expressed as hi,j, that is, the channel from Tx antenna j to user i. In this study,
we consider a low-cost Tx that has a limited number of radio frequency (RF) chains and computational
capability. Thus, an antenna selection scheme using a part of transmit antennas is relevant, rather than
the highly complex optimal multiuser pre-processing or beamforming schemes. Accordingly, channel
magnitude information, i.e., partial CSI, is sufficient for simple antenna selection at the Tx (refer to
Section 3 for the overall procedure). Note that the main motivation of this study is to effectively reduce
the computational complexity at the Tx by using a machine learning-based method. The partial CSIT
is available through channel gain feedback from Rxs to Tx. Specifically, each Rx i estimates its own
channel gains, i.e., hi,j for all j, obtains their magnitude information gi,j = |hi,j|2, and feeds them back
to the Tx. The Tx accumulates the feedback information from all Rxs and constructs a channel gain
matrix G ∈ RU×Nt whose real-value entries are given by gi,j = |hi,j|2.

2.2. Optimization Problem Formulation

The Tx selects U antennas from Nt antennas to allocate one antenna to each user. Then, U
independent data streams are transferred to the U users, i.e., data stream xi is delivered to user i and
is estimated by x̃i. For a certain antenna allocation scheme indexed by l, let s(l)i denote the index of

the antenna allocated to user i, where s(l)i ∈ {1, 2, · · · , Nt} and s(l)i 6= s(l)j if i 6= j (i, j ∈ {1, 2, · · · , U}).

The corresponding index vector of the U allocated antennas is then defined as sl , [s(l)1 , s(l)2 , · · · , s(l)U ]T ,
where the superscript T represents the transpose of a vector or matrix, and index l ∈ L is used to
denote the antenna allocation scheme. Here, we define L , {1, 2, · · · , L} as a set of antenna allocation
schemes, where the number of all available sl (all valid antenna allocation schemes), L, is given by

L ,
Nt!

(Nt −U)!
. (1)



Entropy 2019, 21, 471 5 of 17

Now, suppose that the antenna allocation scheme is given by sl . We can then compute the resultant
data rate of user i as follows [50]:

Ri(sl) = log2

1 +
PTXg

i,s(l)i

N0 + ∑U
j=1
j 6=i

PTXg
i,s(l)j

 , (2)

where PTX is the transmit power, N0 is the noise variance, PTXg
i,s(l)i

is the power of the desired signal

to user i, and ∑U
j=1
j 6=i

PTXg
i,s(l)j

is the power of interference signals from the antennas allocated to other

users. Then, the sum rate of the system for the antenna allocation sl is given by

Rsum(sl) =
U

∑
i=1

Ri(sl). (3)

The optimization problem is then formulated as follows:

maximize
l∈L

Rsum(sl). (4)

2.3. Optimization-Driven Solutions

To solve the formulated combinatorial optimization problem in Equation (4), a brute-force
exhaustive search (or any other more sophisticated optimization-driven algorithms) with high
computational complexity can be applied to find l∗ that maximizes Rsum. First, the data rates of
U users, i.e., Ri(sl), i ∈ {1, · · · , U}, are computed by using Equation (2) for all the L antenna allocation
schemes. Then, the sum rate can be computed based on (3). Among the antenna allocation schemes,
the optimal index l∗ that maximizes the value of Rsum is determined. For each antenna allocation
scheme, the exhaustive search algorithm traverses all U users to compute the data rate, where (U − 1)
computations are required to calculate the total interference term. Thus, the computational complexity
of this exhaustive search is given by O(LU(U − 1)) = O

(
U2 Nt !

(Nt−U)!

)
. It can be seen that the complexity

increases and becomed prohibitively large as Nt or U increases.
For better readability, the main notations used here to describe communication systems are

summarized in Table 1.

Table 1. Notations used to describe communication systems.

Notation Description

Nt number of antennas at the transmitter
U number of users
hi channel coefficient vector to device i
H overall channel coefficient matrix
G overall channel gain matrix
sl index vector of the allocated antenna with label l
L set of labels for all the available antennas allocated
L number of labels in L

PTX transmit power per antenna
Rsum sum rate of the system in bps/Hz

3. SVM-Based Antenna Allocation

In order to reduce the computational complexity of the exhaustive search for antenna selection, we
consider SVM-based antenna selection to solve Equation (4). Specifically, we employ a multiclass SVM
algorithm to classify channel gain samples into L classes, each of which corresponds to an available
antenna allocation scheme. With a sufficient number of channel gain samples, i.e., training data, we can
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design a classification model, which can be used to predict the class of a test channel gain matrix, i.e.,
the best antenna allocation scheme for a new channel realization in a test, i.e., actual communications.

Generally speaking, in a machine learning system, a learning model is first trained by the input
training set and the corresponding labels [51,52]. Then, this learning model can be used to predict the
class labels for a new test dataset. The overall machine learning framework of our antenna allocation
system is illustrated in Figure 2. It is worth noting that there are two types of tasks in this framework,
an offline task and an online task. The online task includes channel estimation and channel allocation
through learning-based prediction. The offline task consists of three tasks: i) training sample set design,
ii) learning systems design, and iii) parameter adjustment. Distinguishing the online and offline tasks
is crucial in communication systems. This is because the offline task can be performed with more
powerful computing resources and relaxed computational complexity requirements, while the online
task typically has stringent latency and computing constraints. In the following three subsections, the
three offline tasks will be described in detail.

commun. opt. data processing

training data

machine learning model

prediction

offline

Learning 

system design 

(Section 3.2)

Parameter 

adjustment 

(Section 3.3)

Training sample 

set design 

(Section 3.1)

online

new channels antenna allocation

channel gain 

samples

lable 

vector

training 

set

Figure 2. Machine learning framework for antenna allocation in a multiuser communication system.

3.1. Task 1: Designing a Training Sample Set

We need to manipulate the matrix form of the channel gain samples into training data with
a suitable form for input into the learning system. Three procedures are performed to obtain the
training data for the machine learning system (not necessarily in sequence): (i) design training data
from the channel gain matrices, (ii) design the key performance indicator (KPI), and (iii) declare the
corresponding label based on the KPI, i.e., labeling.

3.1.1. Subtask 1-1: KPI Design

A KPI is designed to label the training set. In general, a KPI can be defined as any metric used
in communications, such as spectral efficiency, energy efficiency, BER, effective signal-to-noise ratio
(SNR), communications latency, and any combination thereof [53]. In this study, we use the sum rate
of a system, Rsum, as the target KPI.

3.1.2. Subtask 1-2. Training Set Design

The training samples are the input for a learning system and are known as input variables,
predictors, or attributes. As shown in Section 2.1, we assume that magnitude channel information, i.e.,
the channel gain matrix G, is available in our communication system. Based on the available channel
information, it is important to properly design the training set by taking into account not only the
target KPI, which affects communication performance, but also the complexity of the system. For
example (refer to [54] and the references therein), singular values are used for a singular value-based
antenna selection system, the minimum eigenvalues of the Hermitian matrix of the channel matrix
for Gerschgorin circle-based antenna selection systems, channel norm values for norm-based antenna
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selection systems, and the dot products of channel column vectors for correlation-based antenna
selection systems. Here, the singular values are clearly a good candidate for a training set for various
KPIs (e.g., spectral efficiency, energy efficiency, and BER), yet they require a higher complexity higher
than the other values. In this study, we adopt a signal-to-interference-leakage ratio (SILR) metric that
is closely coupled with the sum rate, which is our target KPI. It is worth noting that with this SILR
metric, it is sufficient to perform antenna allocation with the channel gain knowledge at the Tx, even
without knowing the signal-to-interference-plus-noise ratio (SINR) of the users. We also note that it
may not be possible to acquire the received SINR at the Tx under our communication mechanism
using the channel gain feedback. This is because the sum of interference links can be computed after
the antenna allocation process and the set of allocated antennas is not available in the training phase.

An SILR matrix, Z ∈ RU×Nt , is employed to generate the training set, which can be computed
based on G. Specifically, the entry of the ith row and the jth column of Z is given by

Zi,j =
gi,j

∑U
k=1
k 6=j

gi,k
. (5)

From Equation (5), it can be seen that the SILR metric simultaneously captures both the desired
signal strength and the interference leakage to other users. Because a machine learning system requires
the real-value vector input of multiple features, we transform the SILR matrix into a R1×NtU vector by
stacking U users’ vectors (the row vectors in Z). The training set vector with NtU features is given by

[Z1,1, · · · , Z1,Nt , · · · , Zi,1, · · · , Zi,Nt︸ ︷︷ ︸
the ith row of Z

, · · · , ZU,1, · · · , ZU,Nt ]. (6)

By repeating the channel generation and data processing D times, we obtain a training set matrix
Traw ∈ RD×NtU whose rows are given by the training vector in Equation (6). As a special case, when
U = 1 (single-user communication systems), we use the channel gain as the metric (i.e., Zi,j = gi,j) due
to the absence of interferences. Since Z is a vector for U = 1, we can skip the aforementioned stacking
step by directly using Z as the training set vector.

The final step of training set design is to normalize the training samples to obtain a proper input
training set for the learning system. Let T ∈ RD×NtU denote a training set matrix as one of the inputs
to the learning system, whose (i, j)th element, denoted by Ti,j, is a normalized value of the (i, j)th
element of Traw.

Ti,j =
Zi,j −Ei(Zi,j)

maxi(Zi,j)−mini(Zi,j)
, (7)

where the term maxi(Zi,j) −mini(Zi,j) in (7) indicates the normalization used for improving the
learning speed/convergence or avoiding a precision issue with very large- or small-value data.

3.1.3. Subtask 1-3. Class Design and Labeling

From the interpretation of the antenna allocation process and multiclass classification, it is clear
that designing the labeling is equivalent to designing the antenna allocation scheme. As shown in
Section 2.2, the mapping from antenna allocation sl to the index l is a one-to-one mapping. Thus, we
can use the index set L for the labeling in the machine learning system. Let c = [c1, · · · , cD]

T denote
the class label vector for the training data matrix T, where ci ∈ L and i ∈ {1, · · · , D}. Thus, we use
this metric in the following content. The labeling procedure is summarized as follows:

• Evaluate the target KPI, η, for the dth channel gain sample with a particular antenna allocation sl
corresponding to label l ∈ L.

• Assign the dth element of c, cd, with l∗, which stands for the best choice among all the antenna
allocation schemes.

• Repeat the previous two steps for D times to go through all D training set.
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Remark on the reduction of the number of classes: We can further improve the labeling by
exploiting the knowledge of a wireless communication system. It is known that multiple antennas with
less spatial correlation results in better communication performance, which is also confirmed by our
numerical experiments. Therefore, we reduce the number of classes to L′ < L by deleting some less
selected classes, which correspond to the schemes with highly correlated antennas. This elimination
can reduce prediction complexity, with a tradeoff in classification performance. Note that even with
classes that are uniformly selected, a designer can still reduce L to L′ to reduce the complexity of
the learning system if the resultant performance degradation is marginal. On the other hand, the
number of clusters can also be automatically determined for unsupervised clustering systems by using
Davies-Bouldin or Dunn indices (refer to [55] and references therein).

3.2. Task 2: Designing Learning Systems

From Task 1, we obtain the real-value matrix T ∈ RD×NtU as the training set and the corresponding
class label vector c = [c1, · · · , cD]

T . Using the labeled training dataset (training data), i.e., T and c, we
build a learning system, and specifically, a trained multiclass classifier whose input is an estimated
channel gain vector and whose output is the index of the antenna allocation scheme. Since L > 2 in our
antenna allocation system, we employ L-class classification algorithms, such as the multiclass k-NN
and SVM algorithms. For the simple description of the multiclass classification algorithms, we denote
the ith row vector of T by ti ∈ R1×NtU .

We now introduce the fundamental mechanism of a binary SVM classifier and then explain how
to perform multiclass classification based on the binary SVM classifier. With a binary SVM, the data
are separated into two half-spaces with a hyperplane f (t), which is given by

f (t) = wtT + β = 0, (8)

where t ∈ R1×NtU is a feature vector, w ∈ R1×NtU is a weight vector, and β ∈ R is a biasing variable.
Here, the linear kernel function, denoted by K(ti, tj) = tT

i tj, is employed, but generally, various types
of kernel functions can also be adopted. This will be discussed later in this section. A classification
rule induced by f (t) for the new observation tnew is

sign
(

wtT
new + β

)
. (9)

The training data samples that are nearest to the decision boundary are called support vectors,
where the distance is given by 1

‖w‖2
. Thus, in order to separate the data as much as possible, the

margin that is given by 2
‖w‖2

needs to be maximized. This optimization problem is equivalent to
minimizing ‖w‖2. Since the training data may be not totally separable (that is the case for our
antenna allocation system), the optimization problem is formulated by introducing slack variable
ξi ≥ 0, ∀i = {1, 2, · · · , NtU} as

minimize
w,β

1
2
‖w‖2

2 + C
NtU

∑
i=1

ξi

subject to ξi ≥ 0, ci

(
wtT

i + β
)
≥ 1− ξi ∀i,

(10)

where the “penalty” parameter C is used to penalize the training error of the soft margin SVM. This
parameter C needs to be tuned for good classification performance because too large a C causes
overfitting and too small a C causes underfitting. The decision boundary can be found by solving this
convex quadric optimization problem. As mentioned before, by adopting different kernel functions,
we can apply the “kernel trick” to map the original feature space to a higher-dimensional feature space
where the training set could be more separable. For instance, the polynomial kernel function and the
Gaussian kernel function are given by
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K(ti, tj) =
(

1 + tT
i tj

)p
(11)

and

K(ti, tj) = e
−‖ti−tj‖

2

2σ2 , (12)

respectively, where p ≥ 2 is the polynomial power and σ2 is the variance. We can do this because
the optimization process of SVM allows us to simply modify the kernel function K(ti, tj) by replacing
the linear kernel function with other kernel functions, without changing the overall optimization
algorithm.

In order to perform multiclassification using the binary SVM method that was originally designed
for binary classification [56], we can either employ the one-vs-all (OVA) strategy with L binary SVM
learners or the one-vs-one (OVO) strategy with L(L−1)

2 binary SVM learners [57]. Compared to the
OVO strategy, the OVA strategy has a lower computational complexity because fewer binary SVM
learners are required. The selection of the proper multiclassification strategy and kernel function will
be discussed in detail based on numerical results in the next subsection.

3.3. Task 3. Parameter Adjustment

For the multiclass SVM algorithms, several parameters and strategies can be selected and tuned
in order to achieve superior sum-rate performance. Here, we note that machine learning algorithms
with low prediction complexity are favorable to antenna selection in communication systems. Based
on numerical results regarding the sum-rate performance and prediction runtime performance, we
discuss the selection of kernel function from linear, polynomial, and Gaussian kernel functions, and
the selection of multiclass strategy from between OVA and OVO. Through rigorous simulation and
comparison, we find that the SVM algorithm with the OVA strategy and the Gaussian kernel provides
nearly the best sum-rate performance with a relatively low prediction runtime, and is thus adopted
in our antenna selection system. For example, Figures 3 and 4 verify our observation when Nt = 5
and U = 3, where solid red curves represent the use of SVM algorithms with the OVA strategy while
dashed blue curves represent the use of SVM algorithms with the OVO strategy. In contrast, SVM
algorithms with the OVO algorithm show a relatively high prediction runtime that grows fast with
L′, although the sum-rate performance is slightly superior to that of the OVA counterparts. The SVM
algorithm with the OVA strategy and linear kernel provides the lowest prediction runtime performance
but the sum-rate performance degradation is severe.

Figure 3. Support vector machine (SVM) performance evaluation results when Nt = 5 and U = 3: the
empirical cumulative density function (CDF) of the sum rate for various SVM kernel functions.
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Figure 4. SVM performance evaluation results when Nt = 5 and U = 3: runtime over L′ for various
SVM kernel functions.

For each combination of multiclass strategies and kernel functions, proper values of crucial
parameters such as the variance σ2 and the penalty parameter C are found by extensive experimentation
via a heuristic search targeting the minimum cross-validation loss. For instance, when the OVA strategy
and the Gaussian kernel function are adopted, σ2 and C are determined by 21.56 and 7.67, respectively.

4. Numerical Evaluation

In this section, we evaluate the performance of the designed communication system invoking
SVM-based allocation with the OVA strategy and the Gaussian kernel function in terms of sum rate
and computational complexity via computer simulations. For comparison, we also consider three
benchmark systems: (i) OPT, which is an optimization-driven method that maximizes the sum rate,
i.e., exhaustive search, discussed in Section 2.3, (ii) RAND, which selects antennas randomly, (iii) and
k-NN, an antenna allocation system based on the k-NN algorithm instead of SVM. Unless otherwise
stated, we take into account full permutations of an antenna set (i.e., full classes), e.g., L = 60 when
Nt = 5 and U = 3. We also evaluate the performance with L′ < L, that is, the reduced number of
classes for computational efficiency. In our simulations, the number of training samples is set by
4.9× 104, i.e., D = 4.9× 104, which is the number of rows in the training data matrix T. For a k-NN
algorithm, we set k = D

100 and use a Euclidian distance metric for the best classification accuracy of
the antenna allocation system. For ease of presentation, we evaluate the performance by limiting the
number of users, U, to certain values (e.g., U = 3). However, we can adopt any U in our system by
generating multiple machine learning models offline according to various Us and then choosing one
trained model for a given U.

4.1. Sum-Rate Performance

The sum-rate performance of SVM designed in the previous section is compared to the other
schemes. In Figure 5, we illustrate the cumulative density function (CDF) of the sum rate when Nt = 5
and U = 3. It can be seen that the SVM classifier provides the closest sum-rate performance to that of
OPT. The k-NN classifier achieves superior sum-rate performance to that of RAND, yet it is highly
inferior to the proposed SVM.

In Figures 6 and 7, we illustrate the sum rate over SNR for different numbers of users U ∈ {1, 3},
when Nt = 5. For U = 1 corresponding to single-user communications with no interference, the sum
rate curves of SVM and k-NN almost coincide with that of OPT due to the excellent classification
accuracy of our learning system. On the other hand, for U = 3, we observe that SVM outperforms
k-NN, as shown in Figure 5. The sum-rate performance of all methods gets saturated in a high SNR
regime because our communication system is interference-limited.
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Figure 5. Empirical CDF of sum rate when Nt = 5 and U = 3.

Figure 6. Sum rate over signal-to-noise ratio (SNR) performance for different system configurations
when Nt = 5 and U = 1.

Figure 7. Sum rate over SNR performance for different system configurations when Nt = 5 and U = 3.

In Figure 8, we plot the sum rate over Nt from 5 to 10 when U = 3. The number of classes L is set
according to the value of Nt, e.g., L = 10!/7! = 720 for Nt = 10. We observe that the sum rate of SVM
and OPT increases with Nt with the help of the multi-antenna selection diversity gain. Interestingly,
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the sum-rate performance of k-NN tends to saturate with increasing Nt due to the limited number of
training samples. More specifically, while there are 720 classes, the number of training samples is not
sufficient to guarantee classification performance in the nearest neighbor search. Thus, SVM is shown
to be more robust to various system configurations scalable with Nt.
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Figure 8. Sum rate over Nt when U = 3.

In Figure 9, we compare the sum rate over the number of classes L′ when Nt = 5, U = 3 and
L′ ∈ {1, 2, 4, 8, 16, 32, 60}. It is observed that the sum rates of SVM and k-NN coincide with that of
RAND when L′ = 1, and they increase monotonically with L′.

Figure 9. Sum rate over L′ when Nt = 5 and U = 3.

To demonstrate our SVM-based approach in a massive multi-antenna setting, in Figure 10 we plot
the sum rate over Nt from 20 to 100 when U = 2 and L′ = 60. It is observed that, unlike the results
in Figure 10, the sum rate of SVM is reduced with increasing Nt. Such a degradation occurs because
the number of classes, L′, is over-reduced for large Nt. To overcome this problem, L′ needs to scale
according to the size of Nt, which is not employed in our study, however, since such a scaling of L′

should be accompanied by a much larger training dataset, which may cause a memory overflow, in
order to guarantee a sum-rate performance comparable to that of OPT. Using a sophisticated offline
training method to appropriately adjust the number of classes without any memory overflow remains
a goal for future work. However, it can be seen that SVM still offers substantial gains in terms of sum
rate compared to RAND.
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Figure 10. Sum rate over Nt when L′ = 60 and U = 2.

4.2. Complexity Analysis and Runtime Evaluation

Selection complexities are compared in Table 2. The complexity of the optimization-based
algorithm is discussed in Section 2.2, and the complexity of random antenna selection is O(1) because
the only task is to generate a random integer. For the machine learning-based algorithms, selection
complexity is defined as the online prediction complexity, excluding the training complexity since
training can be completed offline with more powerful computing resources before the communication
phase. In the k-NN algorithm, the complexity of O (DNtU) and O (Dk) comes from the computing
distances to all training samples and finding the k nearest neighbors, respectively [58]. In multiclass
SVM algorithms, for the OVO strategy, because M = L(L−1)

2 binary SVM learners are employed for

the multiclass prediction, complexity is given by O
(

L′2NtU
)

; while for the OVA strategy, L binary

SVM learners are required, and thus complexity is O (L′NtU) [57]. Note that the complexity of the
learning-based methods mainly depends on the number of classes, and the number of classes can
be reduced from L to L′, as discussed in Section 3.1. From Table 2, it can be seen that the selection
complexity of the machine learning-based algorithms (k-NN and SVM) is polynomial on Nt and U,
which is lower than that of the optimization-based algorithm using exhaustive search among all
potential antenna allocation schemes.

Now, the runtime complexity (in seconds) of the online antenna selection is evaluated under
the various simulation environments. Figure 11 shows runtime complexity over L′ when Nt = 5,
U = 3, and L′ ∈ {1, 2, 4, 8, 16, 32, 60}. It can be seen that the complexity of k-NN is much higher than
that of OPT when L′ ≥ 4. Since the complexity of k-NN is proportional to D, as shown in Table 2,
the complexity of k-NN can be reduced at the cost of a degraded sum rate. On the other hand, the
complexity of SVM is much lower than that of OPT; therefore, SVM is favorable for our antenna
selection system.

Table 2. Performance and allocation complexity of the algorithms. OVO: one-vs-one strategy; OVA:
one-vs-all strategy

Algorithm OPT RAND k-NN SVM

Sum-rate performance Best Worst Close to SVM Second-best

Allocation complexity O
(

U2 Nt !
(Nt−U)!

)
O(1) O (DNtU + Dk) O

(
L′2NtU

)
for OVO and O (L′NtU) for OVA



Entropy 2019, 21, 471 14 of 17

Figure 11. Runtime over L′ when Nt = 5 and U = 3.

In Figure 12, we plot the runtime complexity over Nt from 5 to 12 when U = 3. We observe that
the complexity of SVM is further reduced and remarkably lower than that of OPT when L′ = 32. More
specifically, the complexity of SVM tends to increase slowly on a linear scale with Nt, whereas that of
OPT dramatically increases as Nt increases (refer to Table 2). However, the complexity of k-NN is still
much greater than that of OPT.
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Figure 12. Runtime over Nt when U = 3 and L′ = 32.

5. Concluding Remarks and Future Work

In this paper, we introduced a new framework for applying multiclass classification to an
antenna allocation system with multiple antennas in multiuser downlink communications, under the
assumption of channel amplitude information at the transmitter. The proposed antenna allocation
system based on an SVM multiclass classifier was numerically evaluated and verified based on
sum-rate performance and computational complexity. The following main results were obtained: (i) If
the number of classes L′ is suitably established, then the sum-rate performance of SVM is comparable
to that of the optimization-driven method and significantly reduces computational complexity in the
online antenna section; (ii) the classification performance of k-NN is inferior but still comparable to
that of SVM; and (iii) for a given L′, the runtime complexity of the SVM classifier increases linearly
with the number of antennas, which implies that the designed learning-based approach using SVM
is appropriate, especially for large-scale antenna systems. Suggestions for future research in this
area include (i) developing a variety of learning systems by precisely designing training data along
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with more channel information (e.g., channel phase information) in interference-limited multiuser
communications, (ii) supporting multi-antenna users, and iii) developing an online learning algorithm
to track channels with time-varying statistics.
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